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Purpose: Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution
imaging modality that allows measurements of cellular-level retinal changes in living
patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected
by pathology, patient motion, and optics, which can lead to variability in analyses of the
photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires
manual assessment of photoreceptor visibility across overlapping images, a laborious
and time-consuming task.

Methods: We propose an automated measure for quantification of photoreceptor
visibility in AOSLO. Our method detects salient edge features, which can represent
visible photoreceptor boundaries in each image. We evaluate our measure against two
human graders and two standard automated image quality assessment algorithms.

Results: We evaluate the accuracy of pairwise ordering (PO) and the correlation of
ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five
subjects with choroideremia. The proposed measure had high association with manual
assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is
comparable with intergrader reliability (PO= 0.76, OR= 0.75) and outperforms the top
standard approach (PO = 0.57; OR = 0.46).

Conclusions: Our edge-based measure can automatically assess photoreceptor visibil-
ity and order overlapping images within AOSLOmontages. This can significantly reduce
the manual labor required to generate high-quality AOSLO montages and enables
higher throughput for quantitative studies of photoreceptors.

Translational Relevance: Automated assessment of photoreceptor visibility allows us
to more rapidly quantify photoreceptor morphology in the living eye. This has applica-
tions to ophthalmic medicine by allowing detailed characterization of retinal degener-
ations, thus yielding potential biomarkers of treatment safety and efficacy.

Introduction

Adaptive optics scanning laser ophthalmoscopy
(AOSLO) is a cutting-edge, high-resolution in vivo
retinal imaging technique.1,2 By providing subcellular
scale resolution, AOSLO imaging can resolve individ-
ual photoreceptor cells and provide the ability to

monitor and detect cellular-level retinal changes in
living patients. Multimodal AOSLO imaging, such as
simultaneous non-confocal split-detection and confo-
cal imaging, has enabled imaging of the photorecep-
tor inner segment3 mosaic in addition to photoreceptor
waveguided reflectance. It has proven useful for under-
standing retinal disease phenotypes, especially in cases
where photoreceptor waveguiding is compromised. For
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Figure 1. Examples of four split-detection AOSLO images acquired in a subject with CHM at the same retinal location and imaging session,
with increasing photoreceptor visibility from left to right.

example, the photoreceptor inner segment mosaic has
been shown to remain intact throughout the central
island of retained retina in choroideremia (CHM), an
X-linked inherited retinal degeneration, even when the
outer segment waveguided reflectance in this disease
is abnormal.4–6 Similarly, AOSLO studies of achro-
matopsia have revealed remnant cone inner segments in
split-detection images despite almost complete absence
of the waveguided reflectance that mediates confo-
cal images.3,7 The capability to observe photoreceptor
morphology in the living eye enables significant appli-
cations to ophthalmic medicine by allowing detailed
characterization of retinal degenerations, which can
serve as potential biomarkers of treatment safety and
efficacy for experimental therapeutic interventions.8,9

A feature of AOSLO imaging is that its high-
resolution acquisitions result in small fields of view
(less than 400 × 400 μm of retina) for each individual
AOSLO image. Thus, to cover a sufficiently large region
of the retina for analysis, a series of AOSLO images
must be acquired across the retina, with adjacent
overlapping images, then montaged and analyzed
together. Although several methods can largely
automate the montaging process,10–12 some steps in the
post-montage analyses, such as the ordering of overlap-
ping images for display purposes and the selection of
high-quality regions of interest for quantitative analy-
sis of the photoreceptor mosaic at a given location,
still rely on time-consuming human intervention.

More specifically, one important processing step
that has yet to be automated for AOSLO image
analysis is to quantify differences in photoreceptor
visibility for overlapping images within a montage.
This currently requires a subjective evaluation of how
well one can observe the separation between distinct
photoreceptor cells in an image. Although this is not
often a problem for images from healthy subjects,
photoreceptor visibility may vary significantly across
images of the same retinal location when analyzing
AOSLO images from a patient population. The varia-
tion arises particularly because eye motion is often
larger in subjects with disease and also because the
adaptive optics correction may fluctuate both with
eye movements and with local phenotypes of disease,
such as loss of pigmentation in the retinal pigment

epithelium/choroid, thinning/thickening of the inner
retina, or thinning of the outer nuclear layer.13–15 As
an example, Figure 1 shows four images taken of the
same location within a single retina from a patient with
CHM, with photoreceptor visibility increasing from
left to right. We can see from this example that, despite
being the same location and imaging session, there
is considerable variability in photoreceptor visibility
among the images. Importantly, these images were each
collected with the intention of visualizing and quanti-
fying the photoreceptor mosaic, which demonstrates
the importance of assessing photoreceptor visibil-
ity in patient images. The reliability of downstream
analysis depends on determining the image with the
greatest photoreceptor visibility, as images with high
photoreceptor visibility will be easier to grade and
quantify, but poor photoreceptor visibility can lead
to less accurate and more highly variable mosaic
quantifications. Current standard practice is to assign a
human grader tomanually assess photoreceptor visibil-
ity across each region where there are overlapping
images within a montage and to bring the image with
the most visible photoreceptors to the top layer of the
montage for further analysis and display. This manual
ranking is a time-intensive operation that, for large
datasets, can take upward of 6 hours for a typical
montage. The significant time required for manual
assessment of photoreceptor visibility directly limits
analysis throughput and the size of AOSLO studies.

In this work, we aim to automate the process
of assessing the visibility of photoreceptor cells in
overlapping AOSLO images. To our knowledge, no
other method has yet been proposed specifically for
this purpose, although there have been general methods
developed for automatically assessing image quality,
which can describe the general level of noise, blurri-
ness, or artifacts in an image. These existing approaches
typically rely on finding salient features or estimat-
ing the signal-to-noise ratio in the image as a surro-
gate for the quality of the image.16–19 In our experi-
ence, however, these methods do not work well for
assessing photoreceptor visibility in AOSLO images,
because themajority of existingmethods for estimating
image quality were developed for the purpose of assess-
ing images of natural scenes. Their underlying statisti-
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cal models assume that the objects being imaged are
on significantly different scales than potential noise or
blurring in the image. In contrast, the photoreceptor
mosaics in split-detection AOSLO images are a repeti-
tive pattern of small circular objects, which are gener-
ally not congruent with such models.

Here, we propose an edge-based measure designed
specifically for automatically assessing photorecep-
tor visibility in AOSLO split-detection images. Our
method is motivated by the observation that highly
visible photoreceptors in AOSLO are defined by clear
boundaries between the cells. These boundaries then
present themselves as strong edges in the image that can
be found by an edge detection algorithm. We validate
our method using AOSLO images from CHM patients
and compare the automated results tomanual rankings
of photoreceptor visibility for the same images.

Methods

Edge-Based Assessment of Photoreceptor
Visibility

This work presents an automated approach for
assessing the visibility of photoreceptor cells in
AOSLO split-detection images. Our method uses
automated edge detection as an initial step for finding
salient edge features in the image that provide a proxy
for visible separation between photoreceptors. For each
image, we then convert the number of detected edge
features in the entire image into an assessment score
that can be used to quantify photoreceptor visibility in
each AOSLO split-detection image and thereby rank
overlapping images within a montage.

For the detection of edges, we use a Canny edge
detector,20 which finds locations in the image where
there are significant intensity gradients after apply-
ing a Gaussian smoothing filter. For our method, we
used the MATLAB 2020b (MathWorks, Natick, MA)
implementation of the Canny detector, which uses a
Gaussian kernel with standard deviation of sqrt(2)
pixels. This value roughly translates to a 3 × 3-pixel
patch, which we found to work well for removing noise
while preserving the edges of the cone photorecep-
tors in our images (which have an average radius of
around 6 pixels). The sensitivity of the Canny detec-
tor is controlled using an upper and a lower threshold
on the gradients to determine which pixels are consid-
ered a strong edge in the image (above the upper thresh-
old) and which are a weak edge in the image (between
the two thresholds), as well as what gradient values
are suppressed (below the lower threshold). The final
edges detected by the algorithm consist of all strong

edges and the subset of weak edges directly connected
to one ormore strong edge. Because the role of the edge
detection in our method is to identify all salient edge
features in the image, we set the lower threshold to zero
to prevent any features from being suppressed. The
upper threshold is then used, as described in the next
paragraphs, to derive our assessment score. To account
for images of different sizes, we calculate the total
number of edge pixels detected in the region divided
by the number of possible pixels total in the image to
get a percentage value, which effectively normalizes our
measure by image size.

We propose two approaches for converting the edges
detected in each AOLSO image into an assessment
score. The first is a static threshold (ST) approach. In
this approach, the upper Canny threshold (T) is set
to a constant value, and the percent of edge pixels
(P%) detected in the image is used as the assessment
score for the image. This idea is demonstrated in the
red outlined images in Figure 2, where for images with
higher photoreceptor visibility (low to high, viewing
left to right) we can detect a greater percentage of edge
pixels for the same threshold level.

One limitation of using a static threshold T is
that the expected percentage of edge pixels may vary
with retinal eccentricity. For example, images in the
periphery of the retina or in regions of pathology will
have more sparsely distributed photoreceptors, causing
fewer edges to be detected. Other locations, such as
images in the parafovea containing densely packed
photoreceptors, may yield a high percentage of edge
pixels to be detected. Thus, it may be difficult to set a
single static threshold for the whole dataset, because
setting the threshold too high will lead to a floor effect,
where no edges can be detected in the sparse retinal
regions. Likewise, setting the threshold too low will
lead to a ceiling effect, where the number of pixels
detected will be saturated in the dense retinal regions.
As a result, the assessment score may not provide
adequate differentiation for images at the low and high
ends of photoreceptor visibility. For this reason, we
propose a second approach for converting the edge
detection into an assessment score. In this alternate
approach, we use an adaptive threshold (AT), where
the Canny threshold is chosen such that the P% of the
image is filled with edge pixels. In this case, the assess-
ment score is the maximum threshold that maintains
P% edge pixels in the image. This idea is demonstrated
by the blue outlined images in Figure 2, where the same
percent of edge pixels can be found for different degrees
of photoreceptor visibility with different values of the
AT.

The two approaches each have a single static param-
eter that must be set prior to running the algorithm
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Figure 2. Different values for the Canny threshold parameter (T) affect the detection of edges in split-detection AOSLO images. (Top row)
Three split-detection AOSLO images of the same retinal location from Figure 1 with different levels of photoreceptor visibility. The percent
value at the bottom left of each image indicates the percent of edge pixels (P%) found in the image. The redoutlined boxdemonstrates the ST
approach, where for the same threshold T images with high photoreceptor visibility will have an increased percent of edge pixels detected.
The two blueoutlined boxesdemonstrate theAT approach, where imageswith high photoreceptor visibility can use amore stringent (higher)
threshold to find the same percent of edge pixels.

(T for ST and P% for AT). For ST, the goal is to set a T
value such that numerous edge pixels are detected when
there is high photoreceptor visibility and few edge
pixels are detected when there is low visibility. In our
analysis, we found that if Twas set too low, edges (likely
noise) were detected even when there was poor visibil-
ity. And, conversely, if the parameter was set too high,
edges were not found even if the photoreceptor visibil-
ity was great. We found that an effective compromise
for both high and low photoreceptor visibility images
was to tune the parameter such that the algorithm

detects about half of the edge pixels for an image with
average photoreceptor visibility. This gives the measure
room to swing higher or lower depending on howmuch
better or worse the photoreceptor visibility is in the
image. The same concept was applied to the AT and
setting the static P% parameter, where we tuned the
parameter such that it would produce a result at the
center of the output range when run on an image with
average visibility.

Prior to conducting our validation experiments,
the values for these parameters were determined
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empirically using a separate development imaging
dataset that has no subject overlapwith the images used
in the validation. The empirically determined parame-
ters were T = 0.17 when using a static threshold, and
P% = 5% when using an adaptive threshold. These
values were set in our pre-registration prior to running
our validation experiments and remained unchanged
post hoc.

Data

AOSLO datasets from five CHM subjects ages 14 to
38 years were included for validation of our method for
assessing photoreceptor visibility in AOSLO images.
All subjects gave informed consent prior to being
enrolled, the institutional review board at the Univer-
sity of Pennsylvania approved the study, and the study
followed the tenets of the Declaration of Helsinki.
Subjects were imaged using a custom-built multi-
modal AOSLO equipped with both confocal and split-
detection imaging modalities. This system has been
described previously.21 Briefly, wavefront sensing was
done using an 848 �26 nm superluminescent diode
(Superlum, Cork, Ireland), and aberration compensa-
tion was completed using a 97-actuator deformable
mirror. Confocal and non-confocal split-detection
reflectance imaging was obtained using a 795 �15.3
nm superluminescent diode imaging source. Three
photomultiplier tubes were arranged with one detec-
tor centered to collect the confocal reflectance, and
two detectors were arranged to collect the non-confocal
reflectance split between right and left halves, as first
reported by Scoles et al.3 Subjects were cyclopledged
using one drop each of tropicimide and phenylephrine,
and their viewing position in the apparatus was stabi-
lized using a bite bar. Subjects were instructed to
fixate on a target while AOSLO video sequences of
the fovea, parafovea, and meridians in the macula were
acquired at a rate of 18 Hz. A reference frame was
automatically selected from the image sequence using
a custom algorithm.22 Image sequences were desin-
uoided, aligned to the reference frame, and averaged
using a strip-based registration algorithm to account
for both intra- and inter-frame eye motion as previ-
ously described.23 Images then were de-distorted to
compensate for the estimated eye motion that occurred
within the reference frame.12,24 Finally, registered
images from adjacent retinal locations were automat-
ically montaged using a feature-matching algorithm.10

To compile a test dataset for validation of our
algorithm, we identified five to seven locations that
contained a minimum of four overlapping images from
the montages for each of the five CHM subjects. These
locations were selected such that, for each montage, at

minimum two locations were from the foveal region,
two locations were from the arms away from the fovea,
and the remaining locations were from anywhere in the
montage that met the minimum image overlap condi-
tion. Each location served as a different test, resulting
in 29 test locations across the five montages. The test
locations each had between four and 10 overlapping
images, with amean of 5.76 images for the 29 locations.

Manual Ground-Truth Comparisons

For each test location in the dataset, two human
graders performed comprehensive pairwise compar-
isons between all overlapping pairs of images at the
location, resulting in 469 comparisons in total across
all locations in the dataset. The pairwise comparisons
were generated using a custom software program that
presented each image pair side-by-side to the grader
and then recorded the grader’s evaluation for which
image in each pair had the better photoreceptor visibil-
ity. These pairwise comparisons served to provide
ground truth in our evaluation.

To determine a full human grader ranking of
photoreceptor visibility across all the images at each
test location, each grader’s pairwise comparisons
were converted into an ordinal ranking using the
Bradley–Terry model.25 The model takes a probabilis-
tic approach that uses the pairwise results as prior
information to perform a log-likelihood estimation of a
set of parameters representing relative scores for each
image. These estimated scores can then be ordered to
provide ground-truth ordinal rankings over the images
at each test location.

In addition to the proposed methods (ST and
AT), we evaluated for comparison two standard
automated image quality assessment measures. The
first method, known as the Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE),18 was devel-
oped using support vector regression to learn the
quality score from a database of images with known
image distortions, including compression artifacts,
blurring, and noise. The second method, known as the
Perception-Based Image Quality Evaluator (PIQE),19
is an approach based on detecting human visual
system–inspired features in the image and does not rely
on training images. For BRISQUE and PIQE, we used
MATLAB2020b implementations with default param-
eters.

Preregistration

Our evaluation experiments were preregistered at
https://osf.io/vmh6s/ prior to initiating the validation,
and completion of the experiments did not require

https://osf.io/vmh6s/
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any post hoc modifications to the pre-registered experi-
mental plan. (The nomenclature in the pre-registration
document referred to photoreceptor visibility as
“image quality,” which was a broad term that we have
since refined.)

Results

Pairwise Evaluation

We first evaluated the accuracy of each algorithm
for simple pairwise comparisons of photoreceptor
visibility between images with overlapping regions. For
each pair of images, the automated algorithms were
taskedwith decidingwhich image in the pair had higher
photoreceptor visibility. This was repeated for each
of the 469 pairs of images in the validation dataset.
Then, for each algorithm, we calculated the number of
pairs where the algorithm ordering agreed with each
grader. Table 1 shows the accuracy rate for each of the
automated algorithms and between the two graders.
We observed that the proposed Canny edge detec-
tion methods (both ST and AT) had higher agreement
accuracy than BRISQUE and PIQUE, with perfor-
mance that approached inter-grader accuracy.

Ranking Evaluation

Our second analysis aimed to represent a more
realistic scenario for application of the algorithm as it is

Table 1. Accuracy Rates Across 469 Pairwise Compar-
isons of Photoreceptor Visibility

Accuracy

Grader 1 vs. Grader 2 0.755
Grader 1 vs. proposed (ST) 0.665
Grader 1 vs. proposed (AT) 0.667
Grader 1 vs. BRISQUE 0.478
Grader 1 vs. PIQE 0.412
Grader 2 vs. proposed (ST) 0.680
Grader 2 vs. proposed (AT) 0.708
Grader 2 vs. BRISQUE 0.565
Grader 2 vs. PIQE 0.495

Two manual graders (Graders 1 and 2) served as the
ground-truthordering,whichwasused to evaluate the results
from the proposed algorithm using the ST and AT, as well as
two existing standard methods, BRISQUE18 and PIQE.19 The
best performing algorithm result relative to each grader is
highlighted in bold.

applied to AOSLOmontages. Instead of observing the
pairwise accuracy, we evaluated how each algorithm
performed a ranking of the overlapping images. For
each of the 29 test locations with overlapping images,
we used the algorithms to score every image at the
location and then ordered the images according to their
photoreceptor visibility score. For example, Figure 3
demonstrates the photoreceptor visibility order deter-
mined by the Bradley–Terry model25 from the pairwise

Figure 3. Example ranking of a retinal location with overlapping images with different photoreceptor visibility. The numbers above each
image show the Bradley–Terrymodel ranking from the pairwise comparisonsmade by Grader 1, with 1 representing the best photoreceptor
visibility and 9 representing theworst. The left corner of each image shows the percent edge pixel (P%) detected in the image (range, 0.76%–
13.3%), and the right corner of each image shows the adaptive threshold (T) estimated to find 5% of the edge pixels in the image (range,
0.11–0.22).
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Table 2. Example Rankings At a Retinal Location With Nine Overlapping Images of Different Photoreceptor
Visibility

Image No. Grader 1 Grader 2 Proposed (ST) Proposed (AT) BRISQUE PIQE

1 1st 2nd 1st 1st 3rd 2nd
2 2nd 1st 2nd 2nd 2nd 1st
3 3rd 3rd 3rd 3rd 7th 8th
4 4th 4th 5th 5th 1st 3rd
5 5th 5th 4th 4th 6th 7th
6 6th 6th 7th 7th 4th 5th
7 7th 7th 6th 6th 5th 4th
8 8th 8th 8th 9th 8th 6th
9 9th 9th 9th 8th 9th 9th

Shown are all rankings for each image in Figure 3. Rankings were determined by eachmanual grader (Graders 1 and 2), the
proposed algorithm using the ST and AT, and two existing standard methods, BRISQUE18 and PIQE.19 The numbers in each
row indicate the rankings assigned for each image by the graders or algorithms, where 1st indicates the image with the best
photoreceptor visibility and 9th indicates the worst photoreceptor visibility.

comparisons made by Grader 1. Table 2 shows the
ordering of the images for this same location for
each of the automated algorithms along with the
ordering from Grader 2’s pairwise comparisons. The
rankings at this location for Grader 2 and the Canny
edge detection algorithms (both ST and AT) corre-
lated strongly with Grader 1’s rankings, whereas the
rankings from the BRISQUE and PIQE algorithms
did not. We then evaluated the overall and mean
Spearman correlations at each test location for the
derived ordinal rankings of each automated algorithm
and each grader’s derived ordinal rankings. Table 3
shows the overall and mean correlation between the
automated and manual rankings. Both the ST and
AT variations of the proposed approach outperformed
the BRISQUE and PIQE algorithms and approached
the correlation observed between the manual graders’
orderings.

AOSLOMontage Ordering

One goal of this work is to present an assess-
ment measure that can be successfully applied to
AOSLO montages, such that the images with the best
photoreceptor visibility can be raised automatically
to the top of the montage for downstream photore-
ceptor analysis. In Figure 4, we show a qualitative
demonstration of applying the proposed measure for
this purpose. We first constructed a full montage of
an AOSLO dataset acquired from the retina of a
patient with CHM (age 29 years). The montaging was
performed using a previously presented, open-source
software algorithm (https://github.com/BrainardLab/
AOAutomontaging)10 we developed, which detects,
compares, and matches structural intensity patterns
(known as SIFT features) between images. We then
evaluated the proposed (AT) assessment measure on

Table 3. Spearman Correlations Between the Automated andManual Ordinal Rankings at 29 Test Locations With
Overlapping Images

Grader 1 vs. Grader 2 vs.

G1 vs. G2 Proposed (ST) Proposed (AT) BRISQUE PIQE Proposed (ST) Proposed (AT) BRISQUE PIQE

Overall 0.748 0.603 0.609 0.335 0.191 0.588 0.615 0.458 0.325
Mean 0.566 0.408 0.434 −0.217 −0.370 0.406 0.500 −0.009 −0.133

“Overall”is the total correlation of all rankings across all locations, and “mean”is the average across the separate correlations
at each of the 29 locations. Two manual graders (G1 vs. G2) provided ground-truth orderings generated by analysis of their
pairwise comparisons, which were used to evaluate the orderings from the proposed algorithm using the ST and AT, and two
existing standardmethods, BRISQUE18 and PIQE.19 The best performing algorithm result relative to each grader is highlighted
in bold.

https://github.com/BrainardLab/AOAutomontaging
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Figure4. (A) ExampleAOSLOsplit-detectionmontage fromCHMsubject 13048 (age29years),with imagesorderedautomatically usingour
proposed edge-based assessment measure (AT) and displayed with highest to lowest (topmontage) or lowest to highest (bottommontage)
photoreceptor visibility. (B) Zoomed in images at the corresponding locations indicated by the red and blue boxes in the two montages.
Yellow asterisksmark example locations where the photoreceptor mosaic is more readily visible in the top montage.

each image in the montage and ordered the images
according to their score. In Figure 4A, the topmontage
displays the AOSLO images ordered from highest to
lowest photoreceptor visibility according to the AT

score, and the bottom montage displays the images
order from lowest to highest visibility. Yellow aster-
isks denote example locations in the montage where
photoreceptor visibility is altered based on which



Automated Assessment of Photoreceptor Visibility TVST | May 2022 | Vol. 11 | No. 5 | Article 25 | 9

image is displayed in themontage.We can observe from
the zoomed in regions in Figure 4B that ordering the
images with the highest score on top yields a montage
with significantly better photoreceptor visibility.

Discussion

This work aims to develop an automatedmethod for
quantitatively assessing the visibility of photorecep-
tors in AOSLO split-detection images. This automatic
assessment allows us to reduce the amount of manual
intervention required to produce a high-quality
AOSLO montage before further downstream analysis
of the cone mosaic. Our experiments evaluated the
performance of the proposed method using both the
grader pairwise comparison data directly and rankings
derived from those comparisons. From these results,
we observed that the proposed method performed
photoreceptor visibility assessment approaching that
of human graders and significantly outperformed two
standard baseline image quality methods (BRISQUE
and PIQE) that were not designed specifically to assess
photoreceptor visibility. Good performance was found
using both the ST and AT variants of the proposed
method. We found, however, that the AT approach
provided slightly better performance than the ST
approach. This was likely due to the AT allowing for a
more robust window of analysis such that images with
very high or very low cone density did not approach
the floor or ceiling for possible edges detected in the
images.

Applications for AOSLOMontaging

The target application of our method is to automat-
ically order images within AOSLO montages such
that the AOSLO images with high cone visibility are
displayed on the top of the montage. Figure 4 shows
a qualitative example of how the proposed algorithm
can be used for automatically improving photoreceptor
visibility within amontage. By algorithmically ordering
the images within the montage, more regions with clear
images of cones are observed. This suggests that the
features found by the proposed method are congruent
with our interpretation of high photoreceptor visibility
for AOSLO split-detection images. A default ordering
without a photoreceptor visibility assessment, such as
a random ordering, or an ordering based on the timing
of image acquisition, would likely result in a montage
with photoreceptor visibility in between the best and
worst case examples shown in Figure 4. The advan-
tage of using automated assessments for image order-
ing comes in the form of reducing the time required

for manual input. From our experience, running on a
standard desktop computer (four-core Intel i7 with 16
GB ram), the proposed algorithm can operate on a full
AOSLO montage dataset in 30 to 60 seconds depend-
ing on the number of images in the dataset. This repre-
sents a considerable speedup in throughput relative to
manual processing which is on the order of hours. One
consideration, however, is that, although the algorithm
can in principle be operated automatically without
manual intervention, we can observe from our evalua-
tion results that the ordering is not perfect relative to a
human grader. In practice, the proposed algorithm can
achieve higher accuracy if used in a semi-automated
fashion, where the data are processed automatically in
an initial run through, and then manual adjustments
are made to optimize the final ordering. However, even
when used semi-automatically in this manner, based on
informal reports, our graders observed a reduction of
several hours of processing per montage dataset.

We also note that, in our montage demonstration,
we only provide a basic application of the proposed
measure for ordering the montage, in which entire
images are ordered and the highest ranked images
are brought to the top. More advanced techniques
can potentially be implemented where image overlap
information from the montage can be used to restrict
the regions where the measure is evaluated. This can
potentially allow more nuanced comparisons between
images and may provide better results for cases where
a single image has both high- and low-visibility regions.
However, implementation of such a technique is not
straightforward. For regions with more than two
overlapping images, there can be varying combinations
of intersections between the images that can poten-
tially contradict each other and create loops when used
for ordering (e.g., image A has better visibility than
parts of image B, and image B has better visibility
than parts of image C, but image C also has better
visibility than parts of image A). Alternatively, we can
attempt to divide the images into pieces according to
their overlapping regions and bring the best piece from
each image to the top of the montage. However, due
to the inevitable small differences in alignment, inher-
ent image distortions, and ancillary image differences
(e.g., intensity) in each image, such an approach might
produce an inordinately patchy-appearing montage
that may not be suitable for downstream photorecep-
tor quantification. Further investigation is necessary to
develop such applications for the proposed measure.

Limitations

One challenge with this work is that manual assess-
ment of photoreceptor visibility is a highly subjective
analysis. We see from Table 1 that, even between two
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trained graders, we only observed a 75% agreement
on which image in a pair had the best photoreceptor
visibility. This variance is a result of several factors.
First, in the AOSLO montages, two images are rarely
directly on top of each other. This means each image
will have non-overlapping regions that may have differ-
ent photoreceptor visibility characteristics than the
overlapping regions. Different graders might focus
on different regions of an image, resulting in differ-
ences during the evaluation. Second, some overlapping
images may have similar or equal photoreceptor
visibility, so that differences between them are below
the threshold at which a grader can make reliable
judgments. Agreement between graders is likely higher
for image pairs that differ considerably in photorecep-
tor visibility and approaches chance for those that do
not differ much. Figure 3 illustrates a case where the
overlapping images span a wide range of quality and
where grader agreement is high (97%). Conversely, in
the Supplementary Materials (Supplementary Fig. S1
and Supplementary Table S1) we show an example
location with low variability between images, where
the grader agreement fell to 57%. The images in our
evaluation set were chosen to represent a typical use
case and include both images that differ considerably
and those that do not differ much.

We have not explored the application of the
proposed measure for AOSLO confocal images.
Although the confocal modality can offer higher
resolution of photoreceptors in healthy subjects
(particularly for rod mosaics and foveal cones), there
are significant challenges associated with assessing
photoreceptor visibility in confocal images of patients
with disease. Foremost, the photoreceptor waveguid-
ing observed in confocal AOSLO images is variably
compromised in disease, with some disease states
yielding normally waveguiding photoreceptors, others
yielding dim or mottled cone reflectance profiles, and
still others resulting in non-waveguiding gaps in the
photoreceptor mosaic. We reasoned that an automated
algorithm for confocal AOSLO images may be more
dependent on disease state and thus require more
disease-specific tuning and evaluation or have more
limited applicability. Thus, we limited our evaluation to
split-detection images because in many disease states
photoreceptor inner segments appear with similarly
distinct edges in the split-detection images.

Although we only formally evaluated our algorithm
on eyes with choroideremia, our intention was to
develop a broadly applicable algorithm for assess-
ing photoreceptor visibility in disease, irrespective of
the specific diagnosis. For example, we have success-
fully used the algorithm to order images obtained
from subjects with achromatopsia and (with smaller
N) other inherited retinal degenerations. For these

cases, we qualitatively found photoreceptor visibility
in the ordered montage surpasses that of the default
montage with no ordering (data not shown). Regard-
less of the fact that different pathologies yield differ-
ent levels of photoreceptor visibility, we predict our
algorithm will identify which images within a dataset
contain the highest photoreceptor visibility. Thus, we
expect that our proposed Canny edge detection–based
photoreceptor visibility assessment measure can be
broadly applied to improve automated visualization of
photoreceptors within an AOSLO montage regardless
of disease state. The primary reason healthy control
data was not included in the analysis presented here
is that the photoreceptor mosaic in AOSLO images of
healthy eyes is almost always visible. This fact not only
negates the need for photoreceptor visibility assess-
ment when forming AOSLO montages of healthy eyes
but also means it would be difficult to establish a
reliable ground-truth ranking of images based upon
manual agreement.

Finally, we observe anecdotally that, because the
confocal and split-detection modalities are acquired
simultaneously, high-quality confocal images typically
go hand in hand with high-quality split-detection
images. Thus, we predict that a manual ordering
of confocal images based on photoreceptor visibil-
ity would correlate with an ordering of their corre-
sponding split-detection images. This would allow an
ordering of split-detection images by our algorithm to
be also used indirectly to order confocal images, as
well. Testing this hypothesis, however, is outside of the
scope of the present study and should be pursued in
future work. Other future applications of our assess-
ment measure could include using the score to filter
AOLSO images prior to being montaged, thus saving
on the computation time required to form the montage
itself. Alternatively, the scores could potentially help
determine when downstream analysis of an image may
be unreliable for further analysis.

Software

We provide our edge-based photoreceptor visibility
assessment software as an open-source repository. It is
available to download at https://github.com/PennVRC/
AOQualitySorter.

Conclusions

We present an approach for automatically assessing
the photoreceptor visibility of AOSLO split-detection
images using edge-based features. Our automated
assessment is comparable to manual rankings and

https://github.com/PennVRC/AOQualitySorter
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provides significant improvement over two standard
general image quality assessment measures. This
finding suggests that edge-based assessment of AOSLO
images can be used to automatically order images
within AOSLO montages for improved photoreceptor
visibility. This will result in a significant reduction of
manual labor required to finalize high-quality AOSLO
montages and will enable higher throughput for studies
requiring downstream analysis and quantification of
the photoreceptor mosaic.
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