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Abstract: Cross-eye gain in cross-eye jamming systems is highly dependent on amplitude ratio and
the phase difference between jammer antennas. It is well known that cross-eye jamming is most
effective for the amplitude ratio of unity and phase difference of 180 degrees. It is assumed that
the instabilities in the amplitude ratio and phase difference can be modeled as zero-mean Gaussian
random variables. In this paper, we not only quantitatively analyze the effect of amplitude ratio
instability and phase difference instability on performance degradation in terms of reduction in
cross-eye gain but also proceed with analytical performance analysis based on the first order and
second-order Taylor expansion.

Keywords: cross-eye; jamming; amplitude ratio; phase difference; Taylor expansion

1. Introduction

For monopulse tracking radars, the angular position of the target can be measured
with one pulse. A monopulse radar measures the angular position of a target using a beam
with four squint angles. The received signal is transmitted into four receiving antennas,
each of which is transmitted into a sum channel and a difference channel, and monopulse
radars can calculate azimuth and elevation information using the amplitude or phase of the
channels [1]. In this way, because monopulse computes angles using only one transmission
pulse, angle deception by the jammer system is difficult.

However, cross-eye jamming is one of the jamming techniques that can effectively
deceive the angle estimation of these monopulses. Cross-eye jamming is an electronic
attack (EA) technique that is used to induce an angular error in the radar being jammed
by recreating the worst case glint angular error [2–7]. Cross-eye jamming is an angular
deception technique that deceives monopulse radars as to the true position of their target
by re-creating the worst angular error [8–10]. Angular deception is most often required in
the final stages of an engagement where a platform is attempting to protect itself against
radar-guided missiles. Cross-eye jamming is a method where two onboard antennas are
used to modify the phase front in order to produce a false target near the real one. This
process is called phase front distortion. Cross-eye jamming offers a general technique for
countering monopulse radar tracking, but great efforts are required to produce a signal
that is strong enough to overpower the real echo [11,12].

A cross-eye jamming scheme can be operated by placing two jamming antennas that
generate jamming signals at a distance of L. A monopulse tracking radar also estimates the
measurement angle using a difference pattern and sum pattern for signals generated by
jamming antennas. This measured angle by the jamming antenna will cause it to deceive
the angle of the true target. The ratio for the sum pattern of the jamming signal consists
of the amplitude ratio and phase difference of the two signals, which can be used to
obtain cross-eye gain. Thus, cross-eye’s jamming performance depends on amplitude ratio
and phase difference.Cross-eye jamming is most effective with amplitude ratio of unity
and phase difference of π. Mechanical defects can result in zero mean random Gaussian
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variables in the amplitude and phase set by cross-eye. As a result, cross-eye performance
can be degraded, and the performance can be calculated according to the error.

In this paper, simulation MSD and analytic MSD are compared. Different standard
deviations are applied to the amplitude ratio and phase difference to calculate cross-eye
gain. This cross-eye gain can be approximated by using the first-order Taylor expansion and
second-order Taylor expansion. Simulation MSD of these cross-eye gains can be obtained
by the Monte Carlo simulation method. Analytic expressions of MSD are given by explicit
expressions in terms of the variances of a and φ.

Many previous studies focused on how the cross-eye gain can be maximized to make
the angle estimation error as large as possible. Our contribution in this manuscript does
not concern how a and φ can be controlled to maximize the cross-eye gain.

Our contribution in this paper lies in a reduction in computational cost in getting
the MSD of cross-eye gain by adopting an analytic approach, rather than the Monte
Carlo simulation-based MSD under measurement uncertainty due to additive Gaussian
noise. That is, the scheme described how analytic MSD can be obtained with much less
computational complexity than the Monte Carlo simulation-based MSD.

Note that the proposed scheme in this paper is not a new cross-eye jamming algorithm
with greater cross-eye gain than previous existing cross-eye jamming algorithms. The pro-
posed scheme is on how the MSD of previously existing cross-eye jamming algorithms can
be obtained analytically with much less computational complexity than the Monte Carlo
simulation-based MSD.

To quantify the improvement in the computational cost, computational complexity in
execution time is illustrated both for analytically derived MSD and for the Monte Carlo
simulation-based MSD. Note that the computational complexity is independent of the
standard deviation.

With regard to obtaining the Monte Carlo simulation-based MSD, the computational
complexity is nearly proportional to the number of repetitions, and the results for the
number of repetitions of 10, 100, 1000, 10,000 and 100,000 are shown. It is clearly shown
in Figure 1 that the computational complexity for analytically derived MSD is much less
than that for the Monte Carlo simulation-based MSD. Note that the execution time for
analytically derived MSD is independent of the number of repetitions, which is why
the execution time of the analytically derived MSD is flat with respect to the number
of repetitions.
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Figure 1. Execution time of MSD of cross-eye gain.
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2. Cross-Eye Jamming Technique

In this section, it is shown how cross-eye gain can be expressed in terms of a and
φ [1,8,13,14]. Note that the derivation in this section has been illustrated in many
references [1,8,13,14], and it is not our contribution. The novelty in this paper lies in
the derivations in Sections 3 and 4. Although the derivation in Section 2 can also be
found in [1,8,13,14], the derivations in Sections 3 and 4 can not be found in [1,8,13,14].

Figure 2 illustrates cross-eye’s scheme to place a jamming signal source that is L away
from the target, deceiving the angle and distance information of the target in the monopulse
radar. The indicated tracking angles θ1, θ2 of the monopulse radar for the jamming signal
produced by the two jamming antennas can be expressed as

∆1 = kmθ1Σ1
∆2 = kmθ2Σ2,

(1)

where km is the scale factor, and ∆ and Σ are signals received in the sum and difference
channels, respectively. The estimation angle of the monopulse algorithm can be written as

θi =
1

km

∆
Σ

=
∆1 + ∆2

Σ1 + Σ2
=

θ1Σ1 + θ2Σ2

Σ1 + Σ2
. (2)

The ratio of the two sum channels is given in the form of a complex number, such
as Σ2

Σ1
= aejφ. The amplitude and phase of the second jamming source relative to the first

jamming source are a and φ, respectively. From (1) and (2), the indicated angle is given by

θi =
θ1 + aejφθ2

1 + aejφ . (3)

Multiplying the right side of (3) by (1+ae−jφ)

(1+ae−jφ)
and applying the Euler formula, the

indicated angle can be written as

θi = θm − ∆θ

2
1 − 2ja sin φ − a2

1 + 2a cos φ + a2 . (4)

The real part of (4) is the tracking angle that appears on the monopulse tracking radar
due to jamming signals. This angle can be expressed as

Re(θi) = θm − ∆θ

2
1 − a2

1 + 2a cos φ + a2 , (5)

where θm is the angle from boresight to the point between the two scatterers, and ∆θ is
half the angular separation of two jammer antennas. The miss angle from the jammer is
given as

θmiss =
∆θ

2
1 − a2

1 + 2a cos φ + a2 . (6)

Using the miss distance, rmiss is given by

rmiss = R · tan
(

∆θ

2
1 − a2

1 + 2a cos φ + a2

)
(7)

where R is the distance between the center point for two jammer antennas and target.
Because a very small angle is applied to the tangent and L cos ψ

R is used instead of ∆θ, rmiss
can be approximated as

rmiss =
L cos ψ

2
1 − a2

1 + 2a cos φ + a2 , (8)
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where L is the distance between the two jammers, and ψ is the angle between the track axis
and the line that bisects the jammers vertically. The cross-eye gain in expression in θmiss
and rmiss is defined as

GC(a, φ) =
1 − a2

1 + a2 + 2a cos φ
. (9)

Using (6), (8) and (9) can be compactly written as

θmiss =
∆θ

2
GC (10)

rmiss =
L cos ψ

2
GC. (11)

The cross-eye gain in (9) achieves the maximum value for a = 1 and φ = 180◦, which
indicates that θmiss and rmiss also achieve the maximum for a = 1 and φ = 180◦.

Figure 2. Cross-eye technique.

3. Cross-Eye Gain by Approximation

As shown in (10) and (11), cross-eye jamming performance is highly dependent on
the amplitude ratio between two jamming antennas and phase difference between two
jamming antennas. Practically, the real amplitude ratio between two jamming antennas can
be different from the nominal amplitude ratio between two jamming antennas. Similarly,
the real phase difference between two jamming antennas can be different from the nominal
phase difference between two jamming antennas. It is assumed that the error generated at
this time follows a Gaussian distribution with an average of zero. If the amplitude ratio
and phase difference initially set by cross-eye are a0, φ0 and real amplitude ratio and phase
difference with errors are areal, φreal each cross-eye gain can be calculated by entering each
amplitude ratio and phase difference in (8).

GCnominal(a0, φ0) =
1 − a2

0
1 + a2

0 + 2a0 cos φ0
(12)

GCreal(areal, φreal) =
1 − a2

real
1 + a2

real + 2areal cos φreal
(13)

Let the mean square difference (under MSD) denote the expectation of the square of
the difference between the nominal gain and the real gain

MSD = E
[
(GCreal − GCnominal)

2
]
, (14)
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where GCnominal and GCreal are defined in (12) and (13), respectively. Note that MSD
quantifies the perturbation of the cross-eye gain due to the fact that areal and φreal are not
exactly equal to a0 and φ0, respectively. The approximate real cross-eye gain based on the
first-order Taylor expansion are given by (15)

GCreal(areal, φreal)
(approxi=1) = GCnominal(a0, φ0) +


∂GC(a,φ)

∂a

∣∣∣ a=a0
φ=φ0

(areal − a0)

+ ∂GC(a,φ)
∂φ

∣∣∣ a=a0
φ=φ0

(φreal − φ0)

. (15)

The coefficient of the first-order Taylor expansion can be expressed as

∂GC(a,φ)
∂a

∣∣∣ a=a0
φ=φ0

= αa =
−2(cos φ0a2

0+2a0+cos φ0)

(1+2 cos φ0a0+a2
0)

2

∂GC(a,φ)
∂φ

∣∣∣ a=a0
φ=φ0

= αφ =
−(2a0 sin φ0(a2

0−1))

(1+2 cos φ0a0+a2
0)

2 .
(16)

Using (16), the first-order Taylor series can be simplified to

GC(approxi=1)
real = GCnominal + αa(areal − a0) + αφ(φ − φ0). (17)

Similarly, based on the second-order Taylor series, the cross-eye gain for the real
amplitude ratio and real phase difference can be approximated as

GCreal(areal, φreal)
(approxi=2) = GCnominal(a0, φ0) +


∂GC(a,φ)

∂a

∣∣∣ a=a0
φ=φ0

(areal − a0)+

∂GC(a,φ)
∂φ

∣∣∣ a=a0
φ=φ0

(φreal − φ0)



+ 1
2



∂2GC(a,φ)
∂a2

∣∣∣ a=a0
φ=φ0

(areal − a0)
2

+2 ∂GC(a,φ)
∂a

∂GC(a,φ)
∂φ

∣∣∣ a=a0
φ=φ0

(areal − a0)(φreal − φ0)

+ ∂2GC(a,φ)
∂φ2

∣∣∣ a=a0
φ=φ0

(φreal − φ0)
2

.

(18)

The coefficient of the second-order Taylor expansion can be expressed as βa, and βaφ

and βφ are coefficients of the second-order Taylor expansion:

∂2GC(a,φ)
∂a2

∣∣∣ a=a0
φ=φ0

= βa =

(
8 cos φ2

0+12a0 cos φ0+12a2
0+4a3

0 cos φ0−4

(1+2 cos φ0a0+a2
0)

3

)
∂GC(a,φ)

∂a
∂GC(a,φ)

∂φ

∣∣∣ a=a0
φ=φ0

= βaφ =

(
(−2 sin φ0)(−a4

0+2 cos φ0a3
0+6a2

0+2 cos φ0a0−1)

(1+2 cos φ0a0+a2
0)

3

)
∂2GC(a,φ)

∂φ2

∣∣∣ a=a0
φ=φ0

= βφ =

(
−(2a0(a2

0−1)(4a0+cos φ0−2a0 cos φ2
0+a0 cos φ0))

(1+2 cos φ0a0+a2
0)

3

)
.

(19)

Using (19), the first-order Taylor series can be simplified to

GC(approxi=2)
real = GCnominal +

(
aa(areal − a0) + αφ(φreal − φ0)

)
+

[
βa(areal − a0)

2 + βaφ(areal − a0)(φreal − φ0)
+βφ(φreal − φ0)

2

]
. (20)

4. Analytic Expression MSD of the Cross-Eye Gain

In this paper, we propose a scheme to quantify how much reduction in cross-eye gain
occurs due to the perturbations in the amplitude ratio and the phase difference. The amount
of reduction in cross-eye gain can be obtained from the Monte Carlo simulation, which
can be computationally intensive, especially for a large number of repetitions in the Monte
Carlo simulation. Therefore, a computationally efficient approach to quantify the reduction
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in cross-eye gain is proposed. The difference between the real cross-eye gain and the
nominal cross-eye gain is written as

GCreal − GCnominal =
1 − a2

real
1 + a2

real + 2areal cos φreal
−

1 − a2
0

1 + a2
0 + 2a0 cos φ0

. (21)

In this section, we derive explicit expressions of the MSD. MSD through simulation is
as follows

E
[
(GCreal − GCnominal)

2
]
= E

( 1 − a2
real

1 + a2
real + 2areal cos φreal

−
1 − a2

0
1 + a2

0 + 2a0 cos φ0

)2
. (22)

The empirical MSD is given by

MSD =
1
N

N

∑
i=1

(
(GCreal(areal, φreal)i − GCnominal(a0, φ0))

2
)
= Simulation E

[
(GCreal(areal, φreal)i − GCnominal(a0, φ0))

2
]
, (23)

where the lower-script (i) denotes the real cross-eye gain associated with the i-th repetition
out of N repetitions. The first term of (17) and (20) is GCnominal in (12). Therefore, when we
calculate MSD for the first-order Taylor expansion and the second-order Taylor expansion,
(12) is subtracted and only the difference part is left. The MSD of first order expansion is
given as

E
[(

GC(approxi=1)
real − GCnominal

)2
]
= E

[(
αa(a − a0) + αφ(φ − φ0)

)2
]

(24)

Explicit expression of the MSD from the first-order Taylor expansion in terms of the
variances of a and φ is given in (A2) in the Appendix A. The MSD of the second-order
Taylor expansion is given as

E
[(

GC(approxi=2)
real − GCnominal

)2
]
= E

[( (
aa(a − a0) + αφ(φ − φ0)

)
+[

βa(a − a0)
2 + βaφ(a − a0)(φ − φ0) + βφ(φ − φ0)

2] )2
]

. (25)

(A3) in the Appendix A is an explicit expression of the MSD from the second-order
Taylor expansion in terms of the variances of a and φ.

5. Numerical Results of Cross-Eye Gain

This section shows the performance analysis of simulation MSD and analytic MSD.
For the simulation, to give various cases, several standard deviation values of areal and φreal
are set. The simulation is performed in a nested loop, fixing one value and changing the
other. It has various standard deviation values, and a performance analysis is performed
for perturbed amplitude and phase. The results based on the Monte Carlo simulation
is compared with those based on the analytical approach both for the first-order Taylor
expansion and the second-order Taylor expansion.

Figures 3–6 are MSD graphs for the standard deviation of each amplitude ration and phase
difference. The values of the standard deviation are determined as the result in Figures 3–6
where ‘Simulation MSD’, ‘Simulation MSD(approxi=1)’, ‘Simulation MSD(approxi=2)’,
‘Analytic MSD(approxi=1)’ and ‘Analytic MSD(approxi=2)’ are obtained from (23)–(25), (A2)
and (A3). Figures 3 and 4 are the resulting graphs when the standard deviation of φreal
is fixed and the standard deviation of areal is changed. Figures 5 and 6 are the resulting
graphs when the standard deviation of areal is fixed and the standard deviation of φreal is
changed. Simulations are proceeded using (23), and simulations of the first-order Taylor
approximations and the second-order Taylor approximations can be obtained by applying
(17) and (20) to (23), respectively.
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Figure 3. MSD of cross-eye gain, σφ fixed to 1.5◦ degrees.
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Figure 4. MSD of cross-eye gain, σφ fixed to 1.7◦ degrees.
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Figure 5. MSD of cross-eye gain, σa fixed to 0.0011.
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Figure 6. MSD of cross-eye gain, σa fixed to 0.0013.
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Because the first-order Taylor approximation is used to get Simulation MSD(approxi=1)

from ‘Simulation MSD’, ‘Simulation MSD’ is not equal to ‘Simulation MSD(approxi=1)’. Like-
wise, since the second-order Taylor approximation is used to get ‘Simulation MSD(approxi=2)’
from ‘Simulation MSD’, ‘Simulation MSD’ is not equal to ‘Simulation MSD(approxi=2)’.
‘Simulation MSD(approxi=1)’ and ‘Analytic MSD(approxi=1)’ show excellent agreements,
which validates (17). Similarly, ‘Simulation MSD(approxi=2)’ and ‘Analytic MSD(approxi=2)’
show excellent agreement, which validates (20). Analytic MSD can be obtained with much
less computational complexity than Monte Carlo simulation-based MSD. Not only that, it is
clear that the results with the superscript ‘approxi = 2’ are closer than the results with the
superscript ‘approxi = 1’ to the ‘Simulation MSD’. It means that the second-order Taylor
approximation is more accurate than the first-order Taylor approximation.

Figure 1 shows the execution time of Monte Carlo simulation-based MSD of cross-
eye gain and execution time of analytically derived MSD, respectively. In obtaining the
Monte Carlo simulation-based MSD, the execution time is proportional to the number of
repetitions. However, because analytically derived MSD is independent of the number
of repetitions, the execution time of the analytically derived MSD is flat regardless of the
number of repetitions. This can be seen clearly in Figure 1. It is clearly shown in Figure 1
that the computational complexity for analytically derived MSD is much less than that for
the Monte Carlo simulation-based MSD with the number of repetitions of 1,000,000.

6. Conclusions

The cross-eye jamming technique can deceive angle tracking of a monopulse radar
by transmitting jamming signals from two jamming antennas. Transmitting the jamming
signal’s amplitude and phase affects the jamming performance. This can be confirmed in
(6) and (8). However, due to mechanical defects, there is a difference between nominal
cross-eye gain and real cross-eye gain. As a result, the change of the cross-eye gain,
which is highly affected by amplitude ratio and phase difference, results in performance
degradation. Therefore, a study was conducted on calculating MSD to know the cross-eye
jamming performance in various different situations. Cross-eye jamming performance
can be predicted by using the first-order Taylor series and the second-order Taylor series.
The Monte Carlo simulation-based performance analysis is computationally intensive.
To obviate this problem, a computationally efficient analytic approach to quantify cross-
eye jamming performance has been proposed in this paper. As illustrated in Figure 1,
the computational burden of the analytic approach is much smaller than that of the Monte
Carlo simulation-based approach, especially for a large number of repetitions. Note that,
for the Monte Carlo simulation-based MSD to be reliable, the number of repetitions should
be large enough. Furthermore, it is also illustrated in the numerical results that the second-
order Taylor series-based approach results in an accuracy improvement in comparison with
the first-order Taylor series-based approach. The performance analysis proposed in this
paper can be adopted to quantitatively describe the amount of degradation in cross-eye
gain for the cross-eye jamming system due to some perturbations in the amplitude ratio
and phase difference.

The usefulness of the derived expression is that the MSDs of the cross-eye jamming
algorithm can be available from the derived expression without actually performing the
computationally intensive Monte Carlo simulation, which is illustrated in the numeri-
cal results. By using the derived expression, we can get a quantitative measure of the
difference between the nominal gain and the real gain without actually performing the
computationally intensive Monte Carlo simulation.

To quantify the computational reduction in obtaining the MSD analytically in compar-
ison with the Monte Carlo simulation-based MSD, the execution time with respect to the
number of repetitions in the Monte Carlo simulation is illustrated in Figure 1, where the
reduction in computational complexity associated with the analytically derived MSD in
comparison with the Monte Carlo simulation-based MSD is clearly shown.
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The proposed scheme can be used for the performance analysis in predicting how
much degradation in cross-eye gain occurs due to the difference between the nominal
values of a and φ and the real values of a and φ without resorting to a computationally
intensive Monte Carlo simulation. Making Monte Carlo simulations for different values of
the various parameters is very intensive computationally, and the analytic performance
analysis proposed in this paper can be employed to quantitatively predict how much
degradation in cross-eye gain results when the perturbations in a and φ are modeled as
Gaussian random variables.

We rigorously derive how the MSD of the cross-eye jamming algorithm can be ex-
pressed in terms of nominal values of a and φ, the real values of a and φ and the statistics
of the real values of a and φ in (A2) and (A3) for the first-order Taylor expansion and the
second-order Taylor expansion, respectively.

Although, for convenience, the real values of a and φ are assumed to be Gaussian
distributed, the derivation in the Appendices can be easily extended to the case where a
and φ can be modeled as any other random variable as long as the moments of the random
variable are analytically available.

Author Contributions: J.-A.K. made a Matlab simulation and wrote the initial draft. J.-H.L. and J.-
A.K. derived the mathematical formulation of the proposed scheme. In addition, J.-H.L. checked the
numerical results and corrected the manuscript. All authors have read and agreed to the published
version of the manuscript.
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Center at Gwangju Institute of Science and Technology (GIST), originally funded by the Defense
Acquisition Program Administration (DAPA) and Agency for Defense Development (ADD).
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Appendix A. The Explicit Expression of the MSDs Based on the Taylor
Second-Order Approximation

In this appendix, the MSD of the first-order and second-order Taylor approximation-
based cross-eye gain in equation is expanded to obtain the Analytic MSD. It is assumed
that the difference between the real amplitude ratio and nominal amplitude ratio are
Gaussian random variables. Likewise, it is assumed that the difference between the real
phase and nominal phase are Gaussian random variables. δa and δφ, which are differences
between real and nominal, are distributed normally with a mean of 0 and variance σa and
σφ, respectively.

δa ∼ N(0, σa)

δφ ∼ N(0, σφ)
(A1)

The explicit expressions of MSDs are expressed as (A2) and (A3).

E
[(

GC(approxi=1)
real − GCnominal

)2
]
= E

[(
αaδa + αφδφ

)2
]
= E

[
α2

aδ2
a + 2(αaδa)

(
αφδφ

)
+ α2

φδ2
φ

]
= α2

aE
(
δ2

a
)
+2αaαφE

(
δaδφ

)
+ α2

φE
(

δ2
φ

)
= α2

aσ2
a + α2

φσ2
φ

(A2)



Sensors 2021, 21, 5027 11 of 11

E
[(

GC(approxi=2)
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