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The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are
accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal
variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS)
data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly
index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis.
Our observations showed that theGRACE-TWSwasmore suitable for detecting prolonged and severe droughts in theHRB because
it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than
5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of
2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human
activities played an important role in the extent of drought hazards in the HRB.

1. Introduction

Driven by global change and population pressure, droughts
are one of themost serious natural hazards [1] that can lead to
crop losses and economic havoc in many areas. For example,
in China, the direct economic loss associated with droughts
in 2011 was up to 102.8 billion Yuan [2]. Various global
research projects, including ISCCP, IHDP-IRG, andCLIVAR,
have included drought research as an important part of
their research plans. For basin-scale drought monitoring and
evaluation, an understanding of the spatiotemporal variation
pattern of water deficit is needed.

A drought is regional by nature and it is characterized
by its total water deficit (including surface water, biological
water, soil water, and ground water or snow/ice). However,
quantifying total water deficit over large areas is a major
challenge in drought studies unfortunately; conventional
data resources are not sufficient in TWS evaluations for
monitoring drought occurrence, extent, and intensity on a
regional scale. First, in situ meteorological and hydrological

measurements are limited in both space and time, because
they are pointmeasurements that cover a small region around
the gauging station. Globally, or even at a basin scale, in situ
monitoring networks that include all TWS parameters are
incomplete [3], which leads to a shortage of sufficient and
precise data in vast regions. Furthermore, other parameters
(e.g., evapotranspiration) are measured indirectly, which
may reduce the accuracy of TWS estimation in drought
estimation. Second, hydrological and climate models based
on in situmeasurements are valuable for estimating the distri-
bution of changes in TWS, while the need for various inputs
of land surface parameters (e.g., land cover), which are always
difficult to observe and hasve increased the uncertainty of the
TWS simulation in drought estimation [4, 5]. In addition,
the modeling results for of the TWS were insufficient for
evaluating severe extreme droughts and climate events such
as droughts [6]. Lastly, conventional optical remote sensing
and altimetry based measurements, which have been proven
to be helpful for water balance studies at basin scales [7].
However, they are also problematic in drought evaluation.
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They are limited in detecting land-water changes several
centimeters below the surface of the earth, which are just
some of the components needed for TWS estimation. For
example, it is not valid for evaluating groundwater, which is
essential for drought monitoring [8, 9].

Due to the difficultly of measuring the integrated bulk
variables of TWS at basin scales, recent drought evaluations
have mainly relied upon subcomponents (e.g., precipita-
tion) or proxies (e.g., NDVI, CWSI) [10, 11], such as the
four drought categories of “meteorological,” “hydrological,”
“agricultural,” and “socioeconomic” [12]. However, drought
indicators rely upon these proxies and approximations are not
representative to quantify the integrated temporal variations
of water resources at basin scales. Considering that the hor-
izontal water cycle at the basin scale, surface flow, interflow,
and ground water flow from upstream basins may alleviate
droughts in downstream basins, drought severity will be
overestimated when based only on proxies for precipitation.
In the vertical view, the water cycle processes of infiltration
and evapotranspiration for surface water, soil water, and
groundwater also affect the proxies used for drought eval-
uation. For example, the soil moisture or vegetation index
proxies will ignore the initial drought due to the surface
water supply of deeper water resources. In addition, using
indices based on surface water (rain fall, flow rates) may
underestimate the severity of effects in the later stage of
droughts for the deep water recharge from surface water.
For regions with prolonged drought conditions, deep soil
water and ground water may be more suitable for evaluating
droughts [13]. Furthermore, droughts are becoming more
complicated due to anthropogenic impacts. For example,
irrigation for agriculture will increase precipitation through
evaporation and transpiration [14], which is in contrast to the
result of irrigation leading to reductions in regional water
resources [15]. It has also been shown that using proxies
for evaluating long time-series droughts is problematic.
Herewith, the only way to evaluate droughts at the basin scale
is through an integrated measure of TWS [3].

The gravity recovery and climate experiment (GRACE)
is the first dedicated satellite gravity mission that was jointly
launched by the National Aeronautics and Space Adminis-
tration (NASA) and the German Aerospace Center (DLR) in
March 2002 [16]. At the basin scale, GRACE provides a new
data source for measuring integrated water storage change
on time scales ranging from months to decades [17]. The
precision of the GRACE-retrieved TWS has been verified
in different basins around the world [18–21]. Several studies
have used GRACE satellite data to monitor TWS depletion
at large river basin scales during droughts [3, 6, 8, 9, 22–24].
Some of them have been used in actual drought monitoring
[8] (http://drought.unl.edu/MonitoringTools.aspx). Overall,
drought evaluations based on GRACE still need further
research. Furthermore, few studies have investigated the dis-
tinction between drought monitoring results using GRACE-
derived TWS and other proxies in the basins of China.

In the present study, we use three types of observational
data to characterize a multiyear drought in the HRB of China
(see Figure 1 for location): the GRACE-derived TWS, pre-
cipitation, and the vegetation index. Rather than considering
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Figure 1: Location of the Haihe River basin with its main subbasins.

the HRB as a whole, as has been done in most studies, we
analyzed the spatiotemporal variability patterns of droughts
detected by GRACE-derived TWS and the other two proxies
along the main river, from upstream to downstream, as well
as along its main tributaries. The results of this paper can be
used to investigate the consistency between GRACE-derived
TWS changes and droughts of China at the basin scale.

2. Study Area and Data

2.1. Location and Hydrology of the HRB. The HRB is the
fourth basin in China, which lies in North China from
34∘09N to 43∘11N and from 111∘21E to 120∘43E. The total
area of theHRB ismore than 318,000 km2, and approximately
40% of the area is plain, while 60% is mountainous. The
elevation of the basin, which ranges from higher than 2900m
to below 3m, decreases from the Yunzhong and Taiyue
mountains to the West to the littorals of the Bohai Seain
the East [25]. The HRB is dominated by a semimoist and
semiarid continental monsoon climate with cold, dry winters
and hot, humid summers. The spatiotemporal distribution
of precipitation within the basin is uneven, with a multiyear
average of 550mm/year, which is the lowest along the East
coast of China. Most of the precipitation is temporally
concentrated in July and August and spatially concentrated
along the coast and the windward side of the mountains [26].
On longer time scales, precipitation analysis has detected a
decreasing trend from 1961 to 2010 of −1.7%, which is the
largest among the ten major river basins in China [27]. Most
studies have projected significant reductions in precipitation,
evapotranspiration, and runoff together with increased air
temperature. As observed in Figure 1, the HRB consists of
four parts: the Luan subbasin, the north Haihe subbasin, the
south Haihe subbasin, and the Tuhai-Majia subbasin.
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The HRB consists of eight provinces, including Beijing,
Tianjin, most areas of Hebei, and some parts of Shandong,
Henan, Shanxi, Inner Mongolia, and Liaoning. It is the
political and economic center of China. The population of
the basin accounts for approximately 10% of China and just
3.3% of the geographical area of the nation. According to the
census register, the urban population of the basin ismore than
36-million, and the rate of urbanization has reached 28.9%.
Approximately 15% of the national GDP is concentrated in
the basin, which is above the national average. Agriculture is
the largest land-use type and accounts for over 90% of the
arable lands. The basin is one of the major grain producing
areas of China, as it accounts for 10% of the total agricultural
output. The basin produces some 30% of the wheat and 20%
of the corn in China [28–31]. To meet the demand for water
resources, massive amounts of water have to be diverted from
the Yangtze and Yellow Rivers to the basin. The combined
effects of climate change and human activities have caused the
HRB to continually suffer fromdroughts over the last 30 years
[32]. Several severe droughts occurred in HRB in the past
century, which significantly restricted its social and economic
development.

2.2. Data Acquisition

2.2.1. GRACE Data. GRACE gravity satellite program was
jointly developed by the National Aeronautics and Space
Administration (NASA) of the United States and the German
Aerospace Center (DLR) with the objective of providing
spatiotemporal variations of the Earth’s gravity field. The
U.S. Jet Propulsion Laboratory (JPL) is responsible for
the project management of the GRACE gravity satellite
program. Monthly gravity field solutions are computed at
the University of Texas at Austin Center for Space Research
(CSR), the German Research Centre for Geosciences
Potsdam (GFZ), JPL, Groupe de Recherche de Geodesie
Spatiale (GRGS), and the Delft Institute of Earth Observation
and Space Systems (DEOS) as well as Delft University of
Technology, among others. Originally, the GRACE results
were provided in the form of spherical harmonic coefficients
of geoid heights at monthly (or submonthly) intervals.
At time scales that ranged from months to decades,
temporal changes in Earth’s gravity field were detected
by GRACE and related to the surface mass redistribution
of continental water storage [18]. Gridded monthly data
from the land, which were expressed as equivalent water
height (EWH), were also released. Here we used the
most recent release (RL05) of GRACE products prepared
by the CSR GRACE science working team (available at
http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland/).
These aremonthly equivalent water height solutions provided
as 1∘ × 1∘ global grids from January 2003 through January
2013.There are 116 monthly equivalent water height solutions
for the land, with four months missing (June 2003, January
2011, June 2011, May 2012). This new data set replaced the
degree two order zero and degree one with parameters from
previous studies [33, 34]. A spherical harmonic filter cutoff
at degree 60 acted as a third filter on the data. The width
of the Gaussian filter that was used for product smoothing

was 200m, which was less critical than earlier solutions to
improve the destripping procedure [17]. The product of the
land also removed a postglacial rebound signal according to
the models of Paulson [35]. At our study area location in the
HRB, the impact of the postglacial rebound signal was small.
To restore much of the energy that removed by destripping
approach to the land grids, a grid of multiplicative scaling
coefficients was applied to the monthly land GRACE mass
grids. The scaling coefficients were derived independently of
the GRACE data by applying the same filtering techniques
to the modeled TWS data and then computing the signal
attenuation at each geographic location [19, 20, 36]. Using
the monthly GRACE-TWS data, the TWS anomaly index
(TWSI) from January 2003 to January 2013 in the HRB was
calculated by removing the means of annual TWS change:

TWSI = TWS
𝑖𝑌
− TWS

𝑖
,

(1)

where TWS
𝑖𝑌
was the TWS change of 𝑖month of𝑦 year, TWS

𝑖

was the average TWS change in the 𝑖 month in the normal
period, which was calculated from 10 years of data from 2003
to 2013.

2.2.2. Precipitation Data. In this study, a normal index
of meteorological droughts of the precipitation anomaly
index (PAI) was proposed, which is used to compare
with the TWS anomaly index (TWSI) in drought detec-
tion. The PAI is calculated from the version 2.0 monthly
precipitation data from the China meteorological data
sharing service system (CMDSSS) of the China meteo-
rological administration (CMA), which are available at
http://cdc.cma.gov.cn/home.do. These data consist of a
national gridded time series with a spatial resolution of
0.5

∘

× 0.5

∘ that covers the time span from 1961 to 2013.
The data were generated using a “climatological background
field interpolation” based on monthly precipitation from
2416 national meteorological stations and resampled DEM.
To be consistent with the GRACE estimates, the monthly
precipitation data were linearly interpolated to a 1∘ × 1∘ grid.
The PAI from January 2003 to January 2013 in the HRB was
calculated as follows:

PAI =
𝑃

𝑖
− 𝑃

𝑖

𝑃

𝑖

, (2)

where 𝑃
𝑖
denotes the precipitation of 𝑖month, 𝑃

𝑖
denotes the

average precipitation in the 𝑖 month in the normal period,
which is calculated using the 10 years of data from 2003 to
2013.

2.2.3. Vegetation Index Data. The vegetation index data used
in this paper were 1 km, 16 days composited MODIS EVI
(MOD13A12), which were downloaded from the NASA EOS
data Gateway (EDG) (http://modis.gsfc.nasa.gov/index.php).
To be consistent with monthly GRACE estimates, the 16 days
EVI product was recomposited using the maximum value
composite (MVC). The composited monthly EVI data were
then linearly interpolated to a 1∘ × 1∘ grid. Anomalies in the



4 The Scientific World Journal
4
2
∘
N

4
0
∘
N

3
8
∘
N

3
6
∘
N

4
2
∘
N

4
0
∘
N

3
8
∘
N

3
6
∘
N

112
∘E 114

∘E 116
∘E 118

∘E 120
∘E

112
∘E 114

∘E 116
∘E 118

∘E 120
∘E

3

21

98

654

7

15

131211

10

1614

Bohai Sea

Figure 2: Location of 1 × 1 pixels for drought evaluation using the
TWS from GRACE, the precipitation, and the vegetation index.

EVI for the study period were computed based on averages
from 2003 to 2013 [37].

AVI = EVI
𝑖
− EVI

𝑖
, (3)

where EVI
𝑖
was the EVI value of 𝑖 month and EVI

𝑖
was the

long term average the EVI of 𝑖month.

3. Results

3.1. Spatiotemporal Variability in TWS, Precipitation, and
EVI. The time-series total water storage (TWS) change from
GRACE, precipitation, and EVI from January 2003 to January
2013 was computed with a 1∘ × 1∘ grid resolution along the
rivers of the HRB (pixel locations are shown in Figure 2).
TWS change was expressed in GRACE equivalent water
height. Because the area of Tuhai Majia basin was small
compared to the resolution of the 1∘ × 1∘ grid, we simply
combined it with the South Haihe River basin.

3.1.1. Luanhe River (Pixels 1 to 3 in Figure 3). Pixels 1 to 3
in Figure 3 show the temporal evolution of TWS change,
precipitation, and EVI in the Luanhe River. In contrast to
the annual cycles of precipitation and EVI, the interannual
variability in theTWSevolved significantly from2003 to 2013.
Because it is dominated by a temperate monsoon climate,
the time-series profile of the EVI shows less interannual
variability with a strong seasonal signal peak in summer
when the vegetation was flourishing. This indicated that
simply using the EVI profile to monitor for droughts is
limiting. The time-series profiles for precipitation showed
seasonal trends that were similar to those observed for the
EVI, with high rainfall during the summer monsoon. For
droughtmonitoring, slight fluctuations in the peak amplitude

of the precipitation profile were more evident than with
the EVI. However, both profiles lacked significant water
deficits associated with droughts. The TWS changes time-
series profiles that were collected from GRACE showed
the most zigzag water resources diminishment with less of
an innerannual cycle, which indicated the extreme hazards
associated with droughts. The TWS pixel change from 1 to
3 showed that the water resources in the Luanhe River basin
continued to be reduced, with lower than 5 cmofwater height
increase. Moreover, the area suffered a prolonged period of
diminishingwater storage frommid-2007 tomid-2012, which
may imply that the frequent drought events in recent years
may be subject to an extreme, sustained drought for 5 years.
The minimum TWS decrease was reached by the end of 2011,
which indicated that there may have been a drought event
in the Luanhe river basin. A consecutive low value of TWS
change and a decrease from the end of 2009 to the middle of
2010 may have also brought about an extreme drought event.
Whereas, after a period of decreasingwater storage frommid-
2007, these regions showed a slight recovery trend, whichmay
indicate the ending of the five-year drought in the Luanhe
basin, in pixel 3, which is downstream of the Luanhe River,
the amplitude is relatively lower than the two pixels upstream.

3.1.2. North Haihe River (Pixels 4 to 7 in Figure 3). Thefigures
of pixels 4 to 7 in theNorthHaihe basin presented similar EVI
and precipitation temporal stability patterns to the Luanhe
basin. The upstream area of pixels 4 and 5 showed a slight
positive TWS anomaly from the beginning of 2003 to mid-
2005, where and when droughts were unlikely to occur.
Whereas, a period of continuous negative TWS anomaly was
observed from the end of 2005 to the beginning of 2013 with
a low trough between 2012 and 2013, temporal TWS changes
in pixels 6 and 7 fluctuated more significantly, with the
largest positive and negative TWS anomalies beingmore than
5 cm and 15 cm in water height. This indicated that the area
downstream had a higher risk for droughts. The figures show
that the TWS reductions of pixels 6 and 7 reached aminimum
by the end of 2011 and the beginning of 2012 but recovered
aftermid-2012.This indicated a slight drought event occurred
at the beginning of 2012. The time series corresponding to
pixel 7 showed large water decrease in the North Haihe river
from 2007, which was supposed to be affected by the TWS
decrease in the South Haihe river basin and leakage from the
ocean.

3.1.3. South Haihe River and Tuhai Majia River (Pixels 8 to
16 in Figure 3). For narrow shape of the Tuhai Majia Basin
by comparing to the resolution of GRACE TWS [2], we
combined the South Haihe basin with the Tuhai Majia basin
as one region (pixels 8 to 16 in Figure 3). The magnitude
of the TWS change of combined sub-basin is larger than
the other two sub-basins of Luanhe River and North Haihe
River, which indicated a higher potential for floods and
droughts in the combined sub-basin. From pixels 8 to 16
in Figure 3, we notice that the temporal variability of TWS
evolved significantly. A wet period between 2004 and 2005
was observed with large TWS increases (more than 20 cm
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Figure 3: Continued.
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Figure 3: Time-series of TWS, precipitation, and the EVI of selected pixels (the unit of TWS change is cm; the unit of precipitation is 2 cm).

EWH in Pixel 13). Whereas, there was no significant increase
in precipitation, the TWS increase may be attributed to water
transfer from irrigation [38]. After a period of water storage
increase, these regions experienced a prolonged decreasing
trend from the beginning of 2006 to the beginning of 2012
with nearly negative TWS changes during the whole period.
This indicated that these regions may have suffered from
an extreme sustained drought for more than 6 years. The
time series TWS change profiles clearly indicated several
significant TWS deficit peaks, such as mid-2007, mid-2009,
mid-2010, mid-2011 and the beginning of 2012. Integrated
analysis of time-series TWS change profiles of all 9 pixels
implied that extreme droughts may occur at the end of
2007, end of 2009, end of 2010, and in the middle of 2012.
The minimum at the beginning of 2012 and the relatively
low value of TWS change in all 10 profiles from mid-2011
indicated that there may have been an extreme drought
during the 6 years before the middle of 2012. The slight
TWS recovery, which was only detected in pixels 9, 10, 13
during the end of 2012, indicated that this 6 years drought
will be prolonged in this region. In pixels 10, 13, and 16, which
are located downstream, the magnitude of fluctuations were
more evident than that in the upstream pixels. Profiles of the
three pixels showed that the largest water storage decrease of
more than 20 cm EWH occurred at the beginning 2012 and
that the maximum amplitude of the other TWS decreasing
peaks all exceed 15 cm EWH. Due to the monsoon climate in
the study area, there ismore precipitation in the regions closer
to the sea (for example pixel 3). The abnormal reduction in
the TWS downstream, where associated with a small change
in precipitation, may have been attributed to human water

consumption or agriculture. It indicates that downstream
pixels are more likely to suffer from droughts.

3.2. Drought Analysis. Droughts are common in the HRB,
and several episodes of potential severe droughts were
detected using temporal variability analysis of the GRACE
TWS change (Figure 3). To evaluate drought events in the
HRB from 2003 to 2013, three indicators were taken into
account: the PAI, the AVI, and the annual cycle removed
TWS (TWSI). It can be instructive to compare GRACE
observations with these common droughts indicators [24,
39]. To compute the TWSI, monthly averaged GRACE TWS
change data for ten years were removed at each pixel. Using
the spatio-temporal variability analysis described above for
the TWS, the precipitation, and the EVI, we chose four
representative pixels (pixels 3, 7, 10, 13) from three regions for
drought analysis. Figure 4 shows the time series of the three
droughts indicators within the four pixels between 2006 and
2012 when droughts were likely to occur in the HRB.

In contrast to the annual cycle of EVI and precipitation
that are shown in Figure 3, temporal variability of the three
drought indicators all lack consistency (Figure 4). The cor-
relation coefficients between EVI and precipitation for the
four pixels (3, 7, 10, 13) were all more than 0.84 from 2003
to 2013, whereas they were 0.05, 0.07, 0.08, and 0.16 between
PAI and AVI, respectively. The low correlation coefficients
between PAI and AVI imply that these two drought indica-
tors predict different water resources deficit conditions that
accompany droughts. However, correlation analysis showed
that both TWS and TWSI present low correlation with EVI,
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Figure 4: Time-series of the TWSI, the PAI, and the AVI for selected pixels.

precipitation, and corresponding droughts indicators. The
maximum correlation coefficient was 0.34 in pixel 13 between
EVI and TWS, which indicated that TWS represented a
different drought scene from the two common indicators.
Figure 4 shows that the occurrence and release of drought
AVI lagged behind PAI for 1–3 months and droughts of
AVI were more severe than PAI. This is because of the
delay in recharge of surface and soil water from rainfall
and the vegetation growth. Both indicators mainly reflected
water depletion in surface water and shallow soil water.
For HRB, which included important urban agglomeration
areas (Beijing and Tianjin in North Haihe) and agricultural
regions (South Haihe and Tuhai Majia), water deficit was the
main limitation to maintaining healthy social development
[7, 40]. Over the long-term, persistent water shortage in
the HRB in recent years has used transferred water and
groundwater as the main water supplies. Overexploitation of
groundwater caused a depression in the groundwater cone,
which has exacerbated the risk for droughts in the HRB
[2]. PAI and AVI were both invalid for detecting droughts
related to decreases in HRB groundwater where there was a
prolonged drought region with strong impacts from human
activities. This was most obvious during the period from
the end of 2011 to the beginning of 2012 in Figure 4, when
the time-series for PAI and AVI had no extreme droughts
and a normal and gentle amplitude fluctuation. However,
TWSI showed that HRB experienced great water resource
decreases during this period, which may have caused an
extreme drought in 2006. Considering the annual cycle of
precipitation and vegetation growth and their relation to
shallow water, the TWS change mainly contributed to the
discharge of groundwater to surface water, which implied a
drought risk.

To analyze the spatial distribution of droughts in the
period between the end of 2011 and the beginning of 2012,
we accumulated GRACE TWS anomalies of 6 months from
October 2011 to March 2012 in the HRB (Figure 5). As shown
in Figure 5, the 6 months of accumulated TWS changes
present spatial variability clearly. Most area of the HRB,
except a small area of Tuhai-Majia River basin in the southern
part of the region, was dominated by drought risk. The
droughts in the northern subbasins of the Haihe River basin
were more severe with accumulated TWS decreases over an
area larger than 20 cm EWH. The drought risk difference
in the southern region can be explained by more than 32
× 108m3 of water being transferred annually to the Tuhai-
Majia subbasin for irrigation from the Yellow River, which
is the second river in China bordering with southern Haihe
River basin. Due to the impact of the monsoon climate,
there was a trend of higher droughts risk in the western
area when compared to the eastern regions near the ocean
(Figure 5). The upstream region of the HRB suffered more
severe droughts than the downstream region. However, the
spatial distribution trend of droughts risk from upstream to
downstream was contaminated by scattered urban location
pixels. In addition, the accumulated TWS change in pixels
around Beijing was lower than those in the upstream region.
This azonal distribution was also detected in the areas where
the cities of Tianjin, Shijiazhuang, Tangshan, and Datong are
located. Therefore, we propose that urban areas with higher
domestic and industrial water demand are more susceptible
to droughts.The analysis of the spatial distribution of drought
risk in the HRB within the selected period indicated that,
besides natural climate change, human activity played an
important role in drought risk.
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Figure 5: Spatial distribution of accumulated TWS anomalies
during the period fromOctober 2011 to March 2012 for drought risk
analysis.

4. Summary and Discussion

Drought is a recurring issue inmany parts of China, including
theHRB. In recent years, severe droughts have occurredmore
frequently over wider regions. GRACE derived vertically
integrated water storage (TWS) change, precipitation and
the vegetation index have been widely used in quantifying
the severity and characterizing droughts at the basin scale
in several studies [3, 11, 14]. In this study, we have analyzed
droughts by comparing the spatiotemporal evolution of the
TWS change, the precipitation, and the vegetation index as
well as three corresponding drought indices over the HRB for
the time period between January 2003 and January 2013.

The precipitation and EVI time series correlated well
with similar seasonal cycles. The slight fluctuations in the
peak amplitude of precipitation and EVI profiles limited
their direct application in drought monitoring. The TWS
change time series showed less of an interannual cycle, which
may be more useful to indicate TWS deficits accompanying
drought events. While both precipitation and EVI presented
the drought conditions of surface water, the TWS had a low
correlation to the EVI and precipitation. The GRACE-TWS
was more suitable for evaluating prolonged droughts in the
HRB region, whose water deficit was mainly dominated by
deep soil water and ground water anomalies.

Although the three drought indices of TWSI, PAI, and
AVI all detected the drought events in the HRB, the extent
and length of the droughts were different. Correlation anal-
ysis showed that the correlation coefficients for all three
indiceswere low,which indicated that they represent different
water deficit conditions in droughts. Droughts predicted

by the TWSI are more prolonged and more severe than
those predicted by the other two indices. In addition, the
occurrence and release of drought AVI indicated a longer
and more severe drought than with PAI. This can also be
attributed to the different parts of the integrated water bulks
that the three indices represent.

The combined analysis of the spatiotemporal variability
of the TWS and the TWSI showed that the overall drought
conditions in the HRB began around 2007. The North Haihe
River subbasin suffered the longest period of sustained water
diminishment for 7 years. An extreme water deficit occurred
in the South Haihe River subbasin with the largest EWH
decrease during a 6 year period of sustained water reduction.
Drought analysis also shows that extreme drought eventsmay
have occurred in four periods at the end of 2007, end of 2009,
end of 2010, and middle of 2012, which was consistent with
drought reports [2]. Furthermore, a slight water recovery
at the end of 2012 was detected in the Luanhe and North
Haihe subbasin, which may indicate an end to the prolonged
droughts.

In the period from the end of 2011 to the beginning of
2012, the drought in the HRB abated with a return to nearly
averagemonthly precipitation and EVI; however, the GRACE
TWSI data show that a substantial accumulated bulk water
deficit remains in the basin. Spatial analysis of TWSI drought
during this period showed that drought risk in the HRB was
impacted both by the natural climate and human activities.
Due to the dominating temperate monsoon climate, the
downstream regions near the ocean are less threatened by
droughts. However, droughts in urban areas will be more
severe due to their higher domestic and industrial water
consumption.The agricultural areas, such as the Tuhai-Majia
River basin, will suffer fewer extended droughts due to water
transfer for irrigation.
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