
rspb.royalsocietypublishing.org
Research
Cite this article: Vorontsova MS et al. 2016

Madagascar’s grasses and grasslands: anthro-

pogenic or natural? Proc. R. Soc. B 283:

20152262.

http://dx.doi.org/10.1098/rspb.2015.2262
Received: 18 September 2015

Accepted: 14 December 2015
Subject Areas:
environmental science, taxonomy and

systematics, ecology

Keywords:
Poaceae, neogene, endemism,

species turnover, phylogenetic

community assembly
Author for correspondence:
Maria S. Vorontsova

e-mail: m.vorontsova@kew.org
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2015.2262 or

via http://rspb.royalsocietypublishing.org.

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Madagascar’s grasses and grasslands:
anthropogenic or natural?

Maria S. Vorontsova1, Guillaume Besnard3, Félix Forest1, Panagiota Malakasi1,
Justin Moat2,4, W. Derek Clayton1, Paweł Ficinski1, George M. Savva5,
Olinirina P. Nanjarisoa6, Jacqueline Razanatsoa7, Fetra O. Randriatsara6,8,
John M. Kimeu9, W. R. Quentin Luke9, Canisius Kayombo10

and H. Peter Linder11

1Comparative Plant and Fungal Biology, and 2Bioinformatics and Spatial Analysis, Royal Botanic Gardens, Kew,
Richmond, Surrey TW9 3AB, UK
3CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Evolution et Diversité Biologique), Université Paul Sabatier,
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Grasses, by their high productivity even under very low pCO2, their ability to

survive repeated burning and to tolerate long dry seasons, have transformed

the terrestrial biomes in the Neogene and Quaternary. The expansion of grass-

lands at the cost of biodiverse forest biomes in Madagascar is often postulated

as a consequence of the Holocene settlement of the island by humans. How-

ever, we show that the Malagasy grass flora has many indications of being

ancient with a long local evolutionary history, much predating the Holocene

arrival of humans. First, the level of endemism in the Madagascar grass flora

is well above the global average for large islands. Second, a survey of many

of the more diverse areas indicates that there is a very high spatial and ecologi-

cal turnover in the grass flora, indicating a high degree of niche specialization.

We also find some evidence that there are both recently disturbed and natural

stable grasslands: phylogenetic community assembly indicates that recently

severely disturbed grasslands are phylogenetically clustered, whereas more

undisturbed grasslands tend to be phylogenetically more evenly distributed.

From this evidence, it is likely that grass communities existed in Madagascar

long before human arrival and so were determined by climate, natural grazing

and other natural factors. Humans introduced zebu cattle farming and

increased fire frequency, and may have triggered an expansion of the grass-

lands. Grasses probably played the same role in the modification of the

Malagasy environments as elsewhere in the tropics.
1. Background
Grasses have transformed the planet. Since the Oligocene, the expanding dom-

inance of grasses has led to a reduction in forested vegetation, has transformed

the herbivore faunas and their associated predators and has dramatically

increased the frequency of fire. Grasses have acted as biotic modifiers, generat-

ing a whole new set of ecosystems and selective environments that have led to

the reduction or demise of some older forms, but stimulated the evolution of
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newer forms. Consequently, knowing the origins of grass-

lands in any region is central to the interpretation of the

Neogene environments in that region [1,2].

Grasses have a set of traits that have allowed them to

expand their habitats and become dominant in many biomes

[1]. These include C4 photosynthesis that allows them to

remain highly productive under low pCO2, underground

buds that allow the plants to survive fires and intense grazing,

silica bodies that may limit grazing damage, fast-growing foli-

age that can rapidly generate new biomass to replace material

removed by fires or grazing, and seeds with well-developed

embryos that allow the plants to rapidly invade potentially

suitable habitat. Another set of traits have been linked to

frost tolerance, and these have allowed the family to expand

dramatically into the colder high-latitude regions, building

steppe grasslands (e.g. [1]).

The fossil record documents the Miocene expansion of

grasslands, both from the presence of phytoliths in Turkey

[3] and North America [4], and from the evolution of hypso-

dont grazer teeth in North America [2,5,6], although these

studies may not be directly applicable to the humid tropics.

The development of carbon isotope analysis, from palaeosols,

bones [7] and from plant leaf waxes [8], has led to the recent

realization that these early grasslands were C3 dominated,

and that they were transformed to C4 grasslands only in the

Late Miocene–Pliocene [2,8,9]. Often the spread of C4 grasses

is associated with an increase in fire, as evidenced from the

increase of charcoal in the deposits [8].

Grasslands (including wooded grassland, tapia and palm

savannah) are extensive in Madagascar, covering at least 65%

of the island not including cultivation [10]. There has been an

ongoing debate about the age and consequences of the estab-

lishment of the Malagasy grasslands. Early botanists (e.g.

Perrier de la Bâthie [11], Humbert [12], Koechlin [13]) argued

that all Malagasy grasslands are secondary and the result of

the anthropogenic introduction of fire and zebu cattle. Conse-

quently, this modification is seen as being post human

settlement (2000–4500 BP [14,15]). Bond et al. [16] take the

opposite point of view, suggesting that extensive grasslands

have existed before the arrival of humans, and that conse-

quently humans had a lesser effect on the expansion of

grasslands. Other intermediate scenarios have also been pre-

sented but without detail or concrete evidence. Stable isotope

data from northwest Madagascar indicate a massive increase

in C4 grass in the past millennium, subsequent to the first

human settlements. However, traces of C4 isotopes indicate

that there were C4 grassland patches before the first human

expansion [17]. Population genetic data of the golden-crowned

sifaka (Propithecus tattersalli), a forest-dwelling lemur in

northern Madagascar, suggest that population contractions,

presumably due to the forests being replaced by grassland, pre-

ceded the arrival of humans, and may have been driven by

climatic changes [18]. Palaeopalynological and macrofossil

data from central and southwestern Madagascar also indicate

a major vegetation transformation prior to the arrival of

humans, probably in response to climate changes [19–22].

Evolutionary radiations restricted to open areas have been

documented in both ants [23] and sedges [24] but there have

been no similar studies of broader taxonomic groups. Conse-

quently, there is no dominant narrative on the evolutionary

history of the Malagasy grasses and grasslands.

Here we contribute new evidence to the debate on the

origin and evolutionary history of the Malagasy grass flora
and grassland. We first address the question of whether the

grass flora is natural in Madagascar, and diversified in situ,

or whether it is a recently introduced flora that spread into

anthropogenically disturbed habitats. Then we explore the

ecology of the grass flora, and in particular we ask whether

the flora of each ecoregion in Madagascar is distinct, or

whether there is a single grass flora across the whole island.

We test whether the locally distinct grass floras are the

result of filtering a larger, widespread flora or due to local

evolution. Finally, we test whether the Malagasy grass flora

evolved in disturbed habitats, or whether at least some

species are not adapted to fire, grazing and cultivation,

indicative of an evolution under low disturbance regimes.

In order to address these questions, we conducted a critical

taxonomic review of the Malagasy grass flora, updating the

earlier work of Bosser [25] and E. J. Judziewicz (2009, unpub-

lished data, except for [26]), resulting in an updated checklist

of the grass flora (electronic supplementary material, S5) and

more precise estimates of its endemism. In order to assess

whether the grass communities show signs of expansion or

sensitivity to disturbance, we sampled plots in five major ecor-

egions [27–29] of the island (figure 1). We built a phylogeny

including all sampled species, and transformed this into an

ultrametric tree using the penalized likelihood criterion [30].

We used this to calculate the patterns of phylogenetic commu-

nity assembly and to detect signals of phylogenetic filtering in

the assemblage of variously disturbed grassland communities.
2. Material and methods
(a) Global endemism in Poaceae
Species numbers and distribution data on all 11 313 accepted

species of Poaceae at the Taxonomic Databases Working Group

(TDWG) level 3 were extracted from GrassBase [31], described in

[32], and filtered into total richness and total endemic species num-

bers. Percentage endemism was calculated for each TDWG level 3

area (figure 2). Areas were obtained from TDWG shapefiles and

[33] http://www.kew.org/science-conservation/research-data/

resources/gis-unit/tdwg-world in QGIS [34] using the Eckert VI

projection (http://bdtracker.cybertaxonomy.africamuseum.be/

node/641).

(b) Grasslands in Madagascar
Ground-truthed models of Madagascar’s vegetation included

two types of grassland: plateau grassland–wooded grassland

mosaic, and wooded grassland–bushland [10]. These are primar-

ily on basement rocks (ca 56%) followed by sandstone (ca 15%)

and may include components of secondary vegetation due to

limitations of the original vegetation mapping. ARCGIS 10.1

[35] was used to quantify known grassland in each of Humbert’s

ecoregions [27] (figure 1).

(c) Poaceae diversity in Madagascar and Tanzania
A long-term taxonomic review of all Malagasy Poaceae was

carried out to build a checklist of 541 species including 216 endemic

species (electronic supplementary material, S4). Herbarium speci-

mens were studied at K, P and TAN herbaria (http://sciweb.nybg.

org/science2/IndexHerbariorum.asp) concurrently with a field-

work programme and a literature survey. Detailed revisions of

several groups are published separately [36–39]. Distribution

ranges were defined for each species collected for this study, using

herbarium specimens to record the presence/absence in the six

Malagasy ecoregions: Central, Eastern, High Mountain, Sambirano,

Southern and Western [27]. In cases of uncertainty, we followed a
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Figure 1. Study sites in Madagascar and phylogenetic beta diversity based on mean pairwise distance (MPD) and mean nearest taxon distance (MNTD). Ecoregions
follow [27] and are marked in colour; habitat is marked in text. Fire intensity and physical disturbance intensity are marked with symbols: black circles indicate no
disturbance; small red and blue circles indicate intermediate levels of fire and physical disturbance, respectively; big red and blue stars indicate high levels of fire and
physical disturbance, respectively.. All four traits have significant phylogenetic structure ( posterior tail probability, p , 0.01). Grasslands are mostly distributed in the
Western (52.5%) and Central (38.1%) parts, but are also present in other regions, in Southern (4.8%), Eastern (3.9%), Sambirano (0.6%) and High mountains
ecoregion (0.2%). Note that the Eastern ecoregion was not sampled at all.
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Figure 2. Endemism in Malagasy grass flora compared to island (blue) and continental (grey) regions of the world. Madagascar (red) is included twice, as a
separate island (MDG) and again together with the surrounding islands (29), to demonstrate that endemism is similar in both cases. Numbers indicate regions
of the world following the Taxonomic Database Working Group, which are listed in the electronic supplementary material, table S1. (a) Number of Poaceae endemics
plotted against species richness (data from GrassBase [31]); R2 ¼ 0.47. Poaceae endemicity in the Malagasy floristic region is in the line with other subtropical
islands. (b) Poaceae endemism plotted against land area; R2 ¼ 0.09. Madagascar shows high endemism for its land area, comparable to New Zealand.
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conservative approach by assuming a broader distribution. Tanza-

nia’s grass flora was chosen to represent tropical continental grass

floras to compare with Madagascar because it has the most similar

climate, vegetation and land area, it is geographically adjacent to

Madagascar, and its grasses and grasslands are well documented.

(d) Field sampling and quantifying disturbance
The grass flora was sampled at 60 sites in Madagascar, from five

ecoregions, representing much of the climate range and the

whole altitude range. Only the eastern rainforest region was not
sampled. We selected sites to represent the widest range of habitats,

and to include both undisturbed and highly disturbed locations

(figure 1; electronic supplementary material, S2 and figure S3).

Thirteen Afromontane and mid-elevation open grassland sites in

Tanzania were also studied (electronic supplementary material,

S2). Each site was placed in a visually uniform vegetation commu-

nity. Plots were placed along four transects and all Poaceae species

were listed and collected. An associated vegetation list, soil,

geomorphology and disturbance data were recorded; sampling

methodology is described in the electronic supplementary material,
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S1 and illustrated in figure S2. Species identification for fertile

material was carried out at K, P and TAN; sterile material identifi-

cation was carried out using plastid rbcL sequences. Two hundred

and six species were recorded in total (electronic supplementary

material, S2 and S3). Sites with no recorded burning within the

past 10 years, no or very occasional grazing and no natural disturb-

ance were assigned as human impact score 0. Sites burned within

the past 10 years, with limited human use or with natural disturb-

ance such as streams or frequent storm damage were assigned as

human impact score 0.5. Heavily used pastures or communal

land were assigned human impact score 1. Multiple regression ana-

lyses estimating the independent effects of fire and physical

disturbance on mean pairwise distance (MPD) and mean nearest

taxon distance (MNTD) were carried out using [40] and adjusted

for altitude and spatial autocorrelation using the user-contributed

spreg package for Stata and Stata v. 12.
.B
283:20152262
(e) Phylogeny and phylogenetic diversity
The plastid regions rbcL, ndhF and matK were sequenced for each

species following the methodology described in [41]. A phyloge-

netic tree of all species found in the 73 sites was produced using

the maximum-likelihood criteria as implemented in the program

RAxML v. 8.1.11 [42] and performed on the Cipres Science Gate-

way portal (https://www.phylo.org) with a rapid bootstrapping

approach (1000 replicates). The tree was made ultrametric using

the penalized likelihood criteria [30] as implemented in the func-

tion chronos and the model correlated of the R package ape [43–

45] and assigning the value of 1.0 to the crown node of the

tree (electronic supplementary material, S3). The package picante

[46] was used to calculate MPD and MNTD [47]. The observed

phylogenetic relatedness was compared to the expected pattern

using the functions ses.mpd and ses.mntd with the ‘richness’

null model, taking into account species abundances in each

plot, and using 9999 randomizations.

Phylogenetic beta diversity was calculated using the function

comdistnt, the ‘among-community equivalent of MPD and

MNTD’ [46] and taking into account species abundance in each

plot. Communities were clustered based on their phylogenetic

relatedness using the hierarchical cluster analysis implemented

in the package stats [44] under the function hclust. Phylogenetic

structure was assessed by comparing the trees to 1000 randomly

generated trees within the Mesquite system for phylogenetic

computing [48].
3. Results and discussion
(a) The grass flora: global endemism
Theory predicts that if the grasses have had a long evolution-

ary history in Madagascar, then the levels of endemism

should be high, and comparable to the levels of endemism

observed in other large, subtropical islands. If, however,

grasses were recently introduced into Madagascar, or only

recently had sufficient habitat to expand into, then the

levels of endemism should be much lower than in environ-

mentally comparable islands. We find that 217 of 541 grass

species (electronic supplementary material, S4), or 40%, are

endemic to the island. Furthermore, 11 of 140 genera are

endemic [49,50]. Madagascar has more endemic grass species

in proportion to the total grass flora than most other regions

(figure 2a). The highest proportions of grass endemics are

recorded for the central Asian regions (Caucasus to southern

Siberia) as well as the Antarctic islands. As predicted for

an older grass flora, the proportion of grass endemics in

Madagascar is comparable to that found for Australia,
southeastern North America and New Zealand: thus subtro-

pical, and in part island, floras.

Furthermore, Madagascar has a high level of grass ende-

mism compared with its surface area (figure 2b). As expected,

the per cent endemism relative to the area is low for countries

and regions that contain part of large deserts like the tundra,

the Sahara or the Kalahari (e.g. Arabia, Canada, West Tropical

Africa, West Asia, South Tropical Africa, North Africa and

North-central Africa). A more or less average percent endemism

is observed for Australia, India, South America, Malesia,

Southern Africa and the USA. A high level of endemism relative

to the surface area is shown for islands and archipelagos like

New Zealand, Japan, Papuasia, as well as equatorial continental

areas such as Brazil. Madagascar groups comfortably with these

tropical and subtropical regions and islands.

These results indicate that, although at 40% endemism the

grass flora has less than half the level of endemism recorded

for the angiosperm flora in general [51], this is high compared

with the levels of endemism in the grasses globally. This level

of endemism is consistent with the hypothesis that the Mala-

gasy evolutionary history of the grass flora has been as long

as that of the other major islands, and is certainly much older

than human settlement on the island.

(b) The grass flora: composition comparison with East
Africa

Island floras are often unbalanced, with a very different dis-

tribution of species diversity among higher taxa from the

adjacent mainland [52]. This imbalance is presumed to be

the result of low immigration rates, resulting in few lineages

radiating into a large diversity of habitats. No such imbalance

is evident in the Malagasy Poaceae. The proportions

of species in the most important subfamilies and tribes

closely reflect that of East Africa with its famous natural

savannahs (electronic supplementary material, figure S1),

except for the Bambusoideae, which radiated in the wet east-

ern forests of Madagascar. This suggests that there is a close

connection with the African grass flora, as demonstrated for

the majority of Malagasy flora by Buerki et al. [53]. Niche con-

servatism [54] suggests that the grassland grass flora is

adapted to similar environments to the East African grass-

lands, noted for its regular and intense grazing regime and

frequent fires.

(c) Regionalism in the grass communities
If the grass flora evolved in one ecoregion of Madagascar and

then expanded with the arrival of humans over the whole

island, then the degree of regionalism in the flora should be

very low (or even absent), and local endemism should

be restricted to the area where the flora evolved, whereas

the newly occupied regions should simply have subsets

of the refugial flora.

We tested for regionalization in the Malagasy grass flora by

calculating the phylogenetic beta diversity (pß) [55] among the

sampled sites, and using this matrix to cluster the sites. This

approach uses the phylogenetic information, so clustering

together sites that have closely related species, even if there is

allopatric replacement in the species. It is preferred to cluster-

ing on shared species presences, which cannot group sites

with closely related but different species [56,57]. The results

(figure 1) show that sites from the same ecoregion are

https://www.phylo.org
https://www.phylo.org


Table 1. Endemicity of grass species recorded in this study, in comparison to published checklists. 9 – 61% of the species in every ecoregion of Madagascar are
single region endemics, and 21 – 94% are endemic to Madagascar. Endemicity in Tanzania is massively lower with 0 – 2% of species endemic to Tanzania and
2 – 9% restricted to three countries including Tanzania.

Madagascar
total number of
Poaceae species

endemic species
restricted to
Madagascar (% total)

narrow endemic species
restricted to a
single ecoregion
in Madagascar (% total)

Central ecoregion, 16 sites in this study 60 27 (45) 10 (17)

Central ecoregion, Itremo Protected Area [58] 100 35 (35) 14 (14)

Central ecoregion, southwestern savannahs [59] 43 9 (21) 4 (9)

High Mountains ecoregion, 12 sites in this study 33 19 (58) 11 (33)

High Mountains ecoregion, Andringitra National Park [60] 18 17 (94) 11 (61)

Sambirano ecoregion, 14 sites in this study 33 12 (36) 5 (15)

Sambirano ecoregion, Manongarivo Reserve [61] 42 23 (55) 11 (26)

Southern ecoregion, 11 sites in this study 27 14 (52) 12 (44)

Western ecoregion, 7 sites in this study 22 7 (32) 4 (18)

Madagascar total, 60 sites in this study 145 70 (48) 42 (29)

Tanzania
total number of
Poaceae species

endemic species
restricted to three
African countries or
fewer (% total)

narrow endemic species
restricted to Tanzania
(% total)

Tanzania total, 13 sites in this study 65 6 (9) 1 (2)

Tanzania, Mkomazi National Park [62] 123 3 (2) 0

Tanzania, Selous Game Reserve [63] 239 12 (5) 1 (0.5)

rspb.royalsocietypublishing.org
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significantly clustered together, irrespective whether pß is cal-

culated using MPD or MNTD [47]. MPD is more sensitive to

deep phylogenetic differences than MNTD. Both geographical

proximity (belonging to the same ecoregion) and habitat simi-

larity (belonging to the same vegetation type) impact on the

relatedness among the sites, and this is probably the reason

why neither fits perfectly on the diagram of how related the

sites are. The significant spatial and ecological regionalization

in the Malagasy grass flora is not consistent with the grasslands

spreading from a single grassy biome, but more with a long-

term grass component in each of the biomes, evolving special-

ization to these habitats. Ecologically such regionalization is

not surprising, considering the remarkably steep environ-

mental gradients within Madagascar, in terms of average

temperature (altitudinal gradient), in total rainfall (east to

west) and in the length of the dry season (southwest to north-

east) [10].
(d) Regional endemism
However, it remains possible that the regionalization is the

result of grass species, which may have evolved on other

continents, being filtered into these ecologically diverse

habitats, rather than having evolved in situ. If they evolved

in situ, then there should be a high degree of regional ende-

mism. We found a surprisingly high degree of regional

endemism. Out of 57 Malagasy endemic species (of 206

species total in our study) found in the 76 sites, 33 are

restricted to a single ecoregion (i.e. narrow endemics) and

14 are restricted to two ecoregions, and only 10 species
(18%) are recorded from three or more ecoregions. Ende-

mism ranges from zero (Isalo forest, Horombe plateau

grassland and Tsimananpetsotsa salt flats) to 100% (Andrin-

gitra plateau, Isalo rocks and Manongarivo forest, S2). The

level of endemism is significantly higher in Malagasy than

in Tanzanian sites (table 1). There are also significant differ-

ences among the Malagasy ecoregions, with the lowest level

of endemism found in the Plateau ecoregion, and the highest

levels in the more extreme habitats: at high altitude and in

the southern spiny forests. All four published comprehen-

sive local Malagasy grassland surveys [58–61], and two

complete Tanzanian grassland surveys [62,63] revealed a

similar pattern of high Madagascan local endemism,

compared with virtually none in Tanzania.
(e) Response to disturbance
Communities exposed to disturbance regimes under which

they did not evolve should show more phylogenetic cluster-

ing than communities with disturbance regimes under

which they have evolved [64–66]. Cattle grazing may consti-

tute a new disturbance regime in Madagascar. There is no

evidence of native Malagasy ungulates or any animals simi-

lar to the African savannah grazers [67]. The main source of

information on the diets of extinct herbivores is carbon iso-

tope data: the pygmy hippos ate a high proportion of C4

plants [68], the elephant birds consumed primarily C3 [69],

while the two species of giant tortoises differed in their pre-

ferences [70]. While C4 isotopes in the diet indicate open

habitats, C3 diets could derive from either a C3-dominated
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grassland or from a eudicot diet [9]. Comparison to extant

relatives is the only other source of available evidence: this

indicates that giant tortoises were probably the most influen-

tial past grazers of open habitats [71]. The probable giant

lemur diet of leaves, fruits and seeds has also been inferred

by comparison to extant relatives [72]. Fire is accepted as a

natural part of Madagascar’s ecosystems from at least 10

000 BP and likely as long as 120 000 BP [19–22].

We expect that disturbed grassland will be phylogeneti-

cally clustered relative to undisturbed grassland. In order to

test this, we calculated MPD and MNTD for all sites. We

assigned study sites as having low, medium or high levels

of physical disturbance (grazing and trampling) and of fire,

and tested whether these differ for MPD and MNTD using

(i) one-way analysis of variance comparing each measure

across groups defined by each level of disturbance and (ii)

multiple regression analysis including the effects of both

physical disturbance and fire, adjusting for altitude and any

spatial autocorrelation between sites.

One-way ANOVA shows that physical disturbance includ-

ing grazing and trampling is associated with significantly

lower MPD and MNTD, while fire has no effect (figure 3).

This is confirmed by the multiple regression analyses for

each outcome, which show no independent effect of fire but

endemicity scores almost 1s.d. lower in areas that have high

levels of physical disturbance. These findings are consistent

with the postulate that the grasslands, on the whole, have

not been exposed to heavy grazing, but evolved under con-

ditions of light grazing or no grazing. Fire may have already

been present as these ecosystems emerged.

Finally, we tested whether disturbed grasslands in Madagas-

car are derived from the local grasslands (possibly by filtering

out those species incapable of tolerating the disturbance

regimes), or whether they are assembled from a set of introduced,

disturbance-tolerant taxa, by investigating whether these sites
group together. We found that they did not (figure 1), and that

we could not reject the null hypothesis that they are random in

the cluster analysis. This indicates that the disturbed grasslands

are assembled by filtering species from native grasslands.
4. Conclusion
The remarkably high levels of endemism constitute compelling

evidence that the Malagasy grass flora is ancient, and the very

similar proportional representation of the subfamilies to that

found in East Africa suggests that it was probably assembled

with much dispersal to and from Africa. We find no evidence

that suggests that the flora is any younger than that of Africa.

We also established that the grassland communities are

most likely Neogene in age, and not the result of Holocene

human impacts. This is supported by the strong regionaliza-

tion in the grass flora (indicating a long evolutionary history

over the whole island), and a very high level of local ende-

mism. The latter suggests a high level of niche or habitat

specialization in the grass communities.

Finally, we show that the grasslands most likely evolved

under a less intensive physical disturbance regime than

what they are currently experiencing. This is inferred

from the significant effect of grazing and trampling on the

phylogenetic assembly of these communities, indicating

that not all local species can tolerate the modern disturbance

regime.

Although our research suggests that grassland formations

and indeed, grasses, on Madagascar are natural, we did not

establish what the relative impacts of climate change and

human disturbance may have been on the balance between

forest and grassland in Madagascar. It is possible that human

disturbance may have resulted in a much larger modern

extent of grassland than in pre-human settlement Madagascar.
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The balance between grassland and forest in Madagascar may

be dynamic, and responding both to climate changes (e.g. the

Mid-Holocene drought) and human-mediated disturbances

such as introduced zebu cattle and more frequent fires. These

results also argue for the need to conserve and protect species-

rich and highly endemic grasslands, and that it is time to con-

sider such habitats as being part of the biologically unique

heritage of Madagascar.
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