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Abstract

Background: Protein fold recognition usually relies on a statistical model of each fold; each model is constructed from an
ensemble of natural sequences belonging to that fold. A complementary strategy may be to employ sequence ensembles
produced by computational protein design. Designed sequences can be more diverse than natural sequences, possibly
avoiding some limitations of experimental databases.

Methodology/Principal Findings: We explore this strategy for four SCOP families: Small Kunitz-type inhibitors (SKIs),
Interleukin-8 chemokines, PDZ domains, and large Caspase catalytic subunits, represented by 43 structures. An automated
procedure is used to redesign the 43 proteins. We use the experimental backbones as fixed templates in the folded state
and a molecular mechanics model to compute the interaction energies between sidechain and backbone groups.
Calculations are done with the Proteins@Home volunteer computing platform. A heuristic algorithm is used to scan the
sequence and conformational space, yielding 200,000–300,000 sequences per backbone template. The results confirm and
generalize our earlier study of SH2 and SH3 domains. The designed sequences ressemble moderately-distant, natural
homologues of the initial templates; e.g., the SUPERFAMILY, profile Hidden-Markov Model library recognizes 85% of the low-
energy sequences as native-like. Conversely, Position Specific Scoring Matrices derived from the sequences can be used to
detect natural homologues within the SwissProt database: 60% of known PDZ domains are detected and around 90% of
known SKIs and chemokines. Energy components and inter-residue correlations are analyzed and ways to improve the
method are discussed.

Conclusions/Significance: For some families, designed sequences can be a useful complement to experimental ones for
homologue searching. However, improved tools are needed to extract more information from the designed profiles before
the method can be of general use.
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Introduction

Protein sequence databases continue to grow rapidly, with *6

million entries in Uniprot [1–8]. Knowledge of the 3D structure is

essential for understanding function; unfortunately, experimental

structure determination is only practical for a small fraction of

these proteins [2,8–10]: just *2% have an experimentally-verified

structural annotation today. For the others, structure must be

predicted. Thus, the structural characterization of proteins is a

major goal in computational biology [1–8].

Structure prediction is often done on a domain basis. Indeed,

most protein structures can be subdivided into one or more

compact domains, which have their own independent fold. Known

domain structures can be classified into a few thousand families,

collected in public databases such as Pfam and SCOP [11–14]. To

characterize the 3D structure of a new protein sequence, the first

step is to identify one or more homologous proteins of known

structure; from these, one can infer, or ‘‘recognize’’ the new

protein’s domains and their respective folds. The fold can be

viewed as a medium resolution model of each domain’s 3D

structure. In a second step, the model can be refined using

established homology modeling techniques [15–17].

Fold recognition tools [18–31] usually compare a new sequence

to a library of virtual, consensus sequences, each representing a

statistical description of one structural family. For example, the

‘‘Protein Family’’ or Pfam database provides a library of multiple

sequence alignments (MSAs), representing 10340 distinct families

of domain structures [22–24]. The SUPERFAMILY library is

another collection of MSAs [25–27], which is based on the

‘‘Structural Classification of Proteins’’, or SCOP database [11,12].

SCOP currently groups the known domain structures into 3464

families. SUPERFAMILY provides one profile Hidden Markov

Model (HMM) for each family, and also one for each individual

SCOP domain.
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Currently, fold recognition tools are able to classify (‘‘recog-

nize’’) *75% of the sequences in SwissProt or TrEMBL. Some of

the unrecognized sequences must correspond to 3D domain

structures that are as yet unknown. Indeed, new protein folds are

still being discovered, albeit at a slow rate [32,33]. Others must

have a low sequence similarity to their homologues of known

structures. Thus, if a structural family is not sufficiently

represented in sequence databases, the MSAs and statistical

models used for fold recognition may not be sufficiently

representative. In general, relying entirely on experimental

sequences and structures can be a limitation. Therefore, it is of

interest to examine the potential of computationally-designed

sequences as an aid for fold recognition [34–42].

Computational protein design, or CPD, represents a rigorous

test of our understanding of the biophysical mechanisms that

shape protein sequences and structures [35–39,43–65]. The

present implementation uses a molecular mechanics description

of the protein, a simple implicit solvent model, a fixed backbone,

and sidechain rotamers; the unfolded state is treated with a simple

tripeptide model [42,66–68]. In principle, CPD can easily

generate hundreds of thousands of sequences for a single backbone

template, potentially improving the exploration of sequence space

in cases where experimental data is rare.

CPD’s usefulness for fold recognition was considered by several

groups, but has not been determined conclusively [34–39,41,42].

More generally, the value of structure-based alignments for fold

recognition is still unclear [25,40,69]. Larson & Pande selected 253

small proteins from the Protein Data Bank. For each protein, they

generated 700–800 low-energy sequences. The designed sequence

profiles were used for homology searching, performing better than

a single pairwise BLAST search using a natural query [35–37].

Zhou & Zhou used sequence profiles obtained not from CPD, but

from structural alignment of small protein fragments, in

combination with traditional sequence profiles. Including struc-

ture-based information at the fragment level led to excellent

homology detection [40]. In a recent study, we designed sequences

for 46 SH2 and SH3 domains [42]. The sequences ressembled

moderately-distant homologues of the original template sequences,

and the diversity within the designed sequence ensembles was

comparable to that of the natural families. We then tested the

designed sequences for homology searching. Position Specific

Scoring Matrices (PSSMs) were derived from the designed

sequences and used with the PSI-Blast search algorithm. The

designed PSSMs retrieved *67% of the sequences found by

experimental PSSMs, or 75% when explicit functional information

was added by resetting a few functional positions to their native

amino acid types.

Here we generalize the analysis, by considering proteins from

another four SCOP families: 8 Small Kunitz-type inhibitors

(SKIs), 12 Interleukin-8 chemokines, 17 PDZ domains, and 6 large

Caspase catalytic subunits, for a total of 43 structures. These

families come from four different structural classes in SCOP: all-

beta (PDZ domains), alpha+beta (chemokines), alpha/beta

(caspases), and ‘‘small proteins’’ (SKIs). The chemokines and

PDZ domains studied correspond to 1/2 and 1/3 of their

respective SCOP families. The SKIs and caspases correspond to

nearly the entire SCOP families (8/8 SKIs and 6/7 caspases of

known Xray structures). The PDZ family was chosen because it

has been subjected to extensive analysis and redesign [70]. The

SKI and caspases families were chosen because of their small size,

while the chemokines are biologically interesting. All these proteins

are larger than the SH2 and SH3 domains. The SKIs and

chemokines each have a highly conserved disulfide bond pattern

that helps preserve the stability of the fold [71]. As before, we did a

basic quality control, computing similarity scores and sequence

entropies, and applying several fold recognition tools. In

particular, SUPERFAMILY classifies 85% of our 8,000 lowest-

energy designed sequences as native-like (compared to about 82%

for the SH2 and SH3 domains [42]).

We then tested the designed sequences for homology searching

with PSI-Blast. For the caspases and PDZ domains, designed

PSSMs retrieved about 60% of the experimental sequences in

SwissProt; this is poorer than in the earlier SH2 and SH3 study

[42]. For SKIs and chemokines, however, the retrieval rate was

much better, around 90%. While this is still less than 100%, it does

suggest that designed sequences can be a useful aid for some

protein families.

A limitation of PSI-Blast as a search tool is that it employs a

sequence profile, which contains less information than the original

MSA used to create it. Indeed, the profile is obtained by averaging

each column of the MSA, yielding a set of amino acid frequencies

for each column [18–30]. This averaging destroys information on

correlated mutations, where two positions in the polypeptide chain

mutate at the same time. To better understand the correlations, we

consider sequences designed under special restrictions; for

example, without taking into account inter-sidechain correlations.

We also analyze the contribution of different energy terms (steric

packing, electrostatics, solvation) to the sidechain interactions and

the overall stability of the designed proteins. Finally, for one

protein, we present data on the correlated mutations and their

effect on homologue searching. This analysis should help point the

way to methods that extract more information from the designed

sequences and give improved performance for homologue

retrieval. The designed sequences are available at http://

biology.polytechnique.fr/biocomputing/sequences.

Materials and Methods

The CPD implementation was described in detail recently

[42,67]. Here, we summarize it more briefly.

Folded and unfolded states
In the folded state, the backbone is kept fixed, while sidechains

occupy standard rotamers [72]. The backbone conformation was

obtained by subjecting the crystal structure to 500 steps of

conjugate gradient energy minimization, with a uniform dielectric

constant of 20 applied to the Coulomb electrostatic energy term.

This typically led to an rms deviation (backbone and Cb atoms) of

*0.7 Å from the crystal structure. In the unfolded state, the

amino acid sidechains do not interact with each other, but only

with nearby backbone and with solvent. Specifically, for each

amino acid type X, we considered a large number of possible

tripeptide structures with the sequence Ala-X-Ala. The lowest-

energy combination of backbone structure and sidechain rotamer

was taken to represent the preferred structure of X in the unfolded

state. The corresponding energy, EX , represents the contribution

of X to the unfolded state free energy. An additional (and smaller)

contribution, eX , was determined empirically, so as to obtain

accurate overall amino acid compositions in the final computed

sequences; more details are given elsewhere [67,68].

Effective energy function
The effective energy function was described in detail elsewhere

[66]. Briefly, we use the Charmm19 molecular mechanics energy

function [73] along with the CASA implicit solvent model. With

CASA, the solvent contribution is the sum of a screened Coulomb

term and a solvent accessible surface term:

Homology Searching by Design
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Here, ECoul is the usual Coulomb energy, is a dielectric constant,

equal to ten; the righthand sum is over the protein atoms i, Ai is

the solvent accessible surface area of atom i, si is an atomic

solvation coefficient which depends on the atom type, and a is an

overall scaling factor for the surface term.

The interaction energy between each pair of sidechains, or

between a sidechain and the backbone, involved a short energy

minimization stage [50]. Each sidechain was first subjected to 15

steps of Powell minimization, with the backbone fixed and inter-

sidechain interactions excluded. Then, interactions between the

sidechain pair were included and a further 15 steps of

minimization performed. The sidechain interaction energy was

taken from this last, minimized structure. Interactions between

distant groups were omitted through a cutoff scheme [67].

Surface areas were computed using the Lee and Richards

algorithm [74], using a 1.4 Å probe radius. The atomic solvation

coefficients si are the ones used in our previous work: 0.012 kcal/

mol/Å2 for carbons and sulfur; 20.06 kcal/mol/Å2 for oxygen

and nitrogen; zero for hydrogens, and 20.15 kcal/mol/Å2 for

ionized groups [66]. For reasons of efficiency, following Street &

Mayo [75], we assume that Ai can be obtained by summing the

contact areas Aij between atom i and its neighbors j, and

subtracting the contact, or solvent-inaccessible area Ci~
P

j Aij

from the total area of atom i. This approximation has the

enormous advantage that the surface energy takes the form of a

sum over pairs of amino acids [66,75].

Sequence optimization
We used a heuristic procedure developed by Wernisch et al.

[50,67]. A ‘‘heuristic cycle’’ proceeds as follows: an initial amino

acid sequence and set of sidechain rotamers are chosen randomly.

They are improved in a stepwise way. At a given amino acid

position i, the best amino acid type and rotamer are selected, with

the rest of the sequence held fixed. The ‘‘best’’ choice is defined as

the one that maximizes the protein folding free energy. The same

is done for the following position iz1, and so on, performing

multiple passes over the amino acid sequence until the energy no

longer improves (or a set, large number of passes is reached). The

final sequence, rotamers, and energy are output, ending the cycle.

For the design calculations below, we performed *300.000

heuristic cycles. Cysteines, glycines, and prolines are expected to

have a special effect on the protein’s folded and unfolded state

structures, which may not be accurately captured by our method.

Therefore, if these amino acids are present in the native sequence,

they are not mutated; all other amino acids are allowed to mutate

freely (but not into Cys, Gly, or Pro).

Software implementation
The pairwise energy function and discrete conformational space

imply that all the relevant energy data can be precomputed and

stored [50]. In effect, we must compute the interactions between

all pairs of amino acids in the structure, allowing for all possible

pairwise combinations of amino acid types and rotamer values.

This calculation is done with the XPLOR program [76]. Because

of its low communication requirements, the calculation can be

done in parallel. We employed our Proteins@Home distributed

computing platform, which allows us to use the computers

of several thousand volunteers in over 100 countries (see the

list of participants at biology.polytechnique.fr/proteinsathome).

Proteins@Home is based on the Berkeley Open Infrastructure for

Network Computing, BOINC [77].

Similarity scores
To measure the quality of the designed sequences, we computed

similarity scores between each designed sequence and a multiple

sequence alignment (MSA) of experimental sequences. We used

the Pfam alignments, which include, respectively: 154 SKIs, 112

chemokines, 70 PDZ domains, and 124 Caspases. To each Pfam

MSA, we added the proteins studied here (the native sequences,

not the designed sequences). For a given family, each of the

proteins studied here was aligned separately to the original Pfam

alignment (unless it was already part of that alignment). The final

alignment, including the original Pfam set plus our own, additional

proteins, will be referred to as the Pfam MSA, even though it is

enlarged by a few additional proteins. For the Chemokines, PDZ

domains, and Caspases we also calculated the similarity scores

from a larger Pfam alignment, containing 681, 4223 and 788

entries, respectively. Indeed, for these families, Pfam provides both

a small and a large MSA; the large MSA contains more distant

homologues.

With each of our (native) proteins aligned with an appropriate,

Pfam MSA, there is a unique correspondence between positions in

the designed sequences and the MSA. We then computed the

following similarity score:

s~
X

i

X
a

fiaS xi,að Þ, ð2Þ

where i is a position in the designed sequence; xi is the amino acid

type in the designed sequence at that position; a is either one of the

20 amino acid types or a gap symbol; fia is the frequency (between

0 and 1) of a at the corresponding position in the Pfam MSA; and

S xi,að Þ is the BLOSUM62 scoring matrix. Other matrices give

similar results [42]. If a is a gap symbol, S xi,að Þ is set to 25. The

first sum is over the designed sequence; the second sum is over the

amino acid types (including the gap symbol).

Residual entropy of the natural and designed sequences
To compare the sequence diversity in the designed sequences

with the diversity in natural sequences, we used a standard,

position-dependent entropy [78], computed as follows:

Si~{
X6

i~1

fj ið Þlnfj ið Þ ð3Þ

where fj ið Þ is the frequency of residue type j at position i, either in

the designed sequences or in the natural sequences (organized into

an MSA). Instead of the usual, 20 amino acid types, we employ

classification systems of either nine or six residue types,

corresponding to the following groupings: {LVIMC}, {FY},

{W}, {G}, {A}, {STP}, {EDNQ}, {KR} and {H} (nine groups);

or: {LVIMC}, {FYW},{G}, {ASTP}, {EDNQ}, and {KRH}(six

groups). This classification is obtained by a cluster analysis of the

BLOSUM62 matrix [79], and also by analyzing residue-residue

contact energies in proteins [80].

SUPERFAMILY
SUPERFAMILY [25,27] is a library of profile Hidden Markov

Models [78], designed to associate a protein sequence with the

most probable 3D structural model. The library is based on the

SCOP classification of proteins, with one model for each protein

domain in SCOP. We downloaded the set of models (version 1.69)

and used them in connection with the Sequence Alignment and

Modeling system (SAM, version 3.5), recommended by the

creators of the SUPERFAMILY database. We used our 8,000

Homology Searching by Design
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lowest-energy sequences as queries against the SUPERFAMILY

library; significant hits were returned with the corresponding E-

value and domain assignment.

CDD: a Conserved Domain Database for protein
classification

The Conserved Domain Database (CDD) is the protein

classification component of NCBI’s Entrez query and retrieval

system [21]. CDD contains protein domain models imported from

outside sources, such as Pfam and SMART, and protein domain

models curated at NCBI. In all, CDD contains over 12,000

models. Our designed sequences were queried against the CDD

database, run locally. For each redesigned domain we analyzed

the 8,000 lowest-energy sequences.

PSI-BLAST analysis of the designed sequences
For each backbone template, we evaluated the native-like

character of the designed sequences using a PSI-BLAST search

procedure. We first constructed a PSSM using experimental

sequences and one of two different procedures, detailed in the next

paragraph. With one of the PSSMs in hand, we then searched a

database containing the 8,000 lowest-energy designed sequences

along with half of the experimental sequences from the ‘‘Non-

Redundant’’ or NR01 database (chosen arbitrarily). By ‘‘diluting’’

the designed sequences within a large set of experimental

sequences, we realistically test the ability of PSI-BLAST to identify

them. We expect that the exact manner of diluting them is not

critical; for example, we could have chosen to add the entire NR01

database instead of half. The database was searched using the

program BLASTPGP (running locally).

For the PSI-BLAST analysis just described, and for each

backbone template, we used one of two distinct PSSMs. The first is

a ‘‘general’’ PSSM, constructed as follows. The native sequence

was used to query the NR01 database, through four PSI-BLAST

iterations, using a 10{3 E-value cutoff to define hits. For each

backbone template, we were left with about 1000 homologous

sequences and a PSSM. The second is a ‘‘backbone-specific’’

PSSM, involving closer homologues: we searched SwissProt with a

single PSI-BLAST iteration, collecting about 50 sequences that

have at least a 45% identity with the native template, and which

define the PSSM.

Covariance analysis of designed sequences
To characterize correlated mutations within a particular protein

family, we use a standard mutual sequence entropy [78,81]. A

correlation coefficient Mi,j is computed between two amino acid

positions i, j in a given multiple sequence alignment (MSA), for

example a collection of designed sequences obtained with a

particular backbone template. Mi,j is defined as:

Mi,j~
X

x

X
y

p
x,y
i,j log

p
x,y
i,j

px
i p

y
j

: ð4Þ

The double sum is over the amino acid types x and y, found

respectively in columns i and j of the MSA; p
x,y
i,j is the joint

probability to observe x at position i and y at position j; px
i is the

probability to observe type x at position y; p
y
j is the probability to

observe type y at position j. The probabilities are estimated by a

simple counting within the MSA columns. If a particular type x or

y, or a pair of types x,y is absent from the corresonding column or

pair of columns, the corresponding terms in (4) are set to zero. In

(4), we actually use a reduced alphabet of amino acid types, with

the following nine types: {LVIMC}, {FY}, {W}, {G}, {A},

{STP}, {EDNQ}, {KR}, and {H}.

Results

The designed sequences ressemble experimental
sequences

We redesigned 8 SKIs, 12 Chemokines, 17 PDZ domains and 6

Caspases, listed in Table 1 and illustrated in Fig. 1. Identity rates

between the designed sequences and the initial, native sequence

are commonly used as a first quality check for CPD, and are given

in Table 1. For the 8,000 lowest-energy sequences, the average

identity scores are: 40.4% (SKIs), 30.3% (chemokines), 32.3%

(PDZ) and 33.8% (caspases), similar to the SH2 and SH3 cases

studied earlier [42].

Similarity scores are a more reliable measure of the native-like

character of designed sequences, because they take into account

the diversity of the natural sequences [42,67]. For each family, we

computed the similarity with respect to the small Pfam alignment

(see Methods). Table 2 reports the overlap between the similarity

scores of the designed sequences and the scores obtained with the

natural, Pfam sequences themselves. For the chemokines, only

12% of the designed scores overlap with the scores of the small

Pfam set; 73% overlap with the scores of a larger Pfam set (which

includes more distant homologues). For the caspases, 24% of the

sequences overlap with the small Pfam set; 28% overlap with the

large set. For the PDZ domains, 79% overlap with the small Pfam

set, and 80% with the large set. For the SKIs, all the designed

scores overlap with the scores of the small and large Pfam sets.

Similarity scores were also computed for random sequences,

restrained to have a 35%, 45%, or 55% mean identity with the

backbone template. We refer to these as the R35, R45, and R55

sequences. For the SKI and chemokine templates, the random

sequences are constrained to maintain the conserved, native

cysteines. Results are given in Table 2. The scores of the designed

sequences have a much higher overlap with Pfam than the random

sequences, even those generated at a 55% identity level (R55

sequences).

Residual Entropy
We next consider the diversity of the designed sequence

ensembles, using a standard sequence entropy [37,78]. The

8,000 lowest energy sequences were used. Table 3 gives the

(exponentiated) entropy, averaged over the entire polypeptide

chain, or over the core positions only (except for the SKIs, where

the protein core is very small). Entropies are also given for the

natural, Pfam ensembles (the small sets). Agreement between the

designed and natural entropies is good, similar to the SH2 and

SH3 cases studied earlier [42]. The highest discrepancies are for

the SKIs and chemokines, with natural/designed entropies of 3.6/

3.0 and 3.5/3.0, respectively. The variation of the (exponentiated)

entropy along the polypeptide chain is shown in Fig. 2 for the

chemokines and the PDZ domains. The behavior of the designed

and natural sequences are qualitatively similar, though the details

are different.

Fold recognition tools confirm the natural character of
designed sequences

The designed sequences were subjected to four standard fold

recognition tools: PSI-BLAST, the SUPERFAMILY HMM

library, the CDD ressource, and the FROST program [82].

PSI-BLAST was used with several different Position Specific

Scoring Matrices (PSSMs; see Methods and [42]). The first,

‘‘general’’ PSSM was constructed from natural sequences from the

Homology Searching by Design
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same family in the NR01 database (a non-redundant subset of

SwissProt). For each family, more than 80% of our designed

sequences were correctly identified, with E-values below the

chosen, 0.001 threshold (Table 2). For the designed SKIs, the

detection rate was over 95%.

A second set of 43 ‘‘backbone-specific’’PSSMs was constructed:

one for each designed domain. Each PSSM was constructed using

a database of close homologues of the corresponding protein (with

at least 45% identity; see Methods). With these PSSMs, the

detection rate is higher: 96% for the SKIs, 88% for chemokines,

and 92% for the caspases. Only for the PDZ domains, the

detection rate is slightly reduced with the backbone-specific

PSSMs: 78.6% (instead of 80.2% with the general PSSM). The

detection rates compare favorably to those of the random

sequences (Table 2).

The SUPERFAMILY HMM library yielded the correct family

assignment for the vast majority of designed sequences (Table 2):

almost 100% for SKIs and chemokines, and over 90% for caspases

and PDZ domains. The 8,000 lowest-energy designed sequences

outperformed the random sequences, except for the R55 ones (55%

identity to the caspase templates; see Table 2 and Figure 3). The

designed caspases outperform the R45 and R35 random sequences.

Figure 1. The four SCOP families studied here. From left to right: Small Kunitz-type Inhibitors (SKIs), Chemokines, PDZ domains, and Caspases,
represented by a single 3D structure (above) or an alignment of five family members (below).
doi:10.1371/journal.pone.0010410.g001

Table 1. Identity scores of the low-energy designed sequencesa.

SKIs __________ Chemokines __________ PDZ domains __________ Caspases __________

PDB code Identity PDB code Identity PDB code Identity PDB code Identity

4pti 37.4 1ilq 30.3 1pdr 36.0 1nme 31.0

2knt 42.2 1plf 31.3 1kwa 22.8 1m72 31.6

1tfx 41.8 1msg 25.6 2fe5 36.3 1pyo 37.5

1aap 42.6 1hum 32.4 1be9 32.5 1i51 32.1

1bik 42.6 1vmp 32.2 1qav 29.7 1qdu 28.7

1dtx 37.3 1rto 40.1 1nte 24.2 1nw9 41.9

1bun 37.1 1dom 26.0 1l6o 31.7

1dem 41.9 1eig 27.9 1qau 30.3

1g2s 26.5 1g9o 35.4

1j9o 18.2 1ihj 28.6

1nr2 38.7 1n7f 30.5

1nap 30.7 2h3l 36.2

1n7e 30.9

1q3o 35.6

2f5y 35.6

2fne 35.2

2byg 36.5

Mean 40.4 30.3 32.3 33.8

aMean identity of the 8.000 lowest-energy designed sequences relative to each corresponding native template.
doi:10.1371/journal.pone.0010410.t001

Homology Searching by Design
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The CDD library identifies most of the 8,000 lowest-energy

designed sequences correctly: 100% of the SKIs, 94% of the

chemokines, 76% of the PDZ domains, and 93% of the caspases

(see Table 2 and Figure 3). For three families, the detection rates of

the designed sequences exceed those of the random sequences;

only the caspases perform less well than the R55 random

sequences (as with SUPERFAMILY).

Finally, the designed sequences were evaluated by the FROST

library of threading models [42,82]. For each backbone template,

we evaluated around 200 low-energy designed sequences, chosen

randomly. About 20% of the 1600 SKI and 2400 chemokine

sequences were assigned to an incorrect family or not assigned at

all by FROST; the other 80% were assigned to the correct family

(Table 2). 64% of the PDZ sequences were correctly assigned, and

92% of the caspase sequences. Overall, the designed sequences

have a good native-like character, much stronger than the R55

random sequences. The precise rate of detection varies somewhat

between PSI-BLAST, SUPERFAMILY, CDD, and FROST.

Stability of the designed and native sequences; relation
to sequence identity

To further understand the energy terms that drive the design,

we performed a component analysis of the folding free energy,

DG. We distinguished the four terms in the CASA energy function

(see Methods): the van der Waals, screened Coulomb, and surface

area terms in the folded state (DGvdW , DGCoul , DGsurf ), and the

unfolded state energy (DGunf ). Results were normalized by the

protein chain length, yielding mean residue contributions. The

Table 2. Similarity overlap and recognition rates (%) of designed and random sequences.

_____________ SKIs _____________ __________ Chemokines __________

Designed R55 R45 R35 Designed R55 R45 R35

SUPERFAMILY 100 97.9 84.0 53.2 99.7 92.0 66.9 30.1

CDD 100 91.7 62.7 24.1 94.1 90.5 58.8 17.5

PSI-BLASTa 95.1 36.1 7.0 0.5 81.0 53.1 11.5 0.8

PSI-BLASTb 96.0 87.0 32.7 2.5 88.0 96.2 61.4 7.7

Similarity 99.9 53.2 20.8 0.7 12.1 0.2 0 0

overlapc 72.8 21.4 4.0 0.2

FROST 80 81

__________ PDZ domains __________ __________ Caspases __________

Designed R55 R45 R35 Designed R55 R45 R35

SUPERFAMILY 95.4 63.5 21.1 2.3 89.6 98.6 70.8 14.2

CDD 76.4 38.5 10.1 1.4 92.8 99.8 86.6 29.2

PSI-BLASTa 80.2 36.8 3.5 0.1 82.5 99.7 68.3 6.9

PSI-BLASTb 78.6 99.2 79.2 10.6 92.0 100 99.4 47.4

Similarity 78.6 23.7 2.3 0.1 24.3 11.3 0.5 0.0

overlapc 28.5 15.3 0.8 0.0

FROST 64 92

aUsing the general PSSMs (see Methods).
bUsing the backbone-specific PSSMs.
cOverlap with the similarity scores for the small (top line) and large (bottom line) Pfam ensembles of natural sequences.
doi:10.1371/journal.pone.0010410.t002

Table 3. Entropy of natural and designed sequencesa.

Amino acids Pfam sequencesb Designed (8 proteins)b Designed (1 protein)b

SKIs All 3.6 (3.0) 3.0 (2.7) 1.8 (1.6)

Chemokines Core 3.6 (3.1) 3.3 (2.9) 2.2 (1.8)

All 3.2 (2.8) 3.3 (2.9) 2.0 (1.8)

PDZ domains Core 3.1 (2.8) 3.6 (3.1) 2.0 (1.8)

All 3.6 (3.2) 3.5 (3.1) 1.7 (1.6)

Caspases Core 2.6 (2.3) 2.8 (2.3) 2.5 (2.1)

All 3.5 (3.0) 3.0 (2.7) 2.1 (1.9)

aExponentiated entropies, computed using a simplified amino acid alphabet with nine classes: {LVIMC}, {FY}, {W}, {G}, {A}, {STP}, {EDNQ}, {KR} and {H}, or with six classes
(results in parentheses): {LVIMC}, {FYW}, {G}, {ASTP}, {EDNQ}, and {KRH} [80].

bThe corresponding small Pfam set.
clow-energy sequences from either eight backbone templates or a single template (arbitrarily chosen).
doi:10.1371/journal.pone.0010410.t003
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analysis was done for two PDZ domains, as well as two SH2 and

SH3 domains, studied earlier [42]. For the designed sequences, on

average, each residue contributes 22.3+0.2 kcal/mol to DG
(Fig. 4). For all six proteins, DGsurf is the largest folded state

component (27.3+0.3 kcal/mol), followed by DGvdW (25.6+
0.3 kcal/mol), and DGCoul (21.2+0.3 kcal/mol). The negative

sign indicates contributions that favor folding. The mean unfolded

state contribution is 11.9+0.4 kcal/mol for the designed sequenc-

es. The positive sign indicates an unfavorable contribution to

folding.

For the native sequences, after optimizing the sidechain

rotamers (for consistency with the designed sequences), the

stability is weaker, with a mean folding free energy of

0.0+0.4 kcal/mol (per residue). Compared to the designed

sequences, the surface and van der Waals terms are less favorable

with the native sequences; this is only partly compensated for by a

less stable unfolded state for the native sequences (10.6 kcal/mol

per residues, vs. 11.9 kcal/mol for the designed sequences; Fig. 4).

The designed sequences are thus overstabilized, probably because

of our optimization procedure, which maximizes stability. Real

proteins are obviously subject to other selective pressures,

including functional pressure.

The enhanced stability of the designed sequences prompted us

to compare sequence ‘‘quality’’ to protein stability. Specifically,

Fig. 5 shows the sequence identity of the 8,000 lowest-energy

designed sequences (relative to the native template) as a function of

the computed folding free energy, DG. In five out of six cases, the

identity scores of the designed sequences improve as DG improves;

i.e., the lowest-energy designed sequences have the best identity

score. The SH3 graphs are clearly separated from the others, with

a more negative slope. The best SH3 sequences are *100 kcal/

mol below the highest DG value. For the two SH2 proteins, the

curves are flatter, but there is still a slight increase in the identity

scores as DG improves. For the 2FE5 PDZ domain, the identity

scores of the designed sequences also increase as DG improves.

Only for 1QAU, the identity score does not improve with DG, and

actually gets worse for the most stable sequences. This provides

support for using the folding free energy as a selection criterion,

despite the overstabilization seen in Fig. 4.

Fig. 5 also shows the relation between the sequence identity and

the individual, van der Waals and screened Coulomb components

of DG. Again, results are for the 8,000 lowest-energy designed

sequences, compared to the corresponding native template. In

some cases, each component improves along with the identity

(1CSK, 1QAU); in others, only one or the other component

improves along with the identity. For 1CKA, it is the solvation

component that improves with the identity.

Homologue searching using designed sequences and
PSSMs

Our longer-term goal is to use designed sequences for homologue

detection, in combination with natural sequences [40]. Following our

previous study [42], we constructed ‘‘theoretical’’ PSSMs from the

designed sequences and used them for homologue searching. In the

chemokine case, for comparison, we also constructed a PSSM from

the most ‘‘native-like’’ designed sequences: those that gave the lowest

E-values for the CDD calculations described above. For the PDZ

family, we also considered the effect of resetting a few functional

positions to their native amino acid types. Specifically, we identified

five substrate-binding positions, or SBPs from a literature search

[83,84].

We compared the performance of the different ‘‘designed’’

PSSMs to experimental PSSMs, constructed using the same

procedure, with the NR01 database replacing the ensemble of

designed sequences. Random PSSMs were also employed, with

pools of 1000 random sequences replacing the designed or NR01

ensembles [42]. The identity levels for the random sequences were

35%, 45%, or 55%, as before; we refer to them again as the R35,

R45, and R55 sequences. We use an E-value threshold of 0.1 for

sequence retrieval [42].

Results are summarized in Table 4 and Fig. 6. The best results

are for the STIs and the chemokines. The experimental STI

PSSMs retrieve 129 STIs from Swissprot, compared to 123 with

the designed PSSMs, 128 with the R55 sequences, 126 with R45

and 71 with R35. The random PSSMs give several false positives;

the designed PSSMs give none. The different PSSMs compare

similarly when the search is performed within the PDB database

(not shown). For the chemokines, the experimental PSSMs retrieve

177 sequences; the designed sequences, 155. With the most

‘‘native-like’’ designed sequences, we retrieve 164 of the 177

(93%). Finally, the R55 and R45 sequences retrieve more

sequences (168 out of 177), but give more false positives

(Table 4). There is a large jump in the R55 curve, between the

3rd and 4th backbone templates. This occurs because template 4

belongs to the CC subclass within the chemokine family, whereas

templates 1–6 belong to the second, CXC subclass. These

subclasses differ by the positioning of two cysteine residues; since

the cysteines are not randomized, the R55 sequence behavior is

Figure 2. Exponentiated entropy, exp Sð Þð Þð Þð Þð Þ, of natural sequences
(black line) and designed sequences (grey line). Results
computed using a reduced amino acid alphabet with nine classes
(see text). Residues are numbered by increasing experimental entropy.
Core positions and five Substrate Binding Positions (in the PDZ case;
SBPs) are highlighted.
doi:10.1371/journal.pone.0010410.g002
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different depending on the subclass of the native template. The

effect of the cysteines on the rate of retrieval with the designed

sequences is much smaller.

For the PDZ and caspase families, the retrieval rates are much

lower: 54% and 53% of the experimental hits are retrieved

(compared to 95% and 88% for the STIs and chemokines). If the

five SBPs are reset to their experimental amino acid types, the

PDZ rate improves to 60% (350 correct hits, vs. 587 with the

experimental PSSMs). The performance is greater than with the

R35 sequences, but somewhat less than with the R45 ones.

Overall, the PDZ and caspase results are somewhat poorer than

for the earlier SH2 and SH3 cases, while the STI and chemokine

results are far better. Evidently, the ability to retrieve homologues

depends on the fold, with the conserved cysteine pattern in the

STIs and chemokines probably playing a role. The chemokine

results would improve further if we considered more SCOP

templates (in addition to the 12 used here).

Restrained sequence optimization shows that amino acid
positions are correlated

The limited ability of the designed PDZ and caspase sequences

to retrieve homologues contrasts with the ability of the

SUPERFAMILY HMMs to recognize them as native-like. This

may indicate that too much sequence information is lost when

PSI-BLAST is used for homologue searching, since PSI-BLAST

replaces the designed sequences by a profile. In the profile,

correlations between amino acid positions are averaged out. A full

correlation analysis is beyond the scope of this article and will be

Figure 4. Individual components of the folding free energy DDG ,
on a per-residue basis. Results are for six protein templates (the six
bars that appear for each energy term). From left to right: 1CKA and
1CSK (SH3 domains); 1NRV and 1SHD (SH2 domains); 1QAU and 2FE5
(PDZ domains). Dark bars correspond to the 8,000 lowest-energy
designed sequences; light bars correspond to native sequences with
optimized rotamers. Mean values (kcal/mol) are given above or below
each set of columns. The designed and native sequences use opposite
sign conventions, for clarity (as if we plotted the negative designed
energies).
doi:10.1371/journal.pone.0010410.g004

Figure 3. Designed sequences detected as PDZ domains or chemokines by SUPERFAMILY, CDD, and PSI-BLAST. Each column
corresponds to one of the backbone templates. For each template, results are shown for the 8,000 lowest-energy sequences.
doi:10.1371/journal.pone.0010410.g003
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reported elsewhere. However, in this section and the next, we

provide evidence that such correlations are important in the

designed sequences. We first compare the designed sequences to

ones produced by a SUPERFAMILY HMM, or ‘‘HMM

sequences’’. The HMM generates random sequences that obey

the (position-dependent) amino acid probabilities in the experi-

mental sequences, but not the correlations between positions. We

next compare to sequences obtained through a restrained

optimization, where correlations can partially develop. Both the

HMM sequences and the restrained optimization lead to

structures that cannot pack in a stable manner, and have

unfavorable values of the folding free energy, DG. We considered

two PDZ domains, two SH2 domains, and two SH3 domains, as

in the stability analysis, above.

Results are summarized in Figure 7, and are similar for all six

proteins. The designed sequences, which are fully optimized in

both sequence and rotamer space, have large, negative folding free

energies. The HMM sequences, in contrast, have very unfavor-

able, positive folding free energies. The HMM sequences are

drawn from the experimental profile and subjected to rotamer

optimization but not sequence optimization. Their poor stability

suggests that when sequences do not respect the interactions and

correlations between amino acids, they are unable to pack in a

stable way.

In a second step, we allow the HMM sequences to partially

optimize. We define a reduced alphabet of nine amino acid groups,

or ‘‘flavors’’: {LVIMC}, {FY}, {W}, {G}, {A}, {STP}, {EDNQ},

{KR}, and {H} (see Methods). In the restrained optimization, each

amino acid is allowed to vary its type, but not its flavor; e.g., a Phe

can mutate into Tyr but not into Trp. The restrained optimization

improves the folding free energies considerably, so that the

optimized values are in between the HMM and designed values.

This indicates that correlated mutations have a large effect on the

stability. Importantly, unrestrained optimization of the HMM

sequences gives an energy spectrum that is indistinguishable from

the designed spectrum (not shown).

For completeness, we also analyzed the native sequences (with

optimized rotamers). We see that the designed sequences are

overstabilized, compared to the native sequences (Figure 7), as

already noted.

Analysis of the correlated mutations in a PDZ domain
To further characterize the correlations between amino acid

positions, we consider a single example, the PDZ domain 1QAU.

Figure 5. Mean identity score vs. the folding free energy DDG
(top) and its components (middle, bottom), for seven proteins.
Results are for the 8,000 lowest-energy designed sequences, which are
compared to their corresponding native template. The size of each
symbol indicates the number of sequences with the corresponding
energy (energies binned in 10 kcal/mol windows). Negative energies
indicate stable folding of the designed sequences.
doi:10.1371/journal.pone.0010410.g005

Table 4. Swissprot sequences retrieved using natural,
designed, and random PSSMs.

PSSMa SKIs Chemokines PDZ domains Caspases

Natural 129 (0) 177 (1) 587 (5) 75 (2)

Designed 123 (0) 155 (2) 318 (10) 40 (3)

Designedb 164 (0) 350 (12)

R55 128 (8) 168 (6) 377 (11) 62 (20)

R45 126 (3) 168 (6) 331 (38) 59 (25)

R35 71 (4) 107 (8) 94 (41) 33 (15)

Number of false positives in parantheses.
aThe sequences used to construct the PSSM are either natural sequences from
the NR01 database, low-energy designed sequences, or random sequences.

bThe designed sequences with the highest CDD scores (Chemokines) or with
five SBPs reset to their native types (PDZ domains).

doi:10.1371/journal.pone.0010410.t004
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For this protein, we have analyzed the correlated mutations that

occur within the set of 10,000 (not 8,000) low-energy designed

sequences. A correlation coefficient was defined in Methods,

which is effectively a mutual sequence entropy [78,81]. Consid-

ering all pairs of positions in 1QAU, we obtain a covariance

matrix, which is shown in Fig. 8A. By inspecting the matrix and

the protein 3D structure, we identified a small network of five

amino acids that are strongly correlated; Fig. 8B shows them in the

context of the 3D structure. The different amino acid sequences

that occur most frequently at these five positions, within the set of

designed sequences, are shown in Fig. 8C. In fact, the sequences

are described with the reduced alphabet of nine ‘flavors’ defined in

the previous section. Therefore, we speak of ‘sequence patterns’,

rather than sequences. The two most frequent sequence patterns

are HDWWW (16.4% of the 10,000 low-energy sequences, or

1640 sequences) and DLWWL (9.6% of the sequences).

If the observed correlations are realistic, we may expect that

similar sequence patterns should be present in the experimental

PDZ sequences. For example, subsets of the experimental

sequences would be distinctly more similar to one of the Fig. 8C

Figure 6. Homologues retrieved from Swissprot using natural,
designed, and random sequences. PDZ domains (top) and
chemokines (middle); cumulative number retrieved as more templates
are considered. Selected curves are labelled, for clarity. For the PDZ
domains (upper panel), the grey squares correspond to designed
sequences with five Substrate Binding Positions reset to their
experimental amino acid types. Bottom panel: retrieval rate vs. the
mean similarity scores of the sequences employed (with respect to the
Pfam sequences). Chemokine results correspond to the righthand axis.
doi:10.1371/journal.pone.0010410.g006

Figure 7. Histograms of the folding free energy, DDG . Results are
shown for designed, native and HMM sequences, for two SH3 domains
(1CKA, 1CSK), two SH2 domains (1SHD,1NRV), and two PDZ domains
(1QAU, 2FE5). Black: HMM; grey: designed; dashed grey: native; dashed
black: HMM sequences after restrained optimization (using 9 amino acid
groups). Each panel shows data for two proteins, with opposite vertical
axes.
doi:10.1371/journal.pone.0010410.g007
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patterns than to another. A detailed and comprehensive test of this

hypothesis will be difficult and is left for future work. However, a

preliminary test is reported here. The test consists in using the

different sequence patterns (Fig. 8C) individually to do homologue

searching. For a given pattern, say HDWWW, we first isolate the

subset of designed sequences that contain this pattern (1640

sequences). From these sequences, we randomly select 50

sequences and query NR01 with the corresponding profile. This

procedure is repeated ten times for the given subset and the

retrieved homologues (with an E-value threshold of 1) are

recorded. Fig. 8D summarizes the results obtained with the ten

most frequent sequence patterns. The procedure is also done using

the designed sequences that do not contain any of the ten patterns

(4420 sequences, forming an 11th subset). The number of

homologues retrieved using each pattern is shown, as well as the

total number, cumulated over all patterns. For comparison, we did

the same thing with the entire pool of 10,000 designed sequences,

instead of the subsets. To make the comparison ‘‘fair’’, we did 110

repetitions when all the sequences are pooled (compared to 10

repetitions for each of the 11 subsets). With the individual patterns

and subsets of sequences, we retrieve between 11 and 36

homologues, depending on the pattern, and 4–9 false positives.

When we cumulate over all subsets (including the 11th subset,

made of the sequences that do not obey any of the top ten

patterns), we obtain 50 homologues (and 22 false positives),

compared to 37 (and 10) when the entire pool of sequences is used

directly. If the procedure is repeated with an E-value threshold of

0.01, we obtain a total of 8 homologues using the sequence

patterns (plus one false positive), versus 6 using the entire pool of

sequences (plus one false positive). Thus, the sequence pattern

analysis allows us to identify several new homologues of 1QAU,

suggesting that additional information can be retrieved if the

correlations in the designed sequences are exploited. In the future,

we will apply this analysis more systematically.

Discussion

We have applied a design method to 43 proteins, belonging to

four SCOP families, extending and generalizing our previous

study of 46 SH2 and SH3 domains [42]. The four families present

different challenges. The proteins are larger than the SH3 and

SH2 domains. For the small SKI and caspase families, we

designed essentially the entire SCOP sets. For the larger PDZ and

chemokine families, we designed, respectively, 1/3 and 1/2 of the

Xray structures available in SCOP. Natural PDZ domains, in spite

of their structural similarity, have a low, average, mutual sequence

identity of just 24%. 16 distinct specificity classes were recently

reported for the PDZ domain family [84]. The classes are defined

by just a few amino acids, which are fine-tuned to interact with

specific protein partners. In some of our calculations, five of these

positions (SBPs) were reset to their native types. The SKIs and

chemokines, on the other hand, each contain a conserved network

of cysteines, which form a distinctive fingerprint.

Overall, the identity scores reported here are comparable to our

previous results for SH2 and SH3 domains [42,67,68] and to those

of other groups [35–39,47–50,52–65]. SUPERFAMILY, CDD

and FROST results agree with our previous study, where

detection rates for designed sequences were *80%. The PSI-

Blast detection rates found here are improved (over 80%),

especially compared to the designed SH3 sequences (around

Figure 8. Correlation analysis for the PDZ domain 1QAU. A) Covariance matrix; the amino acid sequence runs along the top and the side of
the plot, with secondary structure elements indicated as arrows (strands) or rectangles (helices). Bright points in the matrix correspond to higly-
correlated amino acid pairs. Red dots along the top and side label the network shown in B). B) 3D structure with secondary structure elements
labelled as in A). A correlated network of five amino acids is shown (yellow spheres, labelled with amino acid number; red dots in A). C) The most
frequent sequence patterns for the five amino acids, with their frequency within the 10,000 low energy sequences. D) Number of homologues
retrieved by BLAST searching using subsets of sequences that obey one of the frequent patterns (E-value threshold of 1). Homologues retrieved using
all the low energy sequences are shown by the rightmost bar (labelled ‘None’). Thick lines represent true homologues; thin lines show false positives.
doi:10.1371/journal.pone.0010410.g008
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50%). The sequence entropies are comparable to those of the

natural sequence ensembles, as long as we take into account the

full set of backbone templates. If designed sequences from a single

template are used, the entropies are too low. By using many

representatives of each SCOP family, we introduce backbone

variations that are lost at the level of each individual template

because of the fixed backbone approximation.

The performance of the designed sequences for homologue

detection was investigated by PSI-Blast searching in SwissProt.

Designed SKI PSSMs retrieved 95% of the experimental

homologues; designed chemokine PSSMs retrieved 88%; the best

designed chemokine sequences retrieved 93%. The mean identity

of the designed sequences to their respective templates is 40% for

the SKIs and 30% for the chemokines. For homologue retrieval,

the designed sequences behave like random sequences of *50%

sequence identity. This good performance is partly due to the

cysteine patterns, which serve as a fingerprint for both families. It

is distinctly better than our earlier result for the SH2 family [42],

which belongs to the same structural class (azb) as the

chemokines; this suggests that the effects of the structural class

are complex. The designed PDZ domains and caspases give

poorer PSSMs, with homologue retrieval rates of 53–54%. One

limitation of the designed sequences is that they do not include

explicit selection for function. On the contrary, by selecting for

stability, we discourage some functional mutations, since func-

tional positions are often thermodynamically destabilizing [85,86].

When just five substrate binding positions (SBPs) in the PDZ

domains are reset to their native types, the PDZ homologue

retrieval rate increases from 54% to 60%.

Another limitation concerns the PSI-BLAST detection method

itself, rather than the designed sequences. Like many fold

recognition tools, PSI-BLAST relies on profiles, thereby replacing

the ensemble of designed sequences by a single, mean sequence.

This averaging eliminates information on correlated mutations

within each protein structure. A full analysis of these correlations

and their effect on homologue retrieval is beyond the scope of this

article, and will be reported elsewhere. However, the folding

energy analysis reported here shows that 3D correlations have a

large effect on the designed sequences, as expected, and as shown

experimentally for designed WW domains [70]. In particular,

sequences that obey the experimental, position-dependent, amino

acid probabilities, but not the correlations (‘‘HMM sequences’’;

Fig. 7), have terrible folding free energies. Restrained optimiza-

tion, where the amino acid types can only change within small

groups (‘‘flavors’’) gives only a partial improvement, showing that

significant changes in the sidechain physical chemistry are needed

before the HMM sequences can pack. It remains to be seen

whether the correlations can provide a useful additional signal for

database searching. A detailed analysis of the correlation patterns,

illustrated above for 1QAU, could help extract more information

from the designed sequences and might lead to improved

homologue retrieval, but this remains to be tested.

Despite the limitations discussed, homologue retrieval for two

families is excellent, out of the six families studied so far. With

further improvements, and in combination with experimental

sequences, CPD could develop into a useful aid for homologue

retrieval and fold recognition.
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