
Frontiers in Oncology | www.frontiersin.org

Edited by:
Dong-Hua Yang,

St. John’s University, United States

Reviewed by:
Jianyang Hu,

City University of Hong Kong, Hong
Kong SAR, China

Yuanshan Cui,
Capital Medical University, China

*Correspondence:
Yinqin Zhong

641296484@qq.com
Lijuan Deng

ljdeng@jnu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 22 December 2021
Accepted: 13 January 2022

Published: 08 February 2022

Citation:
Lei Y, Chen L, Liu J, Zhong Y and

Deng L (2022) The MicroRNA-
Based Strategies to Combat

Cancer Chemoresistance
via Regulating Autophagy.
Front. Oncol. 12:841625.

doi: 10.3389/fonc.2022.841625

REVIEW
published: 08 February 2022

doi: 10.3389/fonc.2022.841625
The MicroRNA-Based Strategies to
Combat Cancer Chemoresistance
via Regulating Autophagy
Yuhe Lei1†, Lei Chen1†, Junshan Liu2,3†, Yinqin Zhong1* and Lijuan Deng4*

1 Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China, 2 School of Traditional Chinese
Medicine, Southern Medical University, Guangzhou, China, 3 Department of Pharmacy, Zhujiang Hospital, Southern Medical
University, Guangzhou, China, 4 Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University,
Guangzhou, China

Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy
failure and is one of the most leading causes of cancer-related death worldwide.
Understanding the mechanism of chemoresistance and exploring strategies to
overcome chemoresistance have become an urgent need. Autophagy is a highly
conserved self-degraded process in cells. The dual roles of autophagy (pro-death or
pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a
class of small non-coding molecules that regulate autophagy at the post-transcriptional
level in cancer cells. The association between miRNAs and autophagy in cancer
chemoresistance has been emphasized. In this review, we focus on the dual roles of
miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed
lights on the potential role of miRNAs as targets to overcome chemoresistance.
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INTRODUCTION

Cancers with local organ invasion and distant metastasis often require systemic chemotherapy.
Despite the newly developed therapeutic interventions such as immunotherapy, chemotherapy is
still the most commonly applied treatment modality (1). In recent years, neoadjuvant chemotherapy
has been included in the treatment guidelines of various solid tumors (2). However, after benefiting
from the initial chemotherapeutic treatment, most patients will inevitably suffer from cancer relapse
because of acquiring chemoresistance (3). Chemoresistance, a major cause of treatment failure and
high mortality, remains a big challenge in clinics. Acquired drug resistance occurs after long-term
chemotherapy, followed by devastating outcome (4), whereas intrinsic drug resistance exists
without exposure to therapeutic drugs (5). It is reported that chemoresistance is responsible for
more than ninety percent of cancer-related mortality (6). For instance, it has been documented that
almost half of the patients diagnosed with metastatic colorectal cancer are resistant to 5-FU-based
chemotherapy and their five-year survival rate is only slightly over 12% (7). Hence, there is an
urgent need to elucidate the mechanism of chemoresistance and explore novel treatment strategies.
After decades of works, several strategies to reverse chemoresistance have been proposed, including
inhibition of P-glycoprotein (P-gp), combinational therapy, dosage enhancement, tumor
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microenvironment modulation and so on (8). Up to now, four
generations of drug resistance reversal agents have been
developed. The first generation of P-gp inhibitors such as
verapamil and cyclosporin A can sensitize tumor to
chemotherapeutic drugs only in vitro but not in vivo (9). The
second generation of P-gp inhibitors such as S9788 and PSC833
also can’t be used clinically because it can inhibit cytochrome
P4503A4 to bring about unpredictable toxicity and side effects
(10). The third generation including tariquidar, laniquidar,
zosuquidar and fourth generation including curcumin, andreia,
tangeretin are under laboratory or clinical investigation and
expected to be clinically used in the future (11). In addition,
immunotherapy and targeted therapy are commonly used in
clinic after chemoresistance occurs (12). Among these strategies,
targeting autophagy to combat chemoresistance is gradually
coming into sight.

Autophagy is an evolutionarily conserved process in which
long-lived proteins, damaged organelles, or other cytoplasmic
components are degraded and recycled to maintain energy
homeostasis of cells (13). In 2016, Yoshinori Ohsumi was
awarded the Nobel Prize for his contributions in elucidating the
mechanism of autophagy, making autophagy a highlighted focus
(14). Dysregulation of autophagy is involved in various
pathological events such as cardiovascular disease (15),
neurological disease (16), endocrine disorder (17), and especially
cancers (18). Autophagy occurs frequently during chemotherapy,
acting as either a pro-death or pro-survival process (19). The dual
roles of autophagy in multi-drug resistance (MDR) have been
described in our previously published review (13). On one hand,
autophagy protects cancer cells from chemotherapeutic drugs to
mediate drug resistance by eliminating damaged organelles and
recycling degradation products. On the other hand, excessive
autophagy can kill MDR cancer cells in which apoptosis
pathways are inactive. Therefore, it is well recognized that
autophagy is involved in chemoresistance in various types of
cancers (20). The role of autophagy in chemoresistance is
paradoxical and context-dependent, which needs comprehensive
and systematic investigation.

MicroRNAs (miRNAs) are a class of small non-coding RNA
with 19-25 nucleotides. They regulate gene expression by binding
to the 3’-untranslated region (UTR) of target mRNAs to inhibit
mRNA translation or facilitate mRNA degradation (21).
Abnormal expression of miRNAs has been implicated in
regulating cell proliferation, apoptosis, metastasis, migration,
autophagy, and drug resistance in a large number of cancer
types (22). Accumulating evidence indicated that miRNAs target
some of the molecules in autophagic pathway thus resulting in
chemoresistance or chemosensitivity during chemotherapy.
Therefore, miRNAs could be promising targets for reversal of
chemoresistance (23). Currently, miRNA-based therapies have
been proposed. MiRNA mimics, miRNA sponges, anti-miRNA
oligonucleotides, and small molecule inhibitors are promising
strategies to modulate miRNAs (24). Miravirsen, the first
miRNA-targeted drug, has been successfully tested in clinical
Phase II trials for the treatment of hepatitis C (25). Miravirsen is
a locked nucleic acid (LNA)-based antisense oligonucleotide
Frontiers in Oncology | www.frontiersin.org 2
targeting miR-122 (26). In the field of oncotherapy, MRX34, a
liposomal miR-34a mimic, is the most advanced miRNA drug,
which was designed to deliver miR-34a mimic to cancer cells for
the treatment of several solid tumors (27). Additionally, novel
miRNA-based drugs are being developed for the treatment of
atherosclerosis (anti-miR-33a/b) (28), chronic heart failure (anti-
miR-208, anti-miR-195) (29, 30), and other diseases.

In this review, we discussed the correlation between miRNAs
and autophagy in chemoresistance/chemosensitivity, illustrated
the current interventions targeting miRNA/autophagy axis to
combat chemoresistance, aiming to provide novel insights from
the perspective of miRNA-mediated autophagy for promoting
chemotherapeutic efficacy.
AUTOPHAGY IN CANCERS

Autophagy is initiated by the formation of double-membraned
autophagic vesicles (AV) in response to a range of cellular
stresses, including nutrient deprivation, hypoxia, organelle
damage, and accumulation of reactive oxygen species (ROS)
(31). The critical roles of autophagy in cell death, cell survival,
metabolic adaptation, embryonic differentiation, immune
surveillance and other biological processes have been verified
(32). Therefore, dysregulation of autophagy has been implicated
in various diseases such as Alzheimer’s disease, aging,
microorganism infection, and multiple forms of cancers (33).

There are three types of autophagy, namely macroautophagy,
microautophagy, and chaperone-mediated autophagy (34).
Hereafter autophagy refers to macroautophagy, which is well
understood and the mechanisms are established. In addition to
general autophagy which functions in bulk degradation of
cytoplasmic material, there exists selective autophagy targeting
specific proteins or organelles such as mitochondria,
endoplasmic reticulum (ER), bacteria, ribosomes, and ferritin
(35). It is well accepted that autophagy is a multistep process
involving approximately 30 autophagy-related genes (Atgs), that
encode proteins executing the initiation of phagophore, AV
maturation, and lysosomal fusion (36).

Mammalian target of rapamycin (mTOR) is at the upstream
position of the autophagic process. mTOR consists of two distinct
multiprotein complexes: mTORC1 and mTORC2 (37). As an
environmental sensor, mTOR responds to intracellular and
extracellular stressful conditions such as hypoxia, nutrient
deprivation, or drug treatment (38). mTOR actively
phosphorylates ATG, leading to the inhibition of autophagy under
nutrient-rich conditions. In the case of nutrient deprivation, mTOR
is inactivated and can no longer phosphorylate and inhibit the Unc-
51-like kinase (ULK) complex, which consists of ULK family kinase,
focal adhesion kinase interacting protein 200 kDa (FIP200), and
ATG13. Dephosphorylated ULK1 dissociates from the mTOR
complex and becomes active to trigger autophagosome membrane
nucleation (39, 40). In addition to mTOR, 5’-AMP activated protein
kinase (AMPK) also acts as a master regulator of energy stress to
participate in the activation of ULK complex (41). Once activated,
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the ULK complex localizes to the phagophore and activates the
Beclin1-Vacuolar protein sorting associated protein 34 (VPS34)
complex, which contains VPS34, VPS15, Beclin1, and ATG14L
(42). The VPS34 (a class III phosphatidylinositol 3-kinase, PI3K)
complex generates phosphatidylinositol 3-phosphate (PI3P)-rich
membranes most commonly derived from endoplasmic reticulum
and Golgi complex (43). Elongation of phagophore membrane relies
on two ubiquitin-like conjugation systems, the E1-like enzyme
ATG7 and E2-like enzyme ATG10, which conjugate ATG5 to
ATG12 (44). The E3 like enzyme ATG5-ATG12-ATG6L1
complex together with ATG7-ATG3 complex conjugate
microtubule-associated protein 1 light chain 3 (LC3, ATG8) family
members to phosphatidylethanolamine (PE) (45). The conversion of
pro-LC3 to the active cytosolic isoform LC3-I requires the ATG4
family of cysteine proteases (46). Next, LC3-I is conjugated to PE to
generate LC3-II, which is regarded as a key step of specific substrate
recognition for selective degradation, therefore constructing cargo-
loaded autophagosomes (47). In addition to serving as a marker for
autophagosome, LC3 also acts as a docking site for cargo adaptors
that bring autophagic cargo to the AVs. These adaptors such as
SQSTM1 (p62) and neighbor of BRCA1 (NBR1) directly bind to
proteins and organelles marked for autophagic degradation through
NIX and FAM134B (48). Then, the double-membrane
autophagosomes are degraded by fusing with lysosomes to form
autolysosomes, that are regulated by Rab GTPases, SNARE, and
HOPS complex (49, 50). During this process, the outer
autophagosomal membrane is cleaved by ATG4, while the LC3-
PE-conjugated inner membrane and the cytoplasmic contents were
broken down by lysosomal proteases, thus recycling amino acids and
other macromolecular building blocks (32).

The dual roles of autophagy in cancers have been largely
demonstrated. Although autophagy may limit tumorigenesis in
the earliest stage, accumulating evidence indicate that antophagy
inhibition displays anti-proliferative effects in established cancers
since antophagy can help cancer cells cope with hypoxia,
nutrient deprivation or other cellular stresses (51). The basal
level of autophagy plays a protective role against cancer through
eliminating damaged organelles and proteins to maintain cellular
homeostasis in normal cells (52). The abnormal autophagy
contributes to the development of cancers. The first mouse
model with deletion of autophagy gene was established to
study the role of autophagy in tumorigenesis, and the results
indicated that the deletion of BECN1 (gene symbol of Beclin1)
increased the rate of spontaneous tumor formation compared
with BECN1 wild-type (53). Depletion of the BECN1 is also
observed in human breast, prostate, and ovarian cancers (54).
Additionally, bax-interacting factor 1 (BIF-1) and UV radiation
resistance-associated gene protein (UVRAG), which is related to
Beclin1, was found to be absent or mutated in variety of cancer
types (55, 56). However, a high basal-level of autophagy is
observed in multiple established cancers, acting as a protective
mechanism towards nutrient-stressed conditions (57). For
example, in a Kras-driven lung cancer model, tumor cell
growth and survival requires autophagy which plays a vital role
in maintaining mitochondrial function (58). As a consequence,
inhibition of cytoprotective autophagy in these cancers may
Frontiers in Oncology | www.frontiersin.org 3
result in tumor suppression (59). Additionally, a large body of
literature has emerged and elucidated the role of autophagy
induction to enable survival of cancer cells following
chemotherapy or radiotherapy, indicating that autophagy is a
key drug resistance mechanism in various cancer types (60).
DUAL ROLES OF AUTOPHAGY IN
CHEMORESISTANCE

Chemoresistance is a major cause of treatment failure, cancer
relapse, and cancer metastasis (3). Drug resistance can be
classified as resistance to either a single agent or multiple drugs
with different structures and mechanisms of action (referring to
MDR) (61). Mechanisms of cancer chemoresistance mainly
include the following categories: (1) increased drug efflux by
membrane transporters particularly ABC transporters (62),
(2) reduced drug uptake by influx transporters such as solute
carriers (63), (3) alterations in tumor microenvironment (TME),
through secretion of multiple growth factors, chemokines, and
cytokines by stromal and immune cells (64), (4) cancer stem
cells, a class of tumor-triggering cells able to self-renew (65), (5)
excessive DNA repair, which makes cancer cell survive and
become tolerant to chemotherapeutic agents (66), (6) boosting
drug metabolism mediated by glutathione S-transferase and
cytochrome P450 enzymes (67, 68), (7) mutation in cancer-
related genes including gain of function in oncogenes and loss of
function in tumor suppressor genes (69), and (8) elevating
adaptability by epigenetic and/or miRNA regulation (1).

The relationship between chemoresistance and autophagy has
been studied for decades. It is known that resistance of cancer cells to
chemotherapeutic agents is inevitable following prolonged exposure
to drugs. This phenomenon may be partly mediated by induction of
autophagy as a protective mechanism to cope with pressures during
treatment (70). The autophagy triggered by chemotherapeutic drugs
such as paclitaxel, epirubicin, or tamoxifen facilitates resistance of
cancer cells to corresponding or multiple drugs (71–73). Various
autophagy regulators and signaling pathways were confirmed to
participate in this process. The mechanisms of metabolic-induced
and therapeutic stress-induced autophagy might overlap in cancers.
After chemotherapy is applied, nutrient and energy stress is
amplified to increase autophagic flux. For example, after treatment
with mTOR inhibitors, the transcription factor EB (TFEB)/
transcription factor E3 (TFE3)/melanocyte inducing transcription
factor (MITF) family can no longer be phosphorylated and
translocate to nucleus, therefore activating transcription of the
CLEAR network of genes to affect lysosome and autophagy (74).
Another research demonstrated that the expression of S100A8 which
is necessary for Beclin1-PI3KC3 complex formation is elevated to
promote autophagy after adriamycin and vincristine treatment,
contributing to drug resistance in leukemic cells (75). Moreover,
ATG family members (76), bromodomain containing 4 (BRD4)
(77), p53 (78), and ER stress-related genes (79) are also important
factors involved in cytoprotective autophagy to mediate
chemoresistance. Therefore, inhibition of such autophagy can re-
sensitize resistant cancer cells to chemotherapeutic drugs. In recent
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years, the combination strategies of chemotherapeutic drugs and
autophagy inhibitors have been proposed. Abundant basic and
clinical research is ongoing. It is well established that genetic
silencing of ATGs such as ATG5, ATG7, and Beclin1 blocks
autophagy to sensitize drug resistant cells to therapeutic agents
(80, 81). Chloroquine (CQ) and hydroxychloroquine (HCQ),
which are clinically used for malaria treatment, are potent
autophagy inhibitors through destroying lysosomes to prevent
autophagosome degradation (82). Previous research has revealed
that inhibition of autophagy by CQ sensitize vincristine-resistant
gastric adenocarcinoma (83), epirubicin-resistant triple-negative
breast cancer (84), sorafenib-resistant hepatocellular
carcinoma (HCC) (85), cisplatin-resistant hypopharyngeal
carcinoma (86), 5-fluorouracil-resistant gallbladder carcinoma (87)
to chemotherapeutics. HCQ has been repurposed in numerous
clinical trials either as a single agent or combined with therapeutic
agents, some of which are in phase II studies (88). Lys05, a water-
soluble analog of HCQ, displays stronger anticancer properties than
HCQ both in vitro and in vivo (89). It can improve the efficiency of
BRAF inhibitor against glioblastoma (90). Other autophagy-targeted
compounds that are promising in combating chemoresistance
include wogonin (91), SAR405 (92), tioconazole (93), 3-
methyladenine (3-MA) (94) and others.

Paradoxically, while autophagy mainly acts as a pro-survival
mechanism, excessive autophagy leads to a caspase-independent
cell death called “type II programmed cell death” or “autophagic
cell death”, which differs from apoptosis (95). In consequence,
activation of such autophagy confers lethal effect on drug
resistant cancer cells (96). Numerous studies have focused on
identifying the novel agents that can effectively kill apoptosis-
deficient cancer cells by inducing autophagic cell death. Since
AKT/mTOR is the vital negative regulator of autophagy, the
AKT/mTOR-associated autophagic cell death has gained a lot of
attention. As a dual PI3K and mTOR inhibitor, NVP-BEZ235
was reported to sensitize osteosarcoma and urothelial cancer
cells to cisplatin by activating autophagic flux independent of
apoptosis (97, 98). Meanwhile, NVP-BEZ235 can also combat
resistance to temozolomide and doxorubicin in glioma and
neuroblastoma cells respectively (99, 100). Similarly, the
Ganoderma microsporum immunomodulatory (GMI) protein
targets AKT-mTOR-p70S6K pathway to reverse multidrug
resistance by inducing pro-death autophagy in lung cancer
(101). In addition to AKT/mTOR signaling pathway, the JNK
activation and MCT1 inhibition also contributes to autophagic
cell death, suggesting the possible autophagy-related targets to
overcome chemoresistance (102, 103). Therefore it can be seen
that autophagy demonstrates a role of pro-survival or pro-death
to promote or suppress tumor growth, as well as mediate or
combat chemoresistance. Inhibition of cytoprotective autophagy
may enhance the sensitivity of cancer cells to chemotherapeutic
agents, whereas induction of autophagic cell death can be used as
an alternative cell death mechanism when the cells fail to
undergo apoptosis. It is convinced that the role of autophagy is
context- and tumor type-dependent, therefore clarifying the
relationship between autophagy and chemoresistance is urgent
and critical for improving the efficacy of chemotherapy.
Frontiers in Oncology | www.frontiersin.org 4
MiRNAs COMBAT CHEMORESISTANCE
BY REGULATING AUTOPHAGY

MiRNAs are a class of small non-coding single-stranded RNA
molecules with 19-25 nucleotides. They play fundamental roles in
multiple biological processes through binding to the 3’-UTR of
target mRNAs to accelerate mRNA degradation or terminate
translation (104). MiRNAs are evolutionary conserved and found
in a wide range of organisms (105). It is reported that more than
60% of human genes contain potential miRNA binding sites and
approximately 10-40% of mRNAs are regulated by miRNAs (106).
By post-transcriptional gene silencing, miRNAs regulate various
cellular pathways including cell growth, differentiation, apoptosis,
and homeostasis (107). MiRNA genes exist in both intergenic and
intronic regions (108). They are transcribed into primary miRNA
(pri-miRNA) with 5’ cap and a 3’ poly-A tail by RNA polymerase II
(109). Meanwhile, RNA polymerase III is required for the
transcription of some particular miRNAs (110). Following
transcription, pri-miRNAs are processed in the nucleus by a core
microprocessor complex including RNase III enzyme Drosha and
its cofactor Pasha/DGCR8 to generate hairpin-structured
premature-miRNAs (pre-miRNAs) with 60-70 nt (111). A single
pri-miRNA transcript may generate more than one functional
miRNA due to splicing (112). Then, Exportin-5 recognizes the 2-
nucleotide overhang of the pre-miRNA and transports it from
nucleus to the cytoplasm (113). In cytoplasm, the hairpin structure
of pre-miRNAs is cleaved by DICER protein to form mature
miRNAs, which are incorporated into an RNA-induced silencing
complex (RISC) (114). Argonaute (AGO) proteins, the components
of the RISC, guide mature miRNAs to specific target regions within
mRNA transcripts, leading to mRNA degradation or translation
blockage (106).

Dysregulation of miRNA often gives rise to multiple human
diseases especially cancers. Abnormal expression of miRNAs is
closely associated with cancer formation, progression, invasion,
metastasis, and chemosensitivity (6). The complex roles of
miRNAs as either tumor suppressors or oncogenes have been
largely demonstrated. The correlation between miRNA-
mediated autophagy and chemoresistance has been attracting a
lot of interest. The fact that autophagy plays dual roles in
chemoresistance provides a useful explanation on how
miRNAs could reverse or facilitate chemoresistance through
regulating autophagy. Since the protective mechanism of
autophagy is the majority of cases to trigger tumor
chemoresistance, inhibition of such autophagy by miRNAs
may pave the way to combat chemoresistance. However,
miRNA mediated-chemosensitivity by pro-death autophagy
also possesses great value. Various tumor suppressive miRNAs
are down-regulated in drug resistant cancer cells compared with
sensitive ones, indicating that rejuvenation of these miRNAs may
reverse chemoresistance by inhibiting protective autophagy or
facilitating autophagic cell death. On the contrary, suppression of
oncogenic miRNAs to modulate autophagy is another strategy
for reversal of chemoresistance. In this section, we discuss the
involvement of miRNAs in chemoresistance/chemosensitivity
from different perspectives regulation of autophagy.
February 2022 | Volume 12 | Article 841625
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Overexpression of MiRNA Reverses
Chemoresistance by Inhibiting Autophagy

The process of autophagy is tightly regulated by ATGs, therefore
targeting ATGs represent a promising strategy for reversal of drug
resistance. Numerous ATGs are reported to be direct targets of
miRNAs (Figure 1). For example, the 3’-UTR of ATG5 mRNA
can be bound bymiR-137 (115), miR-181a (116), miR-216b (117),
miR-30a (118), and miR-153-3p (119) to facilitate ATG5 mRNA
degradation, thus sensitizing various cancers, such as pancreatic
cancer, gastric cancer, melanoma, chronic myelogenous leukemia,
and non-small cell lung cancer (NSCLC), to chemotherapeutic
agents by inhibiting protective autophagy. In addition to ATG5,
Bcl-2 is a direct target of miR-153-3p in combating resistance to
Imatinib in chronic myeloid leukemia (120). Similarly, miR-375
targets ATG7 (121) and ATG14 (122) to mediate chemosensitivity
of HCC to sorafenib. The above studies indicated that a single
miRNA can target different genes, likewise a specific gene is
regulated by multiple miRNAs. Beclin-1, also known as ATG6,
is a component of the PI3K complex which mediates vesicle-
trafficking processes in autophagy (123). Targeting Beclin-1 by
miR-409-3p (124), miR-17 (125), miR-216b (117), miR-17-5p
(126), and miR-199a-5p (127) appears to reverse chemoresistance
by inhibiting autophagy in different types of cancers. The
interaction between miR-30 family and Beclin-1 has been
revealed in recent years. It is reported that miR-30 or its
homology miR-30a, miR-30a-5p binds to Beclin-1 mRNA to
block autophagy-induced chemoresistance in chronic myeloid
leukemia (118, 128), gastric cancer (129), osteosarcoma (130),
small cell lung cancer (SCLC) (131) and other variety of cancers
(132). A clinical study on Egyptian patients with chronic myeloid
leukemia also confirmed this result (133). It was found that a
single miRNA in different cancer types may share a common
Frontiers in Oncology | www.frontiersin.org 5
mechanism in mediating chemoresistance/chemosensitivity.
Additionally, other ATGs are directly targeted by miRNAs, i.e.
miR-541 targeting ATG 2A (134), miR-24-3p targeting ATG4A
(135), miR-1 targeting ATG3 (136), miR-23b-3p and miR-200b
targeting ATG12 (83, 137), miR-874 targeting ATG16L1 (138)
andmiR-34a targeting ATG4B (139). Therefore, overexpression of
these miRNAs may result in sensitization of chemotherapeutic
drugs in cancer treatment. Furthermore, miRNAs can also
regulate ATGs indirectly. For instance, MiR-29c-3p targets
FOXP1 to downregulate ATG14, leading to sensitization of
ovarian cancer cells to cisplatin treatment by inhibiting
autophagy (140).

Highmobility group box 1 (HMGB1) is a highly conservedDNA-
binding nuclear protein which regulates various DNA-related
activities such as replication, transcription, and repair (141).
Abundant studies have confirmed the involvement of HMGB1 in
multiple hallmarks of cancers, making HMGB1 a promising target to
combat tumor progression, invasion, metastasis, and chemoresistance
(142). As a key regulator of autophagy, HMGB1 promotes drug
resistance of a number of cancers including osteosarcoma (143), lung
adenocarcinoma (144), and leukemia (145) by activating protective
autophagy following pharmacotherapy. Some investigators have
attempted to reveal the association between miRNAs and HMGB1.
They found that HMGB1 was targeted by miR-22, miR-218, miR-
26a, miR-34a, miR-129-5p, and miR-142-3p to sensitize
osteosarcoma, endometrial carcinoma, melanoma, retinoblastoma,
breast cancer, NSCLC to chemotherapeutic agents through inhibiting
autophagy (146–151). HMGN5 is another member of the HMG box
family involved in oncogenesis and tumor progression. Meng and his
colleagues conducted a series of experiments to elucidate the
HMGN5-associated chemoresistance. Their work revealed that
HMGN5-mediated autophagy contributes to chemoresistance in
osteosarcoma. Targeting HMGN5 by miR-140-5p sensitizes
FIGURE 1 | The regulatory role of miRNAs on each stage of autophagy. Core proteins and signaling pathways are related to each stage of autophagy including phagophore
initiation and elongation, autophagosome maturation, and lysosomal fusion. Some key miRNAs target autophagy-related genes at the post-transcriptional level to participate in
every stage of autophagy. ⊥ indicates an inhibitory effect and ! indicates a promoting effect.
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osteosarcoma cells to chemotherapy, suggesting a potential
application of miR-140-5p in the prognosis and treatment of
chemoresistant cancers (152).

Other core autophagic components, regulators, or signaling
pathways also associated with the mechanisms of miRNA-
mediated chemosensitivity. For example, RAB family, the largest
subfamily of Ras, consists of more than 60 small GTPases. RABs
play essential roles in membrane traffic including autophagosome
formation (153). Xu et al. found that high miR-541 expression
potentiates the response of HCC to sorafenib treatment by targeting
RAB1B (134). Additionally, miR-148a-3p inhibits the cytoprotective
autophagy by suppressing RAB12 to enhance cisplatin cytotoxicity
in gastric cancer (154). As a key initiator of autophagy, ULK1 is an
attractive target for cancer treatment. The 3ʹ-UTR of ULK1 was
reported to contain binding sites for miR-26a/b and miR-106a.
Overexpression of miR-26a/b enhances the sensitivity of HCC to
doxorubicin (Dox) and promotes apoptosis both in vitro and in vivo
by inhibiting autophagy (155). Similarly, ectopic expression of miR-
106a resulted in significant tyrosine kinase inhibitor (TKI)-induced
cell death in lung adenocarcinoma compared to control transduced
cells (156). Moreover, miR-489 overexpression inhibits ULK1 to
suppress autophagy, thus sensitizing breast cancer cells to DOX
(157). FOXO3a is a multifaceted transcription factor which guides
autophagy directly or indirectly (158). A research by Zhou et al.
revealed that FOXO3a is a direct downstream target of miR-223.
Overexpression of miR-223 or agomiR-223 contributes to the
enhancement of doxorubicin sensitivity in HCC (159).
Furthermore, Wingless-type MMTV integration site family
member 2 (WNT2) belongs to the WNT family which is
evolutionarily conserved (160). The foremost roles of the Wnt/b-
catenin signaling pathway in tumorigenesis and tumor progression
have been well established especially in the aspects of cancer
invasion and migration, whereas little is known about WNT and
autophagy (161). Chen et al. found that overexpression of miR-
199a/b-5p inhibits its direct target WNT2 and downstream
signaling to influence autophagy formation, resulting in enhanced
efficacy of Imatinib treatment in chronic myeloid leukemia (162).
Overall, induction of autophagy following chemotherapy confers
the survival mechanism of cancer cells. Overexpression of some
tumor suppressor miRNAs to block autophagy has become a useful
strategy to enhance chemosensitivity via different molecular
pathways. See Table 1 for details.

Overexpression of MiRNA Reverses
Chemoresistance by Promoting
Autophagy
The inactivation of apoptosis pathway following chemotherapy
contributes to the development of drug resistance. Hence,
alternative types of cell death to combat chemoresistance have
attracted increasing attention. Opposite to cytoprotective
autophagy, excessive autophagy promotes autophagic cell death
during chemotherapy (183). It has been reported that some
miRNAs trigger autophagic cell death in drug resistant cancers
by repressing important upstream signals of autophagy pathway.
These cases are few but of great significance. In an investigation
into chemosensitivity of cervical carcinoma, Huang et al. found
Frontiers in Oncology | www.frontiersin.org 6
that miR-15a and miR-16 directly targets Rictor to attenuate the
phosphorylation of mTORC1 and p70S6K. As a consequence,
miR-15a/16 dramatically enhances chemotherapeutic efficacy of
camptothecin towards cervical carcinoma partly due to
autophagy-induced inhibition of cell proliferation (179).
Similarly, another research revealed that in cisplatin-resistant
NSCLC, downregulation of miR-181 correlates with reduced
autophagy and apoptosis. MiR-181 overexpression restored LC3
and ATG5 protein by triggering PTEN/PI3K/AKT/mTOR
signaling pathway, therefore promoting apoptosis in cisplatin-
resistant NSCLC (180). These two studies emphasize mTOR as the
key regulator in miRNA-induced autophagic cell death. In a study
of miR-193b, it is reported that overexpression of miR-193b
significantly enhances the cytotoxicity of 5-FU to oesophageal
cancer cells, which is mediated by elevated autophagic flux rather
than apoptosis. Although the exact targets of miR-193b are
unknown, target prediction analysis suggests that stathmin 1
might be involved in this process (181). Additionally, another
research demonstrated that miR-519a increased the sensitivity of
glioblastoma to temozolomide through induction of autophagy by
targeting STAT3/Bcl-2/Beclin-1 signaling pathway. These results
provide an effective therapeutic strategy of drug combination for
glioblastoma treatment (182). See Table 1 for details.

Inhibition of MiRNA Reverses
Chemoresistance by Enhancing
Autophagy
The expression of some autophagy inhibitory miRNAs was
significantly increased in drug resistant cancer cells compared
with their parental cells, indicating the possible mechanism of
miRNAs-mediated chemoresistance by autophagy. Hence,
silencing these oncogenic miRNAs may increase the sensitivity
of drug resistant cancer cells to chemotherapeutic agents by
inducing autophagic cell death. For example, miR-1301
promoted the proliferation of cisplatin-resistant ovarian cancer
cells by inhibiting ATG5 and Beclin1, indicating that targeting
miR-1301 is an effective approach to reverse cisplatin resistance by
inducing autophagy (184). Another research demonstrated that
miR-487b-5p at high level may be a potential biomarker of
acquired Temozolomide resistance in lung cancer cells. MiR-
487b-5p directly targets LAMP2 to block autophagy thus
mediating Temozolomide resistance. In consequence, miR-487b-
5p has been regarded as a chemotherapeutic target in the
treatment of TMZ-resistant lung carcinoma by enhancing
autophagy (185). Furthermore, inhibitions of miR-221/222
induced extended autophagy and cell death of multiple
myeloma cells by enhanced autophagy via ATG12 and p27
upregulation (186). A recent study found that miR-15a-5p was
overexpressed in chemoresistant acute myeloid leukemia (AML)
patients compared with chemosensitive patients treated with
daunorubicin and cytarabine. The upregulation of miR-15a-5p
decreased daunorubicin-induced autophagy by targeting ATG9a,
ATG14, GABARAPL1, and SMPD1, thus resulting in attenuating
cell sensitivity to daunorubicin. This finding indicated that
inhibition of miR-15a-5p may sensitize AML to daunorubicin
by enhancing autophagy (187). MiR-21 contributes to the
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tamoxifen (TAM) and fulvestrant (FUL) resistance of breast
cancer by inhibiting autophagy. Yu et al. found that silencing
miR-21 increased the sensitivity of ER+ breast cancer cells to TAM
or FUL by triggering autophagic cell death. Phosphatase and
tensin homolog (PTEN) is the potential target of miR-21 to
regulate autophagy by affecting downstream PI3K-AKT-mTOR
Frontiers in Oncology | www.frontiersin.org 7
signaling pathway (188). As mentioned above, PI3K-AKT-mTOR
is the core negative regulator of autophagy (189). The activation of
PI3K-AKT-mTOR by miR-21 reduces the efficacy of cisplatin on
gastric cancer cells through autophagy inhibition (190). Similarly,
a study by He et al. verified the role of miR-21 in mediating
sorafenib resistance of HCC cells by inhibiting autophagy. Anti-
TABLE 1 | Overexpression of miRNA combat chemoresistance by regulating autophagy.

miRNA Effect on autophagy Cancer type Resistant to Targets Ref

miR-541 Inhibition HCC Sorafenib ATG2A, RAB1B (134)
miR-375 Sorafenib ATG7 (121)
miR-223 Doxorubicin FOXO3a (159)
miR-26a/b Doxorubicin ULK1 (155)
miR-375 Sorafenib ATG14 (122)
miR-125b Oxaliplatin EVA1A (163)
miR-153-3p Inhibition NSCLC Gefitinib ATG5 (119)
miR-142-3p Adriamycin, Cisplatin HMGB1 (149)
miR-1 Cisplatin ATG3 (136)
miR-129-5p Inhibition Breast cancer Taxol HMGB1 (150)
miR-451a Tamoxifen (164)
miR-214 Tamoxifen, Fulvestrant UCP2 (165)
miR-27a Paclitaxel, Doxorubicin (166)
miR-489 Doxorubicin ULK1 (157)
miR-24-3p Inhibition SCLC Etoposide, Cisplatin ATG4A (135)
miR-30a-5p Beclin-1 (131)
miR-495-3p Inhibition Gastric cancer Multidrug GRP78 (167)
miR-23b-3p Multidrug ATG12 and HMGB2 (83)
miR−30 Multidrug Beclin-1 (129)
miR-874 Multidrug ATG16L1 (138)
miR-181a Cisplatin ATG5 (116)
miR-148a-3p Cisplatin AKAP1 and RAB12 (154)
miR-29c Inhibition Pancreatic cancer Gemcitabine USP22 (168)
miR-137 Doxorubicin ATG5 (115)
miR-101 Inhibition Osteosarcoma Doxorubicin (169)
miR-22 Cisplatin, Doxorubicin HMGB1, MTDH (146, 170, 171)
miR-199a-5p Cisplatin Beclin-1 (127)
miR-30a Doxorubicin Beclin-1 (130)
miR-140-5p Multidrug HMGN5 (152)
miR-17 Inhibition Lung cancer Paclitaxel Beclin-1 (125)
miR-106a Saracatinib, Dasatinib ULK1 (156)
miR-17-5p Paclitaxel Beclin-1 (126)
miR-200b Docetaxel ATG12 (137)
miR-26a Inhibition Melanoma Dabrafenib HMGB1 (151)
miR-216b Vemurafenib Beclin-1, UVRAG, ATG5 (117)
miR-409-3p Inhibition Colon cancer Oxaliplatin Beclin-1 (124)
miR-22 Inhibition Colorectal cancer 5-FU BTG1 (172)
miR-218 Multidrug YEATS4 (173)
miR-34a Oxaliplatin Smad4 (174)
miR-199a/b-5p Inhibition Chronic myeloid leukemia Imatinib WNT2 (162)
miR- 30A Beclin-1, ATG5 (118, 128)
miR-153-3p Bcl-2 (120)
miR-17 Inhibition Glioblastoma Temozolomide ATG7 (175)
miR-93 (176)
miR-218 Inhibition Endometrial carcinoma Paclitaxel HMGB1 (148)
miR-30a Inhibition Renal cell carcinoma Sorafenib Beclin-1 (177)
miR-30a Inhibition Various types of cancer cis-DDP, Taxol Beclin-1 (132)
miR-34a Inhibition Prostate cancer Topotecan, Doxorubicin ATG4B (139)
miR-29c-3p Inhibition Ovarian cancer Cisplatin FOXP1/ATG14 (140)
miR-199a-5p Inhibition Acute myeloid leukemia Adriamycin DRAM1 (178)
miR-34A Inhibition Retinoblastoma Vincristine, Etoposide, Carboplatin HMGB1 (147)
miR-15a/16 promotion Cervical carcinoma Camptothecin Rictor (179)
miR-181 promotion NSCLC Cisplatin PTEN/PI3K/AKT (180)
miR-193b promotion Oesophageal cancer 5-FU Stathmin 1 (181)
miR-519a promotion Glioblastoma Temozolomide STAT3/Bcl2 (182)
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miR-21 oligonucleotides re-sensitized sorafenib-resistant HCC
cells by promoting autophagy via the PTEN/AKT signaling
pathway (191). These studies show that the connections of miR-
21 and PTEN-PI3K-AKT-mTOR have been well established in
drug resistance of some cancer types. Meanwhile, the autophagy
inhibition by miR-155 through PTEN-PI3K-AKT-mTOR
signaling pathway to mediate adriamycin resistance of
osteosarcoma has been proposed (192). To conclude, targeting
miR-21 or miR-155 may restore PTEN to inhibit PI3K-AKT-
mTOR signaling pathway, thus triggering autophagic cell death to
overcome chemoresistance. Seca et al. found that autophagy
enhancement by miR-21 inhibition decreases the expression of
pro-survival genes such as Bcl-2, thus sensitizing leukemia cells to
chemotherapeutic drugs (193). Furthermore, recent studies
confirmed that the downstream biological effects following
autophagy inhibition may benefit cancer survival. The
suppression of autophagy by miR-3127-5p results in activation
of STAT3 signaling pathway, which stimulates programmed
death-ligand 1 (PD-L1) and subsequently mediates immune
evasion of cancer cells (194). As a consequence, targeting miR-
3127-5p to facilitate autophagy may aid in immune escape
dismission and chemoresistance reversal. See Table 2 for details.
Inhibition of MiRNA Reverses
Chemoresistance by Inhibiting Autophagy
The levels of some miRNAs are positively correlated with
cytoprotective autophagy and drug resistance following
chemotherapy, therefore targeting these upregulated miRNAs in
drug resistant cancer cells may restore chemosensitivity by
inhibiting autophagy. MiR-138 was confirmed to be associated
with glioblastoma cell survival and resistance to TMZ by inducing
pro-survival autophagy which negatively correlates with BIM, the
direct target of miR-138. Hence, targeting miR-138 may represent
a novel strategy to overcome temozolomide resistance in
glioblastoma by inhibiting autophagy (196). Interestingly, the
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role of miR-21 in autophagy regulation is controversial.
Contrary to what is mentioned in previous section, miR-21-5p
enhances pro-survival autophagic flux following inhibition of
proteasome pathway to mediate drug resistance to
topoisomerase inhibitors in colorectal cancer (CRC). Therefore,
miR-21-5p could be a potential target for reversing drug resistance
in CRC (195). Moreover, miR-338-3p confers resistance to 5-FU
in p53 mutant colon cancer through mTOR downregulation-
induced autophagy, indicating that targeting miR-338-3p is a
promising strategy to overcome 5-FU resistance in p53 mutant
colon cancer (199). Additionally, miR-140-5p and miR-155
promote the chemotherapy-induced autophagy to mediate drug
resistance in osteosarcoma. Inositol 1,4,5-trisphosphate kinase 2
(IP3k2) was reported to be a direct target of miR-140-5p (197,
198). Similarly, miR-7-5p promotes autophagy via suppression of
Bcl-2 to mediate cisplatin resistance in cervical cancer (200). MiR-
223 directly targets FBXW7 thus promoting autophagy and
rendering NSCLC cells resistant to cisplatin (201). Thus,
targeting the above mentioned miRNAs could provide potential
approach to combat chemoresistance. See Table 2 for details.
TARGETING MIRNA/AUTOPHAGY AXIS
TO COMBAT CHEMORESISTANCE

Since miRNAs play vital roles in chemoresistance and
chemosensitivity via regulating autophagy, miRNA-based
strategies including either miRNA inhibition or miRNA
restoration have been proposed in cancer therapy. The rapid
development of miRNA-based interventions, such as miRNA
mimics, anti-miRNA oligonucleotides, miRNA sponges, and
small molecule inhibitors has been witnessed in the last
decade. Some of these agents are in different phases of clinical
trials (202). The first miRNA-based therapy for cancer is
TABLE 2 | Inhibition of miRNA combat chemoresistance by regulating autophagy.

miRNA Effect on autophagy Cancer type Resistant to Targets Ref

miR-1301 Inhibition Ovarian cancer Cisplatin ATG5 and Beclin1 (184)
miR-487b-5p Lung cancer Temozolomide LAMP2 (185)
miR-155 Osteosarcoma Adriamycin PTEN (192)
miR-221/222 Multiple myeloma Dexamethasone ATG12 (186)
miR-3127-5p NSCLC Cisplatin STAT3 (194)
miR-15a-5p Acute myeloid leukemia Daunorubicin ATG9a, ATG14, GABARAPL1, SMPD1 (187)
miR-21 Inhibition Breast cancer Tamoxifen, Fulvestrant PTEN (188)

HCC Sorafenib PTEN/AKT (191)
Gastric cancer Cisplatin PI3K/AKT/mTOR (190)
Leukemia Etoposide, Doxorubicin Bcl-2 (193)

Promotion Colorectal cancer Topoisomerase proteasome pathway (195)
miR-138 Promotion Glioblastoma Temozolomide BIM (196)
miR-140-5p Osteosarcoma Doxorubicincisplatin IP3K2 (197)
miR-155 Doxorubicincisplatin (198)
miR-338-3p p53 mutant colon cancer 5-Fu mTOR (199)
miR-7-5p Cervical cancer Cisplatin PARP-1, Bcl-2 (200)
miR-223 NSCLC Cisplatin FBXW7 (201)
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MRX34, a miR-34 mimic designed to target Wnt signaling and
tumor metastasis (203). In this section, we demonstrate some
genetic or pharmacological interventions targeting miRNA to
combat chemoresistance by modulating autophagy.

Isoliquiritigenin (ISL), a natural flavonoid isolated from the root
of licorice, has been used for the treatment of inflammation, platelet
aggregation, cancer, and cardiac injury for centuries (204). A
research by Wang et al. revealed that ISL targets miR-25 to trigger
autophagic cell death by increasing ULK1 expression in MCF-7/
ADR cells, which provides evidence for ISL as a natural autophagy
inducer to increase breast cancer chemosensitivity (205). Apigenin is
a flavonoid with anti-proliferative properties against a broad
spectrum of cancers (206). Apigenin can significantly upregulate
miR-520b which targets ATG7 to block protective autophagy, thus
sensitizing HCC cells to doxorubicin (207). Propofol is an
intravenous sedative-hypnotic agent used in surgery. A growing
number of studies have revealed the anti-tumor effect of propofol
against different cancer types (208, 209). LncRNA MALAT1 targets
miR-30e to facilitate autophagy via ATG5 upregulation. The
downregulation of lncRNA MALAT1 by propofol results in
inhibiting autophagy and promoting gastric cancer cells sensitive
to cisplatin (210). A recent study demonstrated that rutin, the main
component of Potentilla discolor Bunge, reverses sorafenib resistance
by inhibiting autophagy through the BANCR/miRNA-590-5P/
OLR1 axis in HCC (211). Furthermore, it is urgent to look for
efficient miRNA delivery system for miRNA mimics that can’t enter
cells efficiently on its own. Based on the novel drug delivery system,
miR-375 and sorafenib were co-loaded into calcium carbonate
nanoparticles with lipid coating (miR-375/Sf-LCC NPs). As an
inhibitor of autophagy, miR-375 enhances cytotoxicity of sorafenib
both in vitro and in vivo by targeting ATG7, thus producing potent
anti-tumor effect to combat sorafenib resistance (121).
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CONCLUSION AND PERSPECTIVES

This review demonstrated that miRNAs, as epigenetic factors of
autophagy, play a pivotal role in cancer chemoresistance. Various
types of cancers develop resistance to chemotherapeutic drugs
through complex regulatory mechanisms of miRNAs by
targeting different genes at every stage of autophagy. Due to the
paradoxical effects of autophagy in chemoresistance, there is an
urgent need to understand the interactions between miRNA-
mediated autophagy and chemoresistance, which may provide
evidence for development of novel miRNA-based therapy. As
mentioned above, altered expression of miRNAs can trigger
chemoresistance or chemosensitivity through pro-death or pro-
survival autophagy during chemotherapy. Hence, inhibiting
miRNA function or restoring miRNA expression is a possible
approach for combating chemoresistance (Figure 2). Genetic
interventions targeting miRNAs such as miRNA mimics, miRNA
sponges, anti-miRNA oligonucleotides are useful approaches (212).
The pharmacological interventions such as small molecule
compound or active ingredient can also be used to target miRNA
to overcome chemoresistance. In addition, the upstream molecular
pathway regulating miRNA/autophagy axis can also be the
potential targets for chemoresistance reversal. LncRNAs,
circRNAs, and proteins are the major upstream mediators of
miRNA/autophagy axis (213, 214). The complex regulatory
network of upstream factors on miRNA/autophagy axis
necessitates further research.

MiRNA-based therapy as an adjuvant to immunotherapy and
targeted therapy is highly feasible. MiRNA-based therapies may
aid in the four principal cancer immunotherapy approaches
including immune checkpoint blockade, cancer vaccines,
cytokine therapy, and adoptive cell therapy (215). According to
FIGURE 2 | The strategies of modulating miRNAs to combat chemoresistance through autophagy. After chemotherapy is applied, sensitive cancer cells mainly
undergo apoptotic cell death process whereas chemoresistant cancer cells fail to respond to chemotherapeutics. The pro-survival autophagy contributes to the
development of chemoresistance. However, pro-death autophagy can be used as an alternative cell death mechanism in apoptosis-inactive cancer cells to re-
sensitize them. Based on these facts, inhibition of pro-survival autophagy and induction of pro-death autophagy may result in chemoresistance reversal, which can
be done by overexpression or inhibition of these miRNAs in different types of cancer. ⊥ indicates an inhibitory effect and ! indicates a promoting effect.
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the study of Howell et al, the miR-31 inhibits CD8+ T cell function,
leading to a substantial block to anti-tumor immunity. Hence, they
proposed that miR-31 inhibitor combined with PD-1 inhibitor
may prevent T cell from exhaustion and promote autoimmunity,
thus displaying huge potential for cancer suppression (216). MiR-
200 has also emerged as a potential therapeutic adjuvant for
checkpoint inhibitors by acting on both immune and metastatic
pathways via modulation of PD-L1 and EMT (217). Additionally,
aberrant expression of miRNAs promotes resistance of different
types of cancer to targeted therapy through multiple mechanisms.
Therefore, the combination of miRNA-based therapy and targeted
therapy may overcome the resistance of cancer cells to targeted
drugs such as tyrosine kinase inhibitors and monoclonal
antibody (218).

Recently, the delivery approaches for miRNAs including viral
vector-, lipid-, inorganic material-, polymer-, cell-, and 3D scaffold-
based approaches have emerged (219). The lipid-based delivery
systems such as liposomes, lipid nanoparticles, and solid lipid
nanoparticles (SLNs) have been widely used for introduction of
miRNAs. With the development of nanoparticle delivery system,
the introduction of miRNA turns out to be highly efficient in cancer
therapeutics because these nano-miRNAs have a site specific
action, which can deliver the miRNA or anti-miRNA directly to
the transformed cells, thus reducing the unexpected toxicity in
non-target cells (212). The viral vector delivery system also has high
efficiency. However, the associated immunogenic responses and
cytotoxicity limit the further application of these approaches
respectively (220, 221). Currently, the safety concerns of miRNA
Frontiers in Oncology | www.frontiersin.org 10
therapy including off-target side-effects, toxicity, and
carcinogenicity have become big challenges. Nowadays, less than
20 miR targeting molecules have entered clinical trials, and none
progressed to phase III (219). Hence, further research is needed to
promote the application value of miRNA therapy.

In conclusion, this review elucidated the microRNA-based
strategies to combat cancer chemoresistance via regulating
autophagy. We expect that patients will benefit from the
improvement of chemotherapy efficacy through modulation of
miR/autophagy axis in the future.
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