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Abstract

The goal is to examine the risk of conception mode-type-1 diabetes using different survival

analysis modelling approaches and examine if there are differentials in the risk of type-1 dia-

betes between children from fresh and frozen-thawed embryo transfers. We aimed to com-

pare the performances and fitness of different survival analysis regression models with the

Cox proportional hazard (CPH) model used in an earlier study. The effect of conception

modes and other prognostic factors on type-1 diabetes among children conceived either

spontaneously or by assisted reproductive technology (ART) and its sub-groups was mod-

elled in the earlier study. We used the information on all singleton children from the Swedish

Medical Birth Register hosted by the Swedish National Board of Health and Welfare, 1985

to 2015. The main explanatory variable was the mode of conception. We applied the CPH,

parametric and flexible parametric survival regression (FPSR) models to the data at 5% sig-

nificance level. Loglikelihood, Akaike and Bayesian information criteria were used to assess

model fit. Among the 3,138,540 singletons, 47,938 (1.5%) were conceived through ART

(11,211 frozen-thawed transfer and 36,727 fresh embryo transfer). In total, 18,118 (0.58%)

of the children had type-1 diabetes, higher among (0.58%) those conceived spontaneously

than the ART-conceived (0.42%). The median (Interquartile range (IQR)) age at onset of

type-1 diabetes among spontaneously conceived children was 10 (14–6) years, 8(5–12) for

ART, 6 (4–10) years for frozen-thawed embryo transfer and 9 (5–12) years for fresh embryo

transfer. The estimates from the CPH, FPSR and parametric PH models are similar. There

was no significant difference in the risk of type-1 diabetes among ART- and spontaneously

conceived children; FPSR: (adjusted Hazard Ratio (aHR) = 1.070; 95% Confidence Interval

(CI):0.929–1.232, p = 0.346) vs CPH: (aHR = 1.068; 95%CI: 0.927–1.230, p = 0.361). A

sub-analysis showed that the adjusted hazard of type-1 diabetes was 37% (aHR = 1.368;
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95%CI: 1.013–1.847, p = 0.041) higher among children from frozen-thawed embryo transfer

than among children from spontaneous conception. The hazard of type-1 diabetes was

higher among children whose mothers do not smoke (aHR = 1.296; 95%CI:1.240–1.354,

p<0.001) and of diabetic mothers (aHR = 6.419; 95%CI:5.852–7.041, p<0.001) and fathers

(aHR = 8.808; 95%CI:8.221–9.437, p<0.001). The estimates from the CPH, parametric

models and the FPSR model were close. This is an indication that the models performed

similarly and any of them can be used to model the data. We couldn’t establish that ART

increases the risk of type-1 diabetes except when it is subdivided into its two subtypes.

There is evidence of a greater risk of type-1 diabetes when conception is through frozen-

thawed transfer.

Introduction

An exploratory analysis of age at onset of type-1 diabetes among children born in Sweden

between 1985 and 2015 and conceived either spontaneously or by assisted reproductive tech-

nology (ART) showed that (i) skewed discrete age distribution because most ART-conceived

children are younger (ART is increasing and most children were born in the more recent

years), (ii) a probable peak in the risk of type-1 diabetes at 10–14 years of age, (iii) there is an

increased risk of developing diabetes in more recent years [1]. The ART was either the stan-

dard in-vitro-fertilization (IVF) or intracytoplasmic sperm injection (ICSI) with fresh or fro-

zen-thawed embryo transfer. This study used the Cox proportional hazard (CPH) model to

evaluate if the mode of conception (ART vs spontaneous) was associated with an increased

risk of type-1 diabetes [1]. However, it is not known whether this method captured the pecu-

liarities of the data. There is a need to investigate if the differences were caused by skewness in

age, having more ART-conceived children during the later years when diabetes is more

prominent.

There have been contradictions in the reported risk of conception mode-type-1 diabetes in

the literature [1–3]. Norrman et al. reported an insignificant risk of Type-1 diabetes by mater-

nal fertility (adjusted hazard ratio (aHR) = 1.07; 95% CI: 0.93–1.23) but significant differences

in risk were found between frozen embryo transfer and type-1 diabetes (aHR 1.52; 95% CI:

1.08–2.14 and 1.41; 95% CI: 1.05–1.89) for frozen versus fresh and frozen versus spontaneous

conception (SC), respectively in a subgroup analyses of a Swedish data [1]. Using Danish data,

Hargreave et al. found that the risk of type-1 diabetes was not significant with conception

mode (aHR = 1.01; 95% CI: 0.90–1.13) after adjusting for other covariates [3]. Similarly, Kett-

ner et al. reported no association between fertility treatment and childhood type-1 diabetes

mellitus but found that ovulation induction or intrauterine insemination with follicle-stimu-

lating hormone was associated with a higher risk of type-1 diabetes mellitus (aHR = 3.22; 95%

CI: 1.20 to 8.64) [2]. The authors found no association with diabetes type-1 diabetes in other

types of fertility treatment indications [2]. The data analysed by Hargreave et al. and Kettner

et al. were both Danish but differed in sizes with over 1, 550,519 and 565,116 births respectively

whereas there were 3,138,540 births in the study by Norrman et al. [1–3]. The study setting,

sample sizes and methods of analysis might have caused these contradictions. The reason for

these contradictory findings could be that the analyses used in the prior literature depended

on the appropriateness of proportional hazards models in the settings. This paper is therefore

designed to revisit and assess the effect of ART and its subgroups, on the development of type-

1 diabetes. To achieve this, we assessed the fit of a range of different survival analysis regression
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models in assessing the effect of ART in having type-1 diabetes among a birth cohort in

Sweden.

The data used in Norrman et al. presented right-censored data on the onset of type-1 diabe-

tes which makes survival analysis a natural choice of analysis [1]. Survival analysis, also called

analysis of time-to-event, is a statistical procedure for a follow-up study in which some subjects

may not have experienced the event of interest due to loss to follow up, withdrawal of subjects

from the study or the study coming to an end [4, 5]. Besides the estimation of the survival

function of such time-to-event, greater interest is the identification of prognostic factors that

affects the timings [6–9]. Several methodologies, known as survival regression methods, have

been developed to achieve this goal. While some of the models are traditional survival regres-

sion models, some are modern [10, 11]. The traditional survival regression models consist of

the non-parametric, semi-parametric and parametric models. We describe the assumptions,

advantages and disadvantages of these models in the next paragraph.

The Kaplan-Meier estimator is the nonparametric maximum likelihood estimate (NPMLE)

of the survivor function when the model is a non-parametric survival model. It does not allow

the investigation of the effects of covariates [5]. Hence the effects of risk factors on the time-to-

event cannot be estimated. Nonetheless, the Kaplan-Meier estimator allows the exploration of

the effect of covariates graphically and by comparison of distinct estimates of the survival func-

tion but this gets cumbersome when several covariates are to be investigated together. The

CPH model is a semi-parametric regression model and it is the most commonly used survival

analysis regression models [12–16]. This model has a unique advantage of not making any

assumptions about the shape of the underlying hazard function and can directly use the hazard

ratios to make a reliable estimation of the treatment effects [14] but rather assumes that the

hazard ratios of the covariates in the model are constant over time [16, 17]. Although the CPH

model is very useful and often accurate for a large sample size study, the major criticism

against the CPH models is that this assumption is often violated, especially in a very long fol-

low-up study. The CPH model has another disadvantage in that the survival function hence

the cumulative hazard function, are continuous with respect to Lebesgue measure [18]. The

estimators are, however, step functions rather than being smooth [11, 19].

The parametric models assume that the survival and hazard functions follow a specific dis-

tribution in which case the parameters can be estimated. The parametric survival models, such

as the exponential and Weibull models in addition to the log-logistic and generalized gamma

models are often used to obtain smooth hazard rates and cumulative hazard functions of the

risk factors and to extrapolate the survival functions and cumulative functions [5, 20]. A major

disadvantage of the parametric models lies in their insufficient flexibility to ensure adequate

representation of the data been fitted, and the fact that the cumulative hazard function or sur-

vival function may be biased [19]. These inflexibilities often lead to biased estimates for the

cumulative hazard and/or survival functions. Moreover, parametric models with complex

underlying hazard fail to capture the true (covariate) effects [21, 22].

The Flexible parametric survival regression (FPSR) models were developed by Royston and

Parmar in the early 2000s [23] as a more flexible alternative. The FPSR attempted to eliminate

the shortcoming of the CPH and the parametric models by building on the strengths of these

models. The flexible models are an extension of several parametric survival models [23] and

were formulated to relax the assumption of linearity of log time [24]. These flexible models

represent the log of the baseline cumulative hazard function with a restricted cubic spline func-

tion of the logarithm function of time [4, 21, 24]. The literature is replete with several advan-

tages of the FPSR models [4, 5, 14, 21, 22, 25, 26].

This study is a method paper with an application. The analyses were carried out to assess

the effect of ART on the development of type-1 diabetes and compare the performance of the
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CPH, parametric and the FPSR models in the identification and quantification of the hazards

of prognostic factors of the timing of onset of type-1 diabetes among ART (including fresh and

frozen embryo transfer) and spontaneously conceived children in Sweden between 1985 and

2015. We ascertained the effect of the differences in age distribution between ART and sponta-

neously conceived children on the risk of having type-1 diabetes. In this study, we applied and

compared the fit and performances of (i) Cox proportional hazard (CPH) models, (ii) The pro-

portional hazard (PH) (Weibull PH, exponential PH and Gompertz PH) and the Accelerated

Failure Time (AFT) (Weibull AFT, exponential AFT, log-logistic, lognormal, and the general-

ized gamma models) parametric survival models and (iii) Royston-Parmar (RP) Flexible

parametric survival regression (FPSR) models with a different number of knots. The assump-

tion of the PH can be relaxed in the PH models. The FPSR models have the advantage that the

PH assumption can be relaxed rather easily in comparison to the other survival models.

Methods

The data

The data used for this study were collected in Sweden and represent all singleton children

(n = 3,138,540) born between 1985 and 2015, excluding singletons conceived after oocyte

donation. The data was extracted from the national health data registers hosted by the Swedish

National Board of Health and Welfare, linked with several national quality registers and infor-

mation from Statistics Sweden (SCB). The SCB maintains a constantly updated and quality-

checked register from the Swedish National Board of Health and Welfare, and the Swedish

National Data Service which ensures the completeness of the data. The national quality regis-

ters include registers on morbidity and mortality of children born in Sweden. The SCB did not

state any change in the inclusion criteria of morbidities and mortalities over time.

Further details on the data have been reported [1]. Ethical permission was given from the

Regional Ethical Committee (bjorn.rydevik@gu.se) at the University of Gothenburg (Dnr

214–12, T422-12, T516-15, T233-16, T300-17, T1144-17, T121-18). The Swedish National

Board of Health and Welfare obtained informed written consent from patients to have data/

samples from their medical records used in research. We followed the prescribed ethical regu-

lations on confidentiality when the database was accessed in October 2019. The Swedish

National Board of Health and Welfare, and Statistics Sweden (SCB) placed ethical restrictions

on sharing the data publicly as the data contain potentially identifying or sensitive patient

information. The restriction was concurred by the Regional Ethical Committee at the Univer-

sity of Gothenburg, Sweden.

Statistical models

Cox proportional hazard models. The CPH model was developed based on the assump-

tion that hazards are multiplicatively proportional to baseline hazards [27] but without any

assumption about the distribution of the hazards.

hðtÞ ¼ h0ðtÞe
b1x1þb2x2þ���bkxk ð1Þ

From Eq (1), coefficients β1, β2,. . .. . .. . ., βk could be estimated but a direct estimate of the

baseline hazard (h0(t)) or its distribution cannot be estimated. The model nonetheless provides

an avenue to estimate the baseline cumulative hazard (H0(t)) and baseline survival (S0(t))

which can be used to estimate the h0(t) [19].

The CPH uses maximum partial likelihood methods to estimate coefficients (βi). Numeri-

cally, let xi be the row vector of covariates for the time interval (t0i; ti) for the ith observation in
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a dataset with N subjects (i = 1, 2, 3,. . .. . .. . .., N). The coefficient (βi) of the covariates (Xi) can

be estimated by maximizing the partial log-likelihood function

logL ¼
XP

j¼1

X

i2Pj

xib � dj log
X

k2Rj

expðxkbÞ
� �� �

ð2Þ

where j indexes the ordered failure times t(j), j = 1, 2, . . .. . .., P; Pj is the set of Pj observations

that fail at t(j); dj is the number of failures at t(j); and Rj is the set of observations k that are at

risk at time t(j) (that is, all k such that t(0k) < t(j)� t(k)).

Parametric survival models. As reported in the literature [5, 20], the accelerated failure-

time (AFT) models and the multiplicative or proportional hazards (PH) model are the most-

used parametric models for adjusting survivor functions for the effects of covariates. The PH

models include the Weibull, Gompertz, and exponential while the exponential, Weibull, log-

normal, log-logistic, and generalized gamma are the commonest AFT models. In the AFT

model, log(t) (the natural logarithm of the survival time) is expressed as a linear function of

the covariates which yields a linear model

logtj ¼ Xjbþ zj: ð3Þ

where xj is a vector of the covariates, β is a vector of the regression coefficients, and zj is the

error function whose distributional form determines the form of the regression model. For

instance, a normal density leads to the lognormal regression model just as the logistic density

yields the log-logistic regression. The AFT models applied to change the time scale by a factor

of e� xjb. The time is accelerated if the factor is <1 and decelerated (degraded) if >1. In the PH

model, the concomitant covariates have a multiplicative effect on the hazard function and con-

tain the covariates which have a multiplicative effect on the hazard function

hðtjÞ ¼ h0ðtÞgðXjÞ ð4Þ

for some h0(t) and for g(Xj), a non-negative covariates function. In some cases, g(Xj) is

expressed as exjb. The parametric PH model becomes a CPH model if the function h0(t) is not

specified [5, 20].

Flexible parametric survival regression model. These models use restricted cubic splines

to model a transformation of the survival function and can be modelled on different scales,

including the hazard scale, the odds scale, and the probit scale in flexible parametric survival

analyses. We focussed on the hazard scale of the models to ensure that the estimates from the

FPSR and CPH models are comparable. This approach has an advantage in that the corre-

sponding function is more stable and the process of capturing the shape of the function is eas-

ier [28]. The Weibull model is one of the commonest parametric models for survival data and

can be criticized due to its lack of flexibility in the shape of the hazard function. The log cumu-

lative hazard function of Weibull distribution is written as

ln fHðt : xÞg ¼ lnðH0ðtÞÞ þ xibi ¼ ln lþ g lnðtÞ þ xibi ð5Þ

In Eq (5), ln H0(t) is the baseline log cumulative hazard at time point t, λ is the scale param-

eter, γ is the shape parameter, xi is the covariate and βi is the coefficient of the covariate [28].

The log cumulative hazard function of the FPSR models are based on a log cumulative hazard

scale with the use of restricted cubic spline function of the log time to transform the function
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in Eq (5) is

ln fHðt : xÞg ¼ ln H0ðtÞ þ xibi ¼ sðxÞ þ xibi ð6Þ

In Eq (6), x = ln(t) and s(x) is a restricted cubic spline function with k knots k1,

k2,. . .. . .. . .. . .. . ..kk and parameters γ0, γ1,. . .. . .. . .. . .. . ..γk−1 is expressed as

sðxÞ ¼ g0 þ g1z1 þ � � � . . . . . . . . . . . .þ gk� 1zk� 1

Where z1 = x = ln(t) and zj(j�2) are derivable functions that are determined by the numbers

and the positions of the knots is computed as

zj ¼ ðx � kjÞ
3

þ
� ϕjðx � kjÞ

3

þ
� ð1 � ϕjÞðx � kjÞ

3

þ
j ¼ 2; . . . ; k � 1

Where ϕj = (kk−kj)/(kk−k1) [4, 19, 23].

The desired complexity of the FSPR models is specified as the number and positions of the

knots (connection points) in log time of the spline’s cubic polynomial segments [19]. The k
knots, a maximum of 9 knots, has k+1 degrees of freedom (df). The placement of knots is at

the centiles (computed as 100/df) of event times. For 4 Knots, the df is 5 and the knots will be

located at centiles 20, 40, 60 and 80. The internal knots are bounded by the “boundary knots”

which are placed at the minimum and maximum of the distribution of uncensored survival

times. The FSPR model reduces to the Weibull model if the number of knots is 0, with γ0 and

γ1 as the estimates of its scale and shape parameter respectively. Royston et al. suggested either

1 or 2 knots for smaller (<10,000) datasets and 4 or 5 knots for larger (> = 10,000) datasets

[19]. The FSPR model was implemented in Stata using “stpm2” command. The stpm2 can be

used with single- or multiple-record or failure survival data on the log cumulative hazard, the

log cumulative odds, the probit scales, or on a scale based on theta-value using the Aranda-

Ordaz family of link functions [9, 24]. We computed the incidence rate as the probability of

having diabetes per person-year and the attributable fraction to assess the excess risk attribut-

able to been conceived with ART compared with spontaneous conception. The survival analy-

sis was performed using Stata 16.0 (Stata-Corp LP, College Station, TX, USA). Microsoft Excel

in Office 365 and R Software were used for data visualization.

Dependent variable. The outcome is a paired survival time and indicator of whether the

participant had experienced type-1 diabetes or not. For those that had type-1 diabetes, the sur-

vival time was their age as of its onset, while the time (age) to type-1 diabetes was censored on

the date of the data collection, emigration and death for those with no type-1 diabetes.

Independent variable. Our choice of covariates was informed by Norman et al. [1]. The

main explanatory variable in this study is the mode of the conception of the children: sponta-

neous or ART conception. The types of ART considered in this study are IVF and ICSI with

fresh and frozen-thawed embryo transfer. The other independent variables are sex of the child,

maternal age, parity, year of birth (birth cohort), mother’s and father’s country of birth, moth-

ers’ smoking status, mothers’ and fathers’ diabetic status, and maternal and paternal education

at the birth of the child.

Model selection criteria. The log-likelihood, Akaike information criteria (AIC) [29] and

the Bayesian information criteria (BIC) [30] were used to assess the fit of the models. The

lower these quantities the better the fitness of the models. The AIC and the BIC are usually

computed and compared separately among different models to determine the best fitting

model. In all cases, the lower the AIC and BIC, the better the model [14]. Literature suggests

that AIC will choose a more complex model irrespective of sample size while BIC is more likely

to choose a simpler model [14]. AIC is often preferable in situations when a false negative find-

ing would be considered to be more misleading than a false positive, and BIC is better in
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situations where a false positive is as misleading as, or more misleading than, a false negative

[14]. We used these criteria to assess which of the models been compared was the optimal

model.

Results

Among the 3,138,540 children included in the analysis, 98.5% (3,090,602) were conceived

spontaneously while 1.5% (47,938) were conceived through ART. Of the 47,938 ART-con-

ceived children, 36,727 were through fresh embryo transfer and 11,211 were from frozen-

thawed embryo transfer. About 51.4% of the children were males, nearly half (47.8%) were

from mothers aged 30–39 years, 81.7% were from Swedish mothers, from mothers (0.4%) and

fathers (0.6%) who were diabetic. In total, 18,118 (0.58%) became type-1 diabetic during the

follow-up period comprising 50,936,586 person-years at risk. Among those conceived sponta-

neously, 0.58% (n = 17,916) became diabetic compared with 0.42% (n = 202) among the ART-

conceived (Table 1). The median (Interquartile Range (IQR)) age at onset of type-1 diabetes

among spontaneously conceived children was 10 (6–14) years, 8 (5–12) for ART, 9 (5–12)

years for fresh embryo transfer and 6 (4–10) years for frozen-thawed embryo transfer. Chil-

dren conceived by ART had a higher incidence rate of type-1 diabetes compared with those

conceived spontaneously. The overall incidence rate of those conceived through ART and

spontaneously were 43 and 36 per 100 000 person-years at risk respectively. The highest inci-

dence of type-1 diabetes was found among children whose fathers (320/100,000) and mothers

(244/100,000) were diabetic compared with those whose parents were not diabetic (34/100,000

and 35/100,000). The distribution of the incidence of type-1 diabetes by selected children char-

acteristics is presented in Fig 1.

Test of equality of incidence rates of type-1 diabetes

The overall difference in unadjusted incidence rate between the children conceived spontane-

ously and by ART was 0.000791 (95% CI: 0.000019–0.000139, incidence rate ratio was

1.222589 (95% CI: 1.058–1.40448), attributable fraction exposed was 0.18206 (95% CI:

0.05568–0.28799). The two tail hypothesis test that the incidence rates for each of the groups

are not different was significant (p = 0.0058) (Not shown in the Tables).

Distribution of the hazard and survival functions under different

distributions

On the choice of the survival regression analysis to be adopted, we first explored the CPH

model. As shown in Fig 2 (left panel), the assumption of proportionality was not violated. In

the same way, a test of non-proportionality of Kaplan Meier survival curves of the observed

and predicted ART estimates at various ages of the children was not significant (Fig 2: right

panel).

In Fig 3, we present the survival and hazard functions of developing type-1 diabetes by

modes of conception using the Kaplan Meier, smoothed, CPH and the FSPR models. In all,

survivorship was higher among the spontaneously conceived children compared with those

conceived through ART. In the same way, the hazard of type-1 diabetes was higher among

those conceived through ART compared with those that were spontaneously conceived.

In Fig 4, we compared the hazard and survival functions of the flexible models at different

degrees of freedom (knots/splines). The functions appear more realistic and flexible at higher

degrees of freedom than the Weibull distribution. The greatest flexibility was noticeable at

df = 6. The lower panel of Fig 4 shows the predicted incidence of diabetes using the flexible

model.
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Table 1. Distribution of children’ characteristics and incidence rate of type-1 diabetes.

Characteristics n (%) Prevalence (%) �Median (IQR) years Age ��Incidence per 100,000

Conception Mode

Spontaneous 3,090,602 (98.5) 0.58 10(6–14) 36

ART 47,938 (1.5) 0.42 8(5–12) 43

Fresh^ 36.727(1.2) 0.43 9(5–12) 41

Frozen-thawed^ 11,211(0.3) 0.40 6(4–10) 53

Sex

Male 1,613,900 (51.4) 0.62 11(6–15) 38

Female 1,524,640 (48.6) 0.53 9(6–13) 33

Birth Cohort

1985–1990 634,215 (20.2) 0.80 13(9–19) 29

1991–1995 554,632 (17.7) 0.84 12(7–16) 36

1996–2000 426,536 (13.6) 0.80 10(6–14) 44

2001–2005 463,312 (14.8) 0.61 9(5–11) 46

2006–2010 518,879 (16.5) 0.32a a5(3–7) 36

2011–2015 540,966 (17.2) 0.09a a4(2–3) 24

Mother age at birth

<20 44,917 (1.4) 0.55 11(7–16) 30

20/24 465,164 (14.8) 0.61 11(7–16) 33

25/29 1,017,464 (32.4) 0.62 10(6–15) 36

30/39 1,501,187 (47.8) 0.55 10(6–14) 36

40+ 109,808 (3.5) 0.50 9(5–12) 37

Parity

First 1,344,674 (42.8) 0.57 10(6–14) 36

Multi 1,793,866 (57.2) 0.58 10(6–14) 35

Smoking mother

No 2,706,434 (86.2) 0.57 10(6–14) 37

Yes 432,106 (13.8) 0.60 12(7–17) 28

Mothers’ country

Sweden 2,563,910 (81.7) 0.64 10(6–14) 38

Nordic 85,708 (2.7) 0.62 11(7–15) 35

Europe 173,997 (5.5) 0.23 10(6–14) 17

Other 314,486 (10.0) 0.23 8(4–12) 19

Fathers’ country oo ofof birthfodlandgr_

Sweden 2,526,560 (81.2) 0.64 10(6–14) 38

Nordic 79,013 (2.5) 0.62 11(7–15) 35

Europe 190,586 (6.1) 0.23 10(6–14) 17

Other 315,239 (10.1) 0.26 8(5–12) 21

Mothers’ education

< = 9 years 303,360 (9.7) 0.53 11(6–15) 32

10–12 years 1,377,240 (44.2) 0.64 10(6–15) 36

Higher edu<3 years 459,124 (14.7) 0.60 10(6–14) 36

Higher edu> = 3 years 974,777 (31.3) 0.50 9(5–13) 35

Fathers’ education

< = 9 years 440,486 (14.3) 0.58 11(7–15) 31

10–12 years 1,544,336 (50.1) 0.63 10(6–14) 37

Higher edu<3 years 440,789 (14.3) 0.59 10(6–14) 36

Higher edu> = 3 years 659,817 (21.4) 0.47 9(5–14) 34

(Continued)
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Comparison of the models

The statistics of all the model selection criteria considered in this study (the loglikelihood, the

AIC and the BIC) are shown in Table 2. The AIC and BIC of the FPSR models, the statistics

obtained from the parametric models including the Weibull AFT, exponential AFT, log-logis-

tic, lognormal, and the generalized gamma models were only slightly higher than that of the

FPSR models. Among the FPSR models evaluated at different degrees of freedom, the largest

loglikelihood, the lowest AIC and the lowest BIC were at 6 degrees of freedom (df = 6).

Although the model fits are similar for all the models, the FPSR has the lowest values for each

of the criteria. This is further supported by the significance of restricted cubic splines (rcs) of

each covariate otherwise called the slope of the hazard curve within each of the knots generated

at 6 degrees of freedom (Table 2).

Table 3 shows the coefficients of the covariates included in the adjusted models and their

respective standard errors (s.e). In all, the estimates from the CPH model, the parametric PH

models and the FPSR model at different degrees of freedom were similar and generally lower

than the estimates from the parametric AFT models.

Modelling the risk factors of type-1 diabetes

The estimates from each of the model were similar. We have used the estimates from the FPSR

model at 6 degrees of freedom to interpret the adjusted determinants of timing of the onset of

type-1 diabetes among the children. The age of the children was used as a timescale to correct

for the problem associated with lesser exposure time among the late entries. Although insignif-

icant, the adjusted hazard of type-1 diabetes was 7% higher (adjusted Hazard Ratio (aHR) =

1.070; 95% Confidence Interval (CI): 0.929–1.232, p = 0.346)) among children conceived

through ART than those conceived spontaneously while controlling for other variables. A sub-

analysis with emphasis on whether the transferred embryo was fresh or frozen-thawed trans-

ferred while controlling for other covariates showed that the hazard of type-1 diabetes was

37% (aHR = 1.368; 95% CI: 1.013–1.847, p = 0.041) higher among frozen-thawed transfer com-

pared with those conceived spontaneously. Inversely, the hazard of type-1 diabetes was higher

among frozen-thawed embryo transfer than fresh embryo transfer (aHR = 1.407; 95% CI:

1.007–1.965, p = 0.046; not shown in the Tables). While controlling for other variables, the

hazard of type-1 diabetes was about 17% (aHR = 1.171; 95% CI: 1.137–1.206, p<0.001) higher

among males than the females. The adjusted hazard of type-1 diabetes was significantly

Table 1. (Continued)

Characteristics n (%) Prevalence (%) �Median (IQR) years Age ��Incidence per 100,000

Type-1 diabetes mother

No 3,125,405 (99.6) 0.56 10(6–14) 35

Yes 13,135 (0.4) 3.56 8(4–12) 244

Type-1 diabetes father

No 3,120,677 (99.4) 0.55 10(6–14) 34

Yes 17,863 (0.6) 4.78 8(5–13) 320

Total 3,138,540 0.58 10(6–14) 36

^subdivisions of ART

�median age at the onset of type-1 diabetes, IQR Interquartile Range

��Incidence per 100,000 person-year
aLimited follow-up time

https://doi.org/10.1371/journal.pone.0253389.t001
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associated with the birth cohort of the children. The younger the children the higher the haz-

ard of type-1 diabetes. For instance, those born in 1991–1995 had 18%, 1996–2000 (33%),

2001–2005 (38%), 2006–2010 (38%) and 2011–2015 (36%) higher hazard of type-1 diabetes

than those in 1985–1990 birth cohort.

The hazard of type-1 diabetes was higher among children whose mothers do not smoke

(aHR = 1.296; 95% CI: 1.240–1.354, p<0.001) than those whose mother smokes. The adjusted

hazard of type-1 diabetes was 60% higher among children of both Swedish and other Nordic

mothers than those of other European mothers while the hazard was about 76% higher among

the children of both Swedish and other Nordic fathers than those of other European fathers.

The hazard of type-1 diabetes increased with a lower level of paternal and maternal education.

The highest hazard of type-1 diabetes was found among children whose parents were diabetic.

Children of diabetic mothers and fathers were about 6 times (aHR = 6.419; 95% CI: 5.852–

7.041, p<0.001) and 9 times (aHR = 8.808; 95% CI: 8.221–9.437, p<0.001) respectively more

likely to be diabetic than those whose parents were not diabetic as shown in Table 4. However,

maternal age and the parity of the index child were not significantly associated with the risk of

type-1 diabetes. The visualization of the adjusted hazard ratios is presented in Fig 5.

Discussions

This study was designed to compare the performance of different survival models in examin-

ing the risk of type-1 diabetes viz-a-viz mode of conception and assess if there are differentials

in the risk of type-1 diabetes between children from fresh or frozen-thawed embryo transfers.

In all, the models considered in this study are comparable as far as modelling the effect of con-

ception modes on the risk of diabetes is concerned. While there were no significant differences

in the risk of diabetes between children conceived spontaneously and by ART, the risk differed

significantly among children from fresh and frozen-thawed embryo transfers. The measures of

goodness of fit of models considered in this study were relatively lower in the flexible models.

However, rather than likelihoods, the CPH model uses a different procedure and returns par-

tial likelihood, which is also lower than the likelihood of the other models. Similarly, the AIC

and the BIC which are measures of information lost by each of the models were more favour-

able to the flexible models. Similar approaches have been used to identify better models in the

Fig 1. Distribution of incidence of type-1 diabetes by selected children characteristics.

https://doi.org/10.1371/journal.pone.0253389.g001

Fig 2. Proportionality of survival curves of onset of type-1 diabetes among ART and spontaneously conceived children.

https://doi.org/10.1371/journal.pone.0253389.g002
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literature [31, 32]. Besides having the lowest information lost, the flexible model fitted the data

most but this did not lead to large differences between the estimates from the models. At

higher degrees of freedom, the flexible model fitted the data most and also showed that the

occurrence of type-1 diabetes is not proportional to the baseline hazard but that the risk

changed severally as the children grew older. We have applied the proportional hazard and

other parametric, as well as the flexible parametric models to the data. A major strength of the

flexible parametric model is its ability to account for non-proportional hazards, hence individ-

ual non-PH models were not explored in this study. However, the estimates from the flexible

Fig 3. Comparison of hazard and survival functions under different survival regression models.

https://doi.org/10.1371/journal.pone.0253389.g003
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parametric and CPH models are similar when the proportional hazard assumptions were not

violated.

The estimates from the adjusted hazard ratios from the CPH model was close to those

obtained from the parametric PH and the flexible models. Lambert et al. had stated that rather

than just a comparison of the AIC or BIC, it is a strength to draw conclusions from the esti-

mates that do not change largely when different reasonable models are chosen [32]. Therefore,

we can conclude that although the FPSR provided a relatively better model fit, the estimates

from all the models considered in the current study are similar. With such, any of the models

could be used. Among the FPSR models evaluated at different degrees of freedom, the loglikeli-

hood, as well as the AIC and the BIC unanimously identified the 5-knot (6 degrees of freedom)

flexible model as the best model. Our finding agreed with the recommendation of Royston

et al., that flexible models with 5 or 6 degrees freedom will be more ideal for a sample size

greater than 10,000 [19].

Nonetheless, the parameter estimates from the flexible and the CPH model are very close,

despite the wide differences in all the measures of model fitness adopted in this study. These

similarities underscore the strength of the CPH model when a “large” sample is followed up

for a sufficiently “long” time [14]. There are possibilities that the proportional assumption

Fig 4. Comparing the hazard and survival functions of the flexible models at different knots/splines.

https://doi.org/10.1371/journal.pone.0253389.g004
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could be violated, especially in a long follow-up study of this nature. Bower et al affirmed the

need to account for non-proportionality, if present, to get an insight into the natural history of

the disease and biological process, and to make accurate predictions [14]. Rutherford et al.

emphasized that the flexible models provide a more accurate estimate of complex hazard func-

tions as well as unbiased estimates of hazard ratios than the parametric models [22]. The flexi-

ble model has a unique advantage of providing a direct estimate of relative and absolute effects

besides the quantification of differences between survival and hazard functions using a time

scale of interest [33–35].

However, literature has suggested that AFT models are better alternatives to the CPH in the

analysis of time to event data, especially when there is no permanent effect in the context of

the follow-up period [36–39]. The AFT models assume that the effect of a covariate is either to

accelerate or decelerate the life course of an outcome, say diabetes type-1, by some constant.

Whereas, the CPH model assumes that the hazard functions for any two patients with baseline

x vectors x1 and x2 are constrained to be proportional, upon which the estimation method is

based [37–39]. Additionally, Lambert et al remarked that, unlike a CPH model, regression

parameter estimates from AFT models are robust to neglected covariates and less affected by

the chosen probability distribution [36].

Although the hazard of type-1 diabetes was higher among children conceived through ART

than those conceived spontaneously in the bivariable analysis, we found no significant differ-

ence in the hazard of type-1 diabetes among the two groups of children in the adjusted models.

This finding is corroborated in the literature by recent Danish studies [2, 3]. However, a fur-

ther sub-group analysis controlling for other variables showed that the children conceived

from frozen-thawed transfer had a significantly higher hazard of type-1 diabetes than those

from fresh embryo transfer and children from spontaneous conception. This is in agreement

with the previous study on the same cohort by Norrman et al. who reported a higher risk of

type-1 diabetes among children from frozen-thawed embryo transfer than those from fresh

embryo transfer (aHR: 1.52; 95% CI: 1.08–2.14) and those conceived spontaneously (aHR:

1.41; 95% CI: 1.05–1.89) [1]. This implies that the type of ART adopted is associated with the

risk of type-1 diabetes.

Table 2. Comparison of the loglikelihood, AIC and BIC of the models considered.

Model ll(null) ll(model) df AIC BIC

CPH CPH -260143.50� -257910� 27 515873.50 516222.80

Parametric PH Gompertz -121461.50 -118977 29 238012.30 238387.40

Weibull -121176.60 -118547 29 237151.30 237526.40

Exponential -121462.00 -118992 28 238039.70 238401.80

Parametric AFT Weibull -121176.60 -118547 29 237151.30 237526.40

Exponential -121462.00 -118992 28 238039.70 238401.80

Lognormal -120706.30 -118199 29 236455.40 236830.50

Loglogistic -121167.20 -118534 29 237125.40 237500.50

FPSR df = 1 -120890.80 -118547 29 237151.30 237526.40

df = 2 -120890.80 -117781 30 235621.20 236009.20

df = 3 -120890.80 -117598 31 235258.00 235659.00

df = 4 -120890.80 -117525 32 235114.20 235528.10

df = 5 -120890.80 -117512 33 235090.60 235517.50

df = 6 -120890.80 -117497 34 235062.50 235502.30

AIC Akaike Information Criteria BIC Bayesian Information Criteria df degrees of freedom ll loglikelihood PH Proportional Hazard AFT Accelerated Failure Rate

�partial likelihood

https://doi.org/10.1371/journal.pone.0253389.t002
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Table 3. Coefficients of the covariates from the fitted models.

CPH Parametric PH (β(s.e)) Parametric AFT (β(s.e)) Flexible Model (β(s.e))

Characteristics β(s.e) Gompertz Weibull Exponential Weibull Exponential Lognormal Loglogistic df = = 2 df = = 4 df = = 5 df = = 6

ART 0.07

(0.077)

0.07

(0.077)

0.06

(0.077)

0.07(0.077) 0.06

(0.054)

0.06(0.067) 0.05(0.057) 0.06(0.054) 0.07

(0.077)

0.07

(0.077)

0.07

(0.077)

0.07

(0.078)

Sex

Male 0.16

(0.018)

0.16

(0.018)

0.16

(0.018)

0.16(0.018) 0.13

(0.011)

0.16(0.013) 0.12(0.011) 0.13(0.011) 0.16

(0.018)

0.16

(0.018)

0.16

(0.018)

0.17

(0.018)

Birth Cohort

(1985–1990)

1991–1995 0.16

(0.024)

0.29

(0.028)

0.24

(0.026)

0.26(0.027) 0.23

(0.013)

0.24(0.016) 0.23(0.014) 0.23(0.013) 0.21

(0.025)

0.16

(0.024)

0.16

(0.024)

0.16

(0.024)

1996–2000 0.26

(0.030)

0.54

(0.039)

0.43

(0.035)

0.46(0.037) 0.43

(0.012)

0.43(0.015) 0.41(0.013) 0.43(0.012) 0.37

(0.033)

0.28

(0.031)

0.28

(0.031)

0.29

(0.031)

2001–2005 0.26

(0.033)

0.65

(0.048)

0.46

(0.039)

0.51(0.043) 0.52

(0.012)

0.46(0.015) 0.48(0.013) 0.52(0.012) 0.39

(0.038)

0.33

(0.035)

0.32

(0.035)

0.32

(0.035)

2006–2010 0.21

(0.039)

0.56

(0.055)

0.26

(0.038)

0.32(0.044) 0.44

(0.015)

0.26(0.023) 0.39(0.016) 0.44(0.015) 0.28

(0.042)

0.31

(0.043)

0.32

(0.043)

0.33

(0.044)

2011–2015 0.08

(0.056)

0.34

(0.073)

0.15

(0.042)

0.07(0.047) 0.27

(0.031)

0.15(0.056) 0.28(0.028) 0.27(0.031) 0.31

(0.070)

0.31

(0.070)

0.31

(0.070)

0.31

(0.070)

Maternal age(<20)

20/24 0.07

(0.073)

0.07

(0.073)

0.07

(0.073)

0.07(0.073) 0.05

(0.051)

0.07(0.063) 0.06(0.053) 0.05(0.051) 0.07

(0.073)

0.07

(0.073)

0.07

(0.073)

0.07

(0.073)

25/29 0.09

(0.073)

0.09

(0.073)

0.09

(0.073)

0.09(0.073) 0.07

(0.050)

0.09(0.061) 0.08(0.052) 0.07(0.050) 0.09

(0.073)

0.09

(0.073)

0.09

(0.073)

0.09

(0.073)

30/39 0.10

(0.074)

0.10

(0.074)

0.10

(0.074)

0.10(0.074) 0.08

(0.050)

0.10(0.061) 0.09(0.051) 0.08(0.050) 0.10

(0.074)

0.10

(0.074)

0.10

(0.074)

0.10

(0.074)

40+ 0.14

(0.091)

0.14

(0.091)

0.14

(0.091)

0.14(0.091) 0.11

(0.057)

0.14(0.069) 0.13(0.058) 0.11(0.057) 0.14

(0.091)

0.14

(0.092)

0.14

(0.091)

0.14

(0.091)

Parity(> = 2)

First 0.01

(0.016)

0.01

(0.016)

0.01

(0.016)

0.01(0.016) 0.01

(0.013)

0.01(0.016) 0.01(0.014) 0.01(0.013) 0.01

(0.016)

0.01

(0.016)

0.01

(0.016)

0.01

(0.016)

Mother Smokes

No 0.26

(0.029)

0.26

(0.029)

0.26

(0.029)

0.26(0.029) 0.21

(0.015)

0.26(0.017) 0.23(0.015) 0.21(0.015) 0.26

(0.029)

0.26

(0.029)

0.26

(0.029)

0.26

(0.029)

Mother Country

(Europa)

Sweden 0.45

(0.092)

0.45

(0.091)

0.45

(0.092)

0.45(0.092) 0.36

(0.033)

0.45(0.037) 0.36(0.032) 0.36(0.033) 0.45

(0.091)

0.45

(0.091)

0.45

(0.091)

0.45

(0.091)

Nordic 0.47

(0.116)

0.47

(0.116)

0.46

(0.116)

0.46(0.116) 0.37

(0.040)

0.46(0.046) 0.38(0.040) 0.37(0.040) 0.47

(0.116)

0.47

(0.116)

0.47

(0.116)

0.47

(0.116)

Other 0.10

(0.067)

0.10

(0.067)

0.10

(0.067)

0.10(0.067) 0.08

(0.063)

0.10(0.081) 0.07(0.061) 0.08(0.063) 0.10

(0.067)

0.10

(0.067)

0.10

(0.067)

0.10

(0.067)

Father Country

(Europa)

Sweden 0.57

(0.099)

0.57

(0.099)

0.57

(0.099)

0.57(0.099) 0.45

(0.028)

0.57(0.032) 0.45(0.028) 0.45(0.028) 0.57

(0.099)

0.57

(0.099)

0.57

(0.099)

0.56

(0.100)

Nordic 0.56

(0.127)

0.56

(0.127)

0.56

(0.127)

0.56(0.127) 0.45

(0.037)

0.56(0.041) 0.45(0.037) 0.45(0.037) 0.57

(0.127)

0.57

(0.127)

0.57

(0.127)

0.57

(0.127)

Other 0.32

(0.096)

0.32

(0.096)

0.32

(0.096)

0.32(0.096) 0.26

(0.043)

0.32(0.051) 0.26(0.042) 0.26(0.043) 0.32

(0.096)

0.32

(0.096)

0.32

(0.096)

0.32

(0.096)

Mother education

(>3 yr)

< = 9 years 0.14

(0.036)

0.13

(0.036)

0.13

(0.036)

0.13(0.036) 0.11

(0.023)

0.13(0.028) 0.12(0.024) 0.11(0.023) 0.13

(0.036)

0.14

(0.036)

0.14

(0.036)

0.14

(0.036)

(Continued)
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The current study established a higher risk of type-1 diabetes in the offspring of diabetic

parents. Children of diabetic mothers were about 540% at higher risk of type-1 diabetes com-

pared with children whose mothers are not diabetic. A similar pattern but a higher likelihood

of risk (780%) was found among children whose fathers were diabetic. This finding aligns with

the findings of previous studies [40, 41]. Diabetic parents pose a higher risk of type-1 diabetes

to their children independent of the conception method. This is plausible as a systematic

review has reported a 51% significant increase in diabetes mellitus among parents who con-

ceived by ART compared with those who conceived spontaneously [42].

The sex of the children was significantly associated with the age at the onset of type-1 diabe-

tes. The males were at higher risk of type-1 diabetes than females. Further research is necessary

to understand the biological configuration of males that put them at higher risk of type-1 dia-

betes. Our study is however corroborated by earlier researches which showed that about three-

fifths of children who developed type-1 diabetes were boys [43].

The median age at onset of type-1 diabetes among diabetic children was 10 years (Inter-

quartile range: 6–14 years). There appears to be a generational shift in the age at the onset of

type-1 diabetes among the children. The increase in the risk of type-1 diabetes in the studied

population was linear with the lowest risk among the children born between 1985 and 1990

and highest (about 36% on average) among the birth cohorts of 2001–2005, 2006–2010, and

2011–2015. Our finding is at variance with the results of the Danish study which found no

association between risk of type-1 diabetes and birth cohorts [3]. Although not reported in the

results, our stratified birth cohort analysis showed that covariate effects remain constant over

different cohorts.

We found a higher preponderance of type-1 diabetes among children whose mothers do

not smoke compared with those whose mothers smoke. This finding is at variance with find-

ings of a comparative study on the associations of parental smoking during pregnancy and

childhood-onset of type-1 diabetes in the Norwegian Mother and Child Cohort Study and the

Danish National Birth Cohort by Magnues et al. [44]. Magnus et al. reported that in both

cohorts, maternal smoking beyond gestational week 12 was inversely associated with type-1

diabetes” and that “in the Norwegian register-based cohort, children of mothers who still

smoked at the end of pregnancy had a lower risk of type-1 diabetes” [44]. The authors noted

Table 3. (Continued)

CPH Parametric PH (β(s.e)) Parametric AFT (β(s.e)) Flexible Model (β(s.e))

Characteristics β(s.e) Gompertz Weibull Exponential Weibull Exponential Lognormal Loglogistic df = = 2 df = = 4 df = = 5 df = = 6

10–12 years 0.08

(0.022)

0.08

(0.021)

0.08

(0.022)

0.08(0.022) 0.06

(0.015)

0.08(0.018) 0.07(0.016) 0.06(0.015) 0.08

(0.022)

0.08

(0.022)

0.08

(0.022)

0.08

(0.022)

Higher edu<3 years 0.02

(0.025)

0.02

(0.025)

0.02

(0.025)

0.02(0.025) 0.02

(0.019)

0.02(0.024) 0.02(0.020) 0.02(0.019) 0.02

(0.025)

0.02

(0.025)

0.02

(0.025)

0.02

(0.025)

Father education

(>3 yr)

< = 9 years 0.02

(0.030)

0.02

(0.023)

0.02

(0.023)

0.02(0.023) 0.02

(0.023)

0.02(0.029) 0.01(0.024) 0.02(0.023) 0.02

(0.030)

0.02

(0.030)

0.02

(0.030)

0.02

(0.030)

10–12 years 0.09

(0.025)

0.09

(0.025)

0.09

(0.025)

0.09(0.025) 0.07

(0.017)

0.09(0.021) 0.07(0.018) 0.07(0.017) 0.09

(0.025)

0.09

(0.025)

0.09

(0.025)

0.09

(0.025)

Higher edu<3 years 0.04

(0.028)

0.04

(0.028)

0.05

(0.028)

0.05(0.028) 0.04

(0.021)

0.05(0.026) 0.04(0.022) 0.04(0.021) 0.04

(0.028)

0.04

(0.028)

0.04

(0.028)

0.04

(0.028)

Mother Diabetic 1.86

(0.302)

1.86

(0.304)

1.86

(0.302)

1.86(0.302) 1.48

(0.009)

1.86(0.007) 1.74(0.009) 1.50(0.009) 1.86

(0.303)

1.86

(0.303)

1.86

(0.303)

1.86

(0.303)

Father Diabetic 2.17

(0.309)

2.18

(0.311)

2.17

(0.309)

2.17(0.309) 1.73

(0.005)

2.17(0.004) 2.07(0.005) 1.76(0.005) 2.18

(0.310)

2.18

(0.310)

2.18

(0.310)

2.19

(0.312)

https://doi.org/10.1371/journal.pone.0253389.t003
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Table 4. Adjusted prognostic factors of type-1 diabetes among the studied Swedish cohort from CPH and FPSR model with 6 degrees of freedom.

FPSR Model (df = 6) CPH Model

Characteristics aHR (95% CI) p-value aHR (95% CI) p-value

Conception Mode

Spontaneous 1.000

ARTa 1.070(0.929–1.232) 0.346 1.068(0.927–1.230) 0.361

Spontaneous 1.000

Freshb 1.010(0.862–1.184) 0.902 1.008(0.860–1.182) 0.917

Frozen-thawedb 1.368(1.013–1.847) 0.041 1.361(1.011–1.834) 0.044

Sex

Female 1.000

Male 1.171(1.137–1.206) 0.000 1.171(1.137–1.206) 0.000

Birth Cohort

1985–1990 1.000

1991–1995 1.179(1.132–1.228) 0.000 1.168(1.121–1.217) 0.000

1996–2000 1.332(1.273–1.395) 0.000 1.297(1.240–1.358) 0.000

2001–2005 1.380(1.313–1.451) 0.000 1.297(1.234–1.363) 0.000

2006–2010 1.382(1.299–1.470) 0.000 1.234(1.160–1.311) 0.000

2011–2015 1.359(1.228–1.504) 0.000 1.085(0.981–1.199) 0.114

Maternal age (years)

<20 1.000

20/24 1.073(0.940–1.226) 0.296 1.074(0.940–1.226) 0.295

25/29 1.093(0.958–1.246) 0.186 1.093(0.958–1.246) 0.185

30/39 1.104(0.967–1.260) 0.143 1.104(0.967–1.260) 0.142

40+ 1.151(0.985–1.345) 0.076 1.151(0.985–1.345) 0.076

Parity

> = 2 1.000

First 1.007(0.975–1.040) 0.677 1.007(0.975–1.039) 0.688

Smoking mother

Yes

No 1.296(1.240–1.354) 0.000 1.295(1.239–1.353) 0.000

Mother Country

Europa 1.000

Sweden 1.567(1.397–1.757) 0.000 1.569(1.399–1.759) 0.000

Nordic 1.596(1.384–1.841) 0.000 1.594(1.382–1.839) 0.000

Other 0.908(0.786–1.048) 0.187 0.907(0.785–1.047) 0.182

Father Country

Europa 1.000

Sweden 1.767(1.583–1.972) 0.000 1.769(1.585–1.975) 0.000

Nordic 1.760(1.527–2.028) 0.000 1.759(1.526–2.027) 0.000

Other 1.380(1.204–1.582) 0.000 1.378(1.203–1.580) 0.000

Mother Education

Higher edu> = 3 years 1.000

< = 9 years 1.145(1.076–1.219) 0.000 1.145(1.076–1.219) 0.000

10–12 years 1.082(1.041–1.125) 0.000 1.082(1.041–1.125) 0.000

Higher edu<3 years 1.024(0.976–1.074) 0.327 1.025(0.977–1.075) 0.320

Father Education

Higher edu> = 3 years 1.000

< = 9 years 1.022(0.965–1.082) 0.458 1.023(0.966–1.084) 0.431

(Continued)
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that their findings were in contrast to teratogens operating very early during development, but

similar to what has been reported earlier for effects of maternal smoking on birth weight [45].

There could be pathways to the modification of the effect of smoking on diabetes. One such is

the effect of low birth weight. Reduced risk of type-1 diabetes in children with low birth weight

has been reported and low birth weight is more prevalent among smoking mothers [46].

The country of birth of the parents significantly predicted the risk of type-1 diabetes with

higher risks among children of Swedish and other Nordic mothers and fathers compared with

children whose either parent is born outside the Nordic countries. Existing literature had sug-

gested that people from certain countries are more likely to be diabetic than others [1, 47–51].

Studies have shown a higher preponderance of type-1 diabetes in the Scandinavian countries

[1, 49, 50]. Although the reasons for these differences are yet to be well articulated in the

literature.

Educational attainment of parents was significantly associated with the risk of type-1 diabe-

tes among the children. The risk of type-1 diabetes was higher among children of those who

had a lower level of paternal and maternal education. Educational attainment could be associ-

ated with the amount of information at the disposal of parents which may or may not predis-

pose a child to type-1 diabetes. Maternal age and the parity of the index child were not

significant predictors of type-1 diabetes.

Strength and limitations of the study

Our study has a major strength of a detailed analysis and comparison of the fit and perfor-

mance of a different range of regression models including the semi-parametric proportional

hazard, parametric proportional hazard and accelerated failure time models as well as the flexi-

ble model at different degrees of freedom to arrive at our conclusions. Also, we have used a

large dataset that consists of over three million births spanning over 30 years of follow-up and

nearly 19,000 cases from high validity registries. Hence, the estimated risks of type-1 diabetes

were made with high statistical precision. Furthermore, our study is based on Swedish nation-

wide population-based registries, we, therefore, used data with almost complete coverage with

no sampling or recall bias, leading to high generalizability, no loss to follow up, and almost

complete ascertainment of type-1 diabetes cases. Besides, we adjusted for several potential con-

founders including the sex of the children, parental type-1 diabetes status, and country of birth

of the parents. One of the limitations of our study was the limited time of exposure for those

born after 2000. Some data were missing hence we may not have accounted for some con-

founders. The control group consisted of all non-ART singletons. A better control group

might have been children to subfertile couples conceiving spontaneously. However, such a

control group is almost impossible to identify.

Table 4. (Continued)

FPSR Model (df = 6) CPH Model

Characteristics aHR (95% CI) p-value aHR (95% CI) p-value

10–12 years 1.094(1.046–1.144) 0.000 1.095(1.047–1.145) 0.000

Higher edu<3 years 1.045(0.991–1.102) 0.105 1.046(0.992–1.103) 0.099

Mother Diabetic 6.419(5.852–7.041) 0.000 6.405(5.839–7.026) 0.000

Father Diabetic 8.808(8.221–9.437) 0.000 8.789(8.203–9.417) 0.000

aHR adjusted Hazard Ratio, CPH Cox Proportional Hazard FSPR Flexible Parametric Survival Regression

_rcs Spline variables for the log baseline cumulative hazard Estimates from the FPSR model are significant but are not presented.
a,b fitted in separate models alongside the covariates

https://doi.org/10.1371/journal.pone.0253389.t004
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Conclusion

Our estimates from the different regression models including the semi-parametric propor-

tional hazard, parametric proportional hazard models and the flexible model at different

degrees of freedom were similar. This is an indication that the models performed similarly and

any of them can be used to model the data. For the Swedish birth data used in the current

study, we did not find any significant differences among the performances of the regression

methods. There may be a need for a similar comparative analysis of Danish data used by Har-

greave et al. and Kettner et al. [2, 3] so as to ascertain that the contradictions in their findings

were not due to the methods of analysis. As shown in this study, for a very large sample fol-

lowed up for a long time, the CPH model provided a comparative estimate with the FPSR

model. Any of the models, especially the Cox semi-parametric model, parametric proportional

hazard models and the flexible model at higher degrees of freedom are appropriate in model-

ling the risk of type-1 diabetes among ART and spontaneously-conceived children.

The results from our large population-based nationwide data were generally reliable, indi-

cating that mode of conception could affect the risk of type-1 diabetes among the children

especially when they are from frozen-thawed embryo transfer. Although we found no signifi-

cant difference in the risk of type-1 diabetes among ART and spontaneously conceived chil-

dren generally, our sub-analysis showed that children from frozen-thawed embryo transfer

had a higher risk than other children. This is of some concern in view of the increasing num-

ber of frozen cycles all around the world. Estimates suggest that some 390,000 babies are now

born each year globally through assisted fertility techniques including IVF and ICSI while the

total number of ART children have exceeded eight million by 2019 [52, 53].

It’s hard to generalise these findings to other settings. Although the considered models per-

formed similarly in this specific setting, there’s no guarantee that this will be the case with

other data sources or diseases or other settings.
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