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Abstract
Purpose Accurate prostate cancer (PCa) detection is essential for planning focal external beam radiotherapy (EBRT).
While biparametric MRI (bpMRI) including T2-weighted (T2w) and diffusion-weighted images (DWI) is an accurate tool
to localize PCa, its value is less clear in the case of additional androgen deprivation therapy (ADT). The aim of this study
was to investigate the value of a textural feature (TF) approach on bpMRI analysis in prostate cancer patients with and
without neoadjuvant ADT with respect to future dose-painting applications.
Methods 28 PCa patients (54–80years) with (n= 14) and without (n= 14) ADT who underwent bpMRI with T2w and
DWI were analyzed retrospectively. Lesions, central gland (CG), and peripheral zone (PZ) were delineated by an expe-
rienced urogenital radiologist based on localized pre-therapeutic histopathology. Histogram parameters and 20 Haralick
TF were calculated. Regional differences (i. e., tumor vs. PZ, tumor vs. CG) were analyzed for all imaging parameters.
Receiver-operating characteristic (ROC) analysis was performed to measure diagnostic performance to distinguish PCa
from benign prostate tissue and to identify the features with best discriminative power in both patient groups.
Results The obtained sensitivities were equivalent or superior when utilizing the TF in the no-ADT group, while specificity
was higher for the histogram parameters. However, in the ADT group, TF outperformed the conventional histogram
parameters in both specificity and sensitivity. Rule-in and rule-out criteria for ADT patients could exclusively be defined
with the aid of TF.
Conclusions The TF approach has the potential for quantitative image-assisted boost volume delineation in PCa patients
even if they are undergoing neoadjuvant ADT.
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Einfluss der Androgendeprivation auf Diffusionskoeffizient und T2-gewichtete MRT zur Histogramm-
und Texturanalyse im Hinblick auf fokale Strahlentherapie beim Prostatakarzinom

Zusammenfassung
Zielsetzung Eine exakte Lokalisation des Prostatakarzinoms (PCa) ist für die Bestrahlungsplanung von externer Pho-
tonentherapie mit integriertem Boost essenziell. Während die biparametrische Magnetresonanztomographie (bpMRT) mit
T2-gewichteter (T2w) und Diffusionsbildgebung (DWI) als genaue Methode zur PCa-Lokalisierung gilt, ist deren Bedeu-
tung bei zusätzlicher Hormontherapie („androgen deprivation therapy“, ADT) unklar. Ziel der Studie ist die Evaluierung des
Nutzens eines texturanalysebasierten Ansatzes bei bpMRT von Prostatakarzinompatienten mit und ohne ADT im Hinblick
auf zukünftige Dose-Painting-Anwendungen.
Methoden Die bpMRT-Daten (T2w und DWI) von 28 Prostatakarzinompatienten (54–80 Jahre; 14 mit ADT) wurden
retrospektiv analysiert. Läsionen, zentrales Drüsengewebe (CG) und periphere Zone (PZ) wurden von einem erfahrenen
Radiologen unter Berücksichtigung der lokalisierten prätherapeutischen Histopathologie deliniert. Histogrammparameter
und 20 Haralick-TF wurden berechnet. Für alle Bildgebungsparameter wurden die regionalen Unterschiede (z. B. Läsion vs.
PZ, Läsion vs. CG) analysiert. Mit der ROC(„Receiver-operating characteristic“)-Analyse wurde die Leistung hinsichtlich
Differenzierbarkeit von PCa und gesundem Gewebe gemessen und Parameter mit der besten Unterscheidungskraft in
beiden Patientengruppen identifiziert.
Ergebnisse In der Gruppe ohne ADT waren die resultierenden Sensitivitäten äquivalent oder höher für die TF, wäh-
rend die Histogrammparameter eine höhere Spezifität aufwiesen. In der ADT-Gruppe übertraf die Genauigkeit der TF
jedoch die der herkömmlichen Histogrammparameter sowohl hinsichtlich Sensitivität als auch Spezifität. Einschluss- und
Ausschlusskriterien konnten für die ADT-Patienten nur mit Hilfe von TF definiert werden.
Schlussfolgerung Der TF-Ansatz hat das Potenzial zur quantitativen Definition des Boost-Volumens in PCa-Patienten,
unabhängig von einer neoadjuvanten ADT.

Schlüsselwörter Radiomics · Gewebecharakterisierung · Boost-Volumen · Quantitative Bildgebung · ADC

Introduction

Defining boost volumes for prostate cancer (PCa) patients is
a major step towards personalized radiation oncology with
the overall goal of increasing tumor control probability. Re-
cently, the FLAME trial [1, 2] focused on the evaluation of
5-year freedom from biochemical failure as well as toxic-
ity when applying a boosting method. Also, several other
studies investigated the feasibility of boosting the domi-
nant intraprostatic lesion with various methods in patients
with advanced prostate cancer, which indicated superior lo-
cal control [3–7]. The presented results suggest that the
implementation of this approach in intermediate and high-
risk prostate cancer patients improves tumor control while
keeping side effects at a reasonable level. Although some
groups based the delineation of the boost volume on PET
imaging [4, 5], multiparametric (mp) magnetic resonance
imaging (MRI) has become the preferred method for this
purpose [8, 9]. Recently, simplified biparametric (bp) pro-
tocols which do not require contrast medium injection have
been demonstrated to yield similar results to full protocols,
thus allowing shorter acquisition times and a broader access
to this imaging modality [10]. Moreover, for the external
beam radiotherapy (EBRT) planning in prostate cancer it
is recommended to base prostate gland delineation on MRI
[11, 12].

Numerous independent studies found that prescribing an-
drogen deprivation therapy (ADT) in addition to EBRT is
associated with improved survival for patients with inter-
mediate-risk and high-risk disease [13]. In today’s clini-
cal practice, the combination of ADT and radiotherapy is
considered as gold-standard treatment [14, 15]. This has,
however, a drawback with regard to imaging, since ADT
leads to an increase in tumor apparent diffusion coefficient
(ADC) and thus a decreased prostate cancer conspicuity
[16–19]. Data on the influence of ADT on tumor delineation
is sparse and it remains uncertain whether boost volumes
for upcoming focal irradiation techniques can be defined for
patients who had neoadjuvant ADT prior to radiotherapy by
the same methods as those that are currently employed for
patients without ADT.

With the rise of radiomics [20], many studies investi-
gated the use of textural features (TF) for prostate cancer pa-
tients (e.g., risk categorization on active surveillance [21],
predictive models of biochemical recurrence after therapy
[22, 23], combining histogram-based and textural parame-
ters for a better differentiation between tumor and healthy
tissue [24]). Furthermore, the use of computer-aided or
machine learning approaches is strongly increasing in the
context of tumor auto-delineation [25–27]. The value of
radiomics for prostate cancer detection and delineation in
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ADT patients has not yet been addressed by empirical re-
search.

The aim of this study was to investigate the additive
value of a TF approach compared to histogram-based pa-
rameters on bpMRI analysis by means of separating tumor
from healthy tissue for prostate cancer patients with or with-
out ADT.

Materials andmethods

Patient data and imaging

This retrospective and institutional review board-approved
study was performed on a subgroup of patients receiving
prostate radiotherapy at the Department of Radiotherapy,
Medical University of Vienna/Vienna General Hospital be-
tween 11/2013 and 01/2017. More specifically, out of in to-
tal 360 primary PCa RT patients, 28 patients who fulfilled
the following criteria were included: biopsy-proven primary
prostate cancer, (neo-)adjuvant ADT prescribed (approxi-
mately 50% of the PCa patients), and bpMRI before EBRT
(15% of the patients). Patients who did not receive ADT at
any timepoint at all were excluded to ensure patient group
homogeneity and to reduce clinical selection bias. Patients

Fig. 1 Flowchart of the data
inclusion process and the assign-
ment to patient subgroups. Grey
boxes symbolize patients who
were not further analyzed in our
study. The MR scanners used
for data acquisition (Siemens
Healthineers, Erlangen, Ger-
many; Philips Medical Systems,
Hamburg, Germany) are listed
in the charts attached to the
separate subgroups

who underwent re-irradiations or had any additional sec-
ondary indications were excluded too.

The median patient age was 73years (range 54–80years),
the median Gleason score was 7 (range 6–9), and the me-
dian PSA value before radiotherapy was 11 ng/ml (range
5–551 ng/ml). All patients received EBRT with a pre-
scription dose of at least 78Gy (2Gy single dose) or
a prescription dose of 73Gy (2.4 and 2.6Gy single dose).
Dependent on their risk staging, patients additionally re-
ceived a 45 (n= 3) or 50.4Gy (n= 23) dose to the adjacent
lymph nodes. 14 patients received ADT before MR imag-
ing (“ADT group”). The median time period between start
of ADT and bpMRI was 4 months (range 1–118 months).
Three patients received ADT a long time (10, 8, and 5 years,
respectively) before the clinical decision was made to start
radiotherapy. It has to be highlighted that all patients in
this group were still under ADT at the time of imaging.
The remaining 14 patients form the “no-ADT group” and
started ADT only after their bpMRI scan (Fig. 1).

The MRI protocol included a transversal T2-weighted
turbo spin-echo sequence (T2w) and diffusion-weighted
single-shot echo planar imaging sequence, and the derived
apparent diffusion coefficient map (ADC) that was auto-
matically calculated by the scanner software using a pix-
elwise monoexponential analysis of the diffusion-weighted
images. MRI scans were acquired at different 3T units, in-
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cluding a hybrid PET/MR scanner. Details on the imaging
protocols can be found in the supplementary table S1.

Image processing

ROI definition

The whole prostate gland, its peripheral zone (PZ), cen-
tral gland (CG), and focal lesion(s) were delineated on the
T2w images by an experienced radiologist (>10years’ ex-
perience in uroradiology). The ADC information was ad-
ditionally used for delineation support, which is current
practice in clinical routine. Delineation was performed us-
ing the MiradaRTx (Mirada Medical, Oxford, UK) system.
The reader was blinded to whether a patient started ADT
before the scan. Although ADT lowers tumor conspicu-
ity [17], in all patients, a primary lesion could be identi-
fied. For the PET/MR hybrid scanner cases (n= 8), PET
data could be consulted for tumor delineation as well (11C
Acetat, n= 2; PSMA, n= 1; Ga-DOTA-peptide, n= 5). Fur-
ther, the delineation was cross-validated with pre-thera-
peutic biopsy data. Biopsies were either template biop-
sies (24 specimens, n= 4), TRUS-guided systematic biop-
sies (8–10 specimens, n= 2; 12–14 specimens, n= 16), or
MRI-guided in-bore biopsies (2–4 specimens, n= 6). Six
patients showed multi-focal disease. Tumor volumes were
summed up and analyzed jointly for these cases. For the
analysis of PZ and CG, tumor volumes were subtracted.
Image pre-processing as described below was performed
utilizing the MICE Toolkit® (© 2018 NONPI Medical AB,
Umeå, Sweden). Histogram equalization was performed
with the MATLAB (Mathworks, Natick, Massachusetts)
function histeq through an integrated MATLAB node in
the MICE Toolkit®.

T2w pre-processing

All image data were corrected for the MR bias field via
N4 algorithm using the BSpline upsample interpolator
[28] (FWHM= 0.15, number of control points= 4, spline
order= 3, bins= 200, Wiener filter noise= 0.01, shrink fac-
tor= 2). A convergence threshold of 0.002 was found to
be most suitable for the present data. Images were cut
to a region of interest (ROI; defined by a box enclosing
the prostate plus a 1cm margin) for each patient in or-
der to ensure the equivalent anatomical regions for the
normalization step. The image histograms were truncated
to the 98% and 2% percentile (perc) and the grey values
were normalized to 0 to 350 (roughly corresponding to
the patient-averaged prostate maximum value). Histogram
parameters (mean, 95perc, 5perc, skewness, kurtosis) were
extracted from these data. For the TF analysis, histogram
equalization was additionally performed in advance.

ADC pre-processing

A rigid registration (Elastix, ITK implemented in MICE)
was performed between T2w and ADC image series to min-
imize errors due to distortion and/or internal organ move-
ment caused by gas pockets in the rectum. For this pur-
pose, the whole prostate gland plus 3cm margin was set as
the ROI. In difficult cases, the automatic registration step
was manually tweaked so that the delineated focal lesion
aligned well with the area of restricted diffusivity. For cases
with distortions, an additional manual adaptation of the PZ
was necessary. One ADC dataset had to be excluded due
to artifacts caused by a hip implant. To allow inter-patient
comparison, the grey values of the image data were trun-
cated to zero and the value of the urine signal; additionally,
they were normalized to 0– 2.5 � 10–3mm2/s (corresponding
to the patient-averaged bladder mean). High ADC regions
inside the CGwere excluded from the analysis by threshold-
ing for patients with cysts or a catheter. Finally, histogram
equalization was performed in advance to the TF analysis.

Analysis

The differences in clinical parameters of the two patient
groups were assessed. The histogram analysis of T2w and
ADC encompassed the patient-wise mean, 95perc, 5perc,
standard deviation (SD), skewness, and kurtosis of the le-
sion, the PZ and the CG. Twenty Haralick TF (Fig. 2) of
both modalities were calculated for the same regions as well
using the MICE Toolkit®. The respective grey-level co-oc-
currence matrix (GLCM) was calculated with 16 bins in
all four directions (horizontal, vertical, diagonal left, diag-
onal right). The grey-level invariant features [29, 30], i. e.,
TF that are free of the general dependence on the binning
number, were then derived from the averaged GLCM. Re-
gional differences (i. e., lesion vs. PZ, lesion vs. CG) were
analyzed for all imaging parameters.

Statistical analysis

Statistical analysis was performed in SPSS 24.0 (SPSS Inc.
IBM Analytics). Inter-patient group differences were as-
sessed with a Mann–Whitney U test for the focal lesion,
the PZ, and the CG. Regional differences were analyzed via
a Wilcoxon rank sum test. Bonferroni correction was ap-
plied to all tests to address the multiplicity problem. The re-
sulting alpha value was 0.0015 (one-sided). For feature se-
lection for the tissue classification of both subgroups, logis-
tic regression (backward: LR) was performed. Goodness of
fit statistics were calculated by the Hosmer–Lemeshow test.
ROC analysis was performed on the selected features. Ad-
ditionally, a decision-tree analysis (exhaustive chi-squared
automated interaction detection method, CHAID) with 10-
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Fig. 2 Regional comparison of
all parameters (textural features
and histogram parameters) with
different levels of p-value signif-
icance. ADC apparent diffusion
coefficient, T2w T2 weighted
magnetic resonance tomogra-
phy, ADT androgen deprivation
therapy, tu tumor, PZ peripheral
zone, CG central gland
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fold cross-validation was performed for the delineated re-
gions (i. e., lesion vs. PZ, lesion vs. CG) of both subgroups
to obtain rule-in and rule-out criteria. The applied parame-
ters are as follows: a minimum number of cases of 10 for
the parent node, 5 for the child node, and a Bonferroni-
corrected significance level for splitting nodes of 0.05.

Results

No significant differences were found between the ADT
and no-ADT patient groups for PSAinitial, ROI volumes, and
Gleason scores (GS). PSAnadir was on average 0.1ng/ml
higher for ADT patients (p= 0.019; supplementary ta-
ble S2). When comparing the two subgroups, neither the
histogram parameters nor the textural features differed sig-
nificantly pairwise for any of the delineated regions. Only
trends (p< 0.05) to lower values in the ADT group could
be observed for mean, SD, and 95perc of ADC of the CG
and T2w kurtosis of the focal lesion.

The T2wmean overall patient mean (first quartile; third
quartile) was 101 (80; 113), 153 (121; 183), and 120 (98;
136) in lesion, PZ, and CG, respectively. Overall ADCmean

patient mean values for these three regions were 1.01 (0.79;
1.14), 1.35 (1.26; 1.47), 1.24 (1.03; 1.34) [�10–3mm2/s].

Intra-group comparison of the imaging parameters of le-
sion, PZ, and CG resulted in significant differences between
healthy and tumor tissue (Fig. 2). In more detail, in the no-

Fig. 3 Side-by-side comparison of normalized T2w and ADC images
of representative patients of each subgroup. Both patients were scanned
on a Siemens mMR Biograph. Tumor conspicuity is empirically lower
for patient B in both modalities compared to patient A. ADC apparent
diffusion coefficient, T2w T2 weighted magnetic resonance tomogra-
phy, ADT androgen deprivation therapy

ADT group, three histogram-based features were signifi-
cantly different for lesion and PZ while for the ADT group
no significant differences were observed. On the other hand,
two and ten of the ADC TF showed significant differences
between lesion and PZ in both the no-ADT and the ADT
group, respectively. Similar findings were identified for the
T2w-derived TF, i. e., for both patient groups; seven TF
showed significant differences, albeit different ones. In the
no-ADT group, Correlation, Sum Average, SumVariance,
SumEntropy, Autocorrelation, and InformationMeasureOf-
Correlation1 and 2, while in the ADT group, Contrast,
InverseDifference, Energy, Entropy, Homogeneity, Differ-
enceEntropy, and DifferenceAverage (p< 0.0015; Fig. 2)
were statistically significant.

Representative patient datasets with and without ADT
are presented in Fig. 3. Patient A did not receive ADT at the
time of the MRI and patient B was 2 months under ADT be-
fore the MRI. Focal lesion borders are more washed-out in
patient B, indicating lower tumor conspicuity. ROC curves
of the two top-performing histogram parameters and TF
each are plotted in Fig. 4. For the no-ADT group, sensitiv-
ity in the PZ of T2w_95perc and TF was equivalent, while
specificity was lower for the TF (T2w_95perc: 0.93, TF:
0.66). Sensitivity in the CG increased from 0.75 to 0.93 by
taking textural features into account, while specificity was
superior in T2w_95perc compared to TF (0.93 cf. 0.60).
Overall sensitivity and specificity were lower in the ADT
group. However, in the ADT group, TF outperformed the
conventional histogram parameters in both specificity and
sensitivity for both CG and PZ. Decision-tree classifica-
tion diagrams are presented in the supplementary figure S1.
The corresponding rule-in/rule-out criteria for the present
patient groups derived from decision-tree classification are
listed in Table 1.

Discussion

In this study, the feasibility of prostate tissue classification
into healthy and tumor tissue has been explored based on
a new textural feature approach in patients with and without
ADT. TF differed between tumor and surrounding healthy
tissue. Beyond that, the results indicate a clear benefit of the
TF over the conventional histogram parameters, especially
in patients undergoing ADT. For definite conclusions, large
patient cohorts need to be analyzed, ideally in a multicenter
study. Validation of our findings by other research groups
would be another asset. Nevertheless, the presented results
may lay the foundations for development of auto-segmenta-
tion tools. In the field of focal therapy, assessing the impact
of ADT on imaging parameters is required, as the number
of ADT patients has increased significantly over the past
years, while no consequences were drawn for the imaging
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Fig. 4 ROC curves of the top performing parameters for classifying PZ and lesion: ADC_mean, T2w_95perc (histogram parameters);
ADC_Autocorrelation, ADC_Sum Average (TF). Sensitivity and specificity are lower in the ADT group compared to the no-ADT group.
TF outperform histogram parameters in the ADT group. ROC curves classifying CG and lesion have a similar appearance. ADC apparent diffusion
coefficient, T2w T2 weighted magnetic resonance tomography, ADT androgen deprivation therapy

protocols [31]. Only a few studies so far have addressed
the issue of MR imaging of ADT patients at all, and the
results were not unanimous. In our study, the observed dif-
ferences in imaging parameters between the patient groups
were subliminal and did not reach statistical significance.
However, ADC values for the healthy tissue of the CG
tended to be 15–20% lower in patients who received ADT
(p< 0.05), which is in accordance with [18, 19]. Regard-
ing the tissue classification power, in the ADT group, both
ADC and T2w TF were superior to the corresponding com-
mon histogram parameters. Another interesting observation
was that different T2w TF seemed to be of additive value
for the two different patient groups. Moreover, our results
show that TF are of additive value for the specificity and
sensitivity in the ADT group. However, generalization of
the presented data is difficult, since the analysis was per-
formed on pre-defined structures. The given criteria thresh-
olds of Table 1 are probably not applicable to a random
delineation, as would be necessary for an auto-segmenta-
tion approach. These could be on one hand of very small
volume and on the other hand may contain a mixture of
tumor and healthy tissue. Moreover, it is probably not pos-
sible to extrapolate the given criteria thresholds for other
patient groups, although normalization of the imaging data
was performed in a pre-processing step. Nevertheless, the
potential and value of TF in this context was pointed out,
which allows envisioning future clinical applications.

Groenendaal et al. aimed to answer the same research
question asked in the present study: “Is tumor delineation
possible in patients using hormonal treatment?” [17]. They
found that the majority of ADT patients can be treated with
a focal boost to a suspicious region inside the prostate, but
simultaneously suggest using different imaging thresholds
depending on the ADT duration. This is in line with the

findings of the present study, as delineation of the focal le-
sion was feasible for ADT patients. However, with respect
to the FLAME trial [1, 2] and based on the results above, it
can be hypothesized that boost volumes cannot be defined
for ADT patients by the same methods. The benefit of using
TF in addition was shown over simple ADC thresholding,
which alone will not suffice for automated segmentation
approaches for ADT patients. For ADT patients, sensitivity
and specificity are heavily reduced in comparison to the no-
ADT group when only considering histogram-based infor-
mation. Therefore, including Haralick TF is recommended
as these results are superior to the histogram parameters.

With regard to auto-segmentation, further pre-requisites
still need to be met. Haralick TF need to become quan-
titative and reproducible. Brynolfsson et al. investigated
the reproducibility and impact of pre-processing on Har-
alick TF and presented a method to overcome inherent
bias caused by selection of different numbers of grey levels
[29, 30]. This method was based on transforming the grey-
level co-occurrence matrix into a probability distribution.
Hereby, they diminished the discretization that causes this
bias. The main advantage of using invariant TF is therefore
their easy reproducibility and comparability. Furthermore,
for new methodologies of focal lesion detection, so-called
“local” TF need to be defined and implemented in order to
produce TF-maps. Previous developments and preliminary
results in this context are highly encouraging [32, 33]. The
sum of many such local TF maps could further be used
and processed into a tumor probability map by a sound
pre-trained algorithm, similar to the methodology of Prior
et al. for multiparametric imaging [34]. Our results indi-
cate that for patients without ADT, histogram parameters
like T2w_mean and ADC_mean will be of relevance in this
context, while for patients undergoing ADT, also TF like
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Table 1 Rule-in and rule-out criteria from decision tree classification. When two criteria are stated, it is meant as a combined criterion. For the
ADT group no rule-in criterion for PZ and no rule-out criterion for CG could be identified. The complementary two criteria are based on the TF
Autocorrelation

no-ADT ADT

PZ CG PZ CG

RULE-OUT
(100%
healthy)

T2w_mean >133 T2w_95perc >204 ADC_Invariant
Autocorrelation

>0.645 –

OR OR

T2w_mean
& ADC_mean

<133
>1.17

T2w_95perc
& ADC_5perc

<204
>0.84

RULE-IN
(100%
tumor)

T2w_mean
&ADC_mean

<133
<1.17

T2w_95perc
&ADC_5perc

<204
<0.84

– ADC_Invariant
Autocorrelation

<0.333

ADC apparent diffusion coefficient, T2w T2 weighted magnetic resonance tomography, ADT androgen deprivation therapy, PZ peripheral zone,
CG central gland

ADC_InvariantAutocorrelation will play an important role.
Combination with the powerful machine learning and neu-
ral network approaches would be an obvious step to take.
Validation and implementation in clinical processes is chal-
lenging and will require multi-institutional approaches.

Some limitations of the presented study have to be high-
lighted. First, the study design was retrospective, which
might have led to selection bias. This was addressed by ap-
plying the inclusion criterion of ADT at some timepoint
during the treatment course, which led to a clinical as
well as a population size homogenization of the two pa-
tient groups. Another limitation is that two different patient
groups were compared, meaning it is not possible to model
the effect of ADT on the individual patient. Ideally, a study
concept would include prospective design, one MRI before,
and one MRI after a defined ADT treatment duration [16].
Next, the study population was relatively small. A larger fu-
ture prospective study will test the clinical applicability of
the presented ADC and T2w-derived TF approach in defin-
ing boost volumes for prostate cancer patients with neoad-
juvant ADT. Due to the small sample size, no prospec-
tive validation in independent patients could be performed.
However, 10-fold cross-validation was applied for the clas-
sification process which is considered appropriate by most
authors and was used by other groups before, e.g., [35]. The
process of lesion delineation has a major influence on the
analysis and should be handled with great care. In our study,
the prostate radiology expert amended approximately 25%
of the contours based on biopsy cross-validation. Therefore,
the added value of biopsy information should be highlighted
and could be included in the delineation process in daily
clinical routine for patients with ADT. However, the exact
shape of the lesion could not be verified, despite biopsy
cross-validation. This would require a prostatectomy after
the bpMRI scans and a perfect in-vivo and ex-vivo registra-
tion [36–39]. Naturally, such a study design for large patient
cohorts is challenging. Nevertheless, slight differences be-
tween the delineated lesion and “real” lesion affect only

a part of our results. Applying a margin could attenuate
this issue. It is possible that very small secondary lesions
were not detected at all. But as their volume is small, their
influence on the analysis will be limited. A boost to these
regions may be less relevant, as the main tumor burden is
given by the primary lesion. Some other factors of influence
might include different DWI parameters and different type,
dose, or duration of ADT [17, 40].

Conclusion

TF of bpMRI showed superior performance in differenti-
ating healthy from tumor tissue compared to conventional
histogram parameters in patients treated with ADT. These
promising results motivate further research involving larger
patient numbers for future applications in radiotherapeutic
boost volume delineation for prostate cancer patients.
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