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Abstract

Motivation: An essential step in the development of virtual screening methods is the use of established sets of
actives and decoys for benchmarking and training. However, the decoy molecules in commonly used sets are biased
meaning that methods often exploit these biases to separate actives and decoys, and do not necessarily learn to
perform molecular recognition. This fundamental issue prevents generalization and hinders virtual screening
method development.

Results: We have developed a deep learning method (DeepCoy) that generates decoys to a user’s preferred
specification in order to remove such biases or construct sets with a defined bias. We validated DeepCoy using two
established benchmarks, DUD-E and DEKOIS 2.0. For all 102 DUD-E targets and 80 of the 81 DEKOIS 2.0 targets,
our generated decoy molecules more closely matched the active molecules’ physicochemical properties while
introducing no discernible additional risk of false negatives. The DeepCoy decoys improved the Deviation from Optimal
Embedding (DOE) score by an average of 81% and 66%, respectively, decreasing from 0.166 to 0.032 for DUD-E and
from 0.109 to 0.038 for DEKOIS 2.0. Further, the generated decoys are harder to distinguish than the original decoy mol-
ecules via docking with Autodock Vina, with virtual screening performance falling from an AUC ROC of 0.70 to 0.63.

Availability and implementation: The code is available at https://github.com/oxpig/DeepCoy. Generated molecules
can be downloaded from http://opig.stats.ox.ac.uk/resources.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Virtual screening is a computational approach that is often used in
early stage drug discovery to help find molecules that interact with
protein targets with high affinity and specificity. Numerous prospect-
ive applications of virtual screening have been reported, reducing the
cost and improving the hit-rate of experimental verification (e.g. Liu
et al., 2019; Lyu et al., 2019).

There are a variety of datasets available for retrospectively
benchmarking virtual screening methods. These sets consist of a
collection of active and inactive molecules for a range of protein
targets. Frequently used examples for structure-based virtual
screening (SBVS) are DUD (Huang et al., 2006) and DUD-E
(Mysinger et al., 2012), DEKOIS (Bauer et al., 2013; Vogel et al.,
2011) and MUV (Rohrer and Baumann, 2009).

While experimentally verified inactives represent the gold stand-
ard for dataset construction (Lagarde et al., 2015), suitable inactive
molecules are often not available. As such, using presumed inactives,
known as decoys, is typically necessary in SBVS datasets (Réau

et al., 2018). There are efforts to construct sets using only known
inactives (e.g. Rohrer and Baumann, 2009; Tran-Nguyen et al.,
2020); however, these are relatively limited in size and breadth of
protein targets and are not yet suitable for training general-purpose
SBVS models using modern machine learning methods.

Bias in virtual screening datasets can be split into three main types:
artificial enrichment, analogue bias and false negative bias (Réau
et al., 2018). Artificial enrichment captures the performance that can
be attributed to the differences in chemical space between the active
and decoy molecules. Analogue bias arises from limited diversity of
the active molecules, while false negative bias describes the risk of
active compounds being present in the decoy set, which could lead to
an underestimation of the screening performance. It is crucial that
benchmarking sets minimize these bias (e.g. Sieg et al., 2019).

To achieve this, decoys are typically selected to match the chem-
ical properties of active molecules while simultaneously ensuring
structure mismatching to minimize the chance of decoys being bind-
ers (‘property-matched decoys’, e.g. Adeshina et al., 2020; Mysinger
et al., 2012).
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Alternative approaches for decoy construction have also been
proposed. For example, one criticism of property-matched decoys is
that they inherently struggle to capture the chemical diversity
present in screening libraries (Li et al., 2020), and thus several
reports have used property-unmatched decoys selected at random
from a representative dataset (e.g. Sun et al., 2016). In other publi-
cations, actives from other targets have been adopted to produce an
‘actives as decoys’ set (e.g. Chen et al., 2019).

However, SBVS methods should be able to discriminate between
actives and inactives on the basis of structural information alone
and not depend on exploiting differences in physicochemical proper-
ties between actives and inactives. Thus it is critical to ensure the
physicochemical properties of decoys in benchmarking sets match
those of the actives otherwise it is not possible to conclude whether
predictive performance is due to understanding protein-ligand inter-
actions or a result of the bias present in the benchmarking set
(Nicholls, 2008; Verdonk et al., 2004).

Property matching arbitrary actives is challenging and, despite
improvements, still leads to substantial differences in molecular
properties between actives and decoys (Chaput et al., 2016). It has
been shown that on several widely used datasets it is possible to
discriminate actives from inactives from these properties alone
(Sieg et al., 2019; Wallach and Heifets, 2018). Hence closer match-
ing is required to ensure retrospective testing is not over-optimistic
(e.g. Verdonk et al., 2004).

In recent years, many machine learning methods have been
trained and evaluated on these datasets (e.g. Imrie et al., 2018;
Wójcikowski et al., 2017). The reported results show that these
methods substantially outperform other methodologies such as
empirical and knowledge-based scoring functions at SBVS.

Concerningly, some reports have suggested that a driver of the
retrospective performance of machine learning-based systems is hid-
den biases in the training data, such as physicochemical differences,
and have questioned the extent to which such methods are learning
to perform molecular recognition (Chen et al., 2019; Sieg et al.,
2019). While prospective successes have demonstrated that such
methods can be useful (e.g. Adeshina et al., 2020; Stecula et al.,
2020), both Sieg et al. (2019) and Chen et al. (2019) emphasize the
need for improved validation on unbiased datasets.

The challenges of decoy design are in part due to the inherent
limitations of matching to an explicit, fixed database of potential
decoys. While virtual libraries such as ZINC (Sterling and Irwin,
2015) have grown considerably, they still represent only a tiny frac-
tion of potential drug-like chemical space (Polishchuk et al., 2013)
and are insufficient for closely matching core chemical properties of
many active molecules.

Wallach and Lilien (2011) pioneered the use of a generative ap-
proach to construct virtual decoy sets for the original DUD (Huang
et al., 2006) targets with tighter property matching than the decoys
selected from ZINC. They used a rules-based algorithm employing
a library of chemical building blocks and bridges to iteratively
generate possible decoys. However, their method ignored synthetic
feasibility and, despite clear improvements in property matching,
has not been widely adopted.

Machine learning models for molecule generation have been
proposed as an alternative to human-led design and rules-based
transformations and have shown great promise in several molecular
design tasks (e.g. Segler et al., 2018; Zhavoronkov et al., 2019).

In this work, we describe DeepCoy, a deep learning method using
graph neural networks, to generate decoy molecules. DeepCoy takes
as input an active molecule and generates property-matched decoy
molecules. This eliminates the need to use a database to search for
molecules and allows decoys to be generated for the requirements of a
particular active molecule and the user’s specification.

The properties can be chosen by the user depending on their
objective, and in this article, we demonstrate the ability of DeepCoy
to learn to produce decoy molecules with different sets of matched
properties, highlighting the flexibility of our approach. We validated
our generative model using two established SBVS benchmarks,
DUD-E and DEKOIS 2.0. For all 102 DUD-E targets and 80 of the
81 DEKOIS 2.0 targets, our generated decoy molecules more closely

matched the physicochemical properties deemed by the respective
datasets to be non-informative for binding, improving property
matching as measured by DOE score by 81% and 66% for DUD-E
and DEKOIS 2.0, respectively.

Finally, we demonstrate that the generated decoys are harder to
distinguish from active molecules than the original decoy molecules
with docking using Autodock Vina (Trott and Olson, 2010). This
ability to substantially reduce bias will benefit the development and
improve generalization of structure-based virtual screening methods.

2 Materials and methods

This work describes a novel approach using deep learning to pro-
pose molecules that match a set of features provided by the user. We
achieve this with a generative model using graph neural networks.
Our model makes no underlying assumptions regarding the nature
of the properties that are to be matched, and relies only on a training
set of paired molecules exhibiting the desired similarities.

2.1 Generative model
In order to generate decoys we use an adapted version of Imrie et al.
(2020), which was designed for linker generation. Imrie et al. (2020)
builds on the generative process introduced by Liu et al. (2018) that
constructs molecules ‘bond-by-bond’ in a breadth-first manner. The
most substantial differences with Imrie et al. (2020) are the input
data and goal of the generative process.

DeepCoy takes an active molecule as input and generates a new
molecule that has similar physicochemical properties but is structurally
dissimilar. This is achieved by building new molecules in an iterative
manner ‘bond-by-bond’ from a pool of atoms. In this framework, the
user is able to control the maximum number of heavy atoms in the
molecules and, if desired, specific heavy atoms or partial substructures.

Minimal chemical knowledge is directly incorporated in our
model; this takes the form of a set of permitted atom types and basic
atomic valency rules which ensure the chemical validity of generated
molecules. The model is required to learn all other decisions
required to generate molecules.

Our method learns through a supervised training procedure
using pairs of molecules (Fig. 1).Inspired by Jin et al. (2019), we
frame decoy generation as a multimodal graph-to-graph translation
problem. We train DeepCoy to convert graphs of active molecules
into property-matched decoys under an augmented variational
autoencoder setting, employing standard gated-graph neural net-
works (Li et al., 2016) in both the encoder and decoder. DeepCoy
implicitly learns which properties to keep constant and is not expli-
citly told which properties to match, nor their values. This provides
a highly flexible framework, and makes it possible to learn from
pairs of molecules without quantifying their similarity.

We employed a training objective similar to the standard VAE
loss, including a reconstruction loss and a Kullback-Leibler (KL)
regularization term:

LTotal ¼ Lrecon þ kKLLKL:

The reconstruction loss, Lrecon, is composed of two terms result-
ing from the error in predicting the atom types and in reconstructing
the sequence of steps required to produce the target molecule.

To improve the quality of generated molecules, we adopted a
novel loss function that deviates from a standard cross entropy loss
for the sequence of actions adopted by Imrie et al. (2020) and Liu
et al. (2018). Instead of each step in the generative processes having
equal importance, we reweighted the probabilities of actions by the
frequencies of the induced subgraphs across the training set of
molecules, leading to the revised cross-entropy loss:

L ¼ �f � log
pðxjÞf ðxjÞP
i pðxiÞf ðxiÞ

 !
;

where pðxiÞ is the probability of choosing action xi, f ðxiÞ is the recip-
rocal frequency of the induced local subgraph by taking action xi,
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the sum is over all permitted actions, and f is the average of f over
all permitted actions. This has the effect of reducing the chance of
introducing local subgraphs that are not present in the training set.
We observe that this change does not meaningfully affect the novelty
of generated molecules compared to the standard cross-entropy loss.

For a more detailed description of the model, see Imrie et al.
(2020) and Supplementary Information.

2.2 Training set
We constructed pairs of molecules to train our model from the 250
000 molecule subset of ZINC (Sterling and Irwin, 2015) selected at
random by Gómez-Bombarelli et al. (2018) as follows.

We first characterized compounds by their physicochemical
properties. The properties can be selected by the user and we dem-
onstrate the effectiveness of our framework using multiple sets of
properties (described in Section 2.4). Pairs of molecules were con-
structed to satisfy the following criteria: (i) identical heavy atom
count and counts of specific heavy atoms (C, N, O, S, Cl, F), (ii)
high similarity in property-space and (iii) low structural similarity.
We measured similarity in property-space using the Euclidean dis-
tance between normalized property values and structural similarity
by the Tanimoto similarity between the Morgan fingerprints (radius
2, 1024 bits, Rogers and Hahn, 2010).

In order to create training sets for our large scale benchmarking
experiments (see Section 2.4), we set the maximum permitted struc-
tural similarity between a pair of molecules at 0.15 and the maximum
distance in property space to 0.20 for the assessment on DUD-E and
0.07 for DEKOIS 2.0. The thresholds were set to ensure roughly equal
training set sizes and the differences were as a result of the different
sets of properties to unbias. This resulted in a training set of 131 199
pairs for DUD-E and 103 170 for DEKOIS 2.0. We selected 1000
pairs for model validation, and used the remainder to train our model.

2.3 Assessment
Several metrics have been proposed to assess artificial enrichment
and the risk of false negatives introduced by using putative decoy
molecules. Vogel et al. (2011) proposed the deviation from optimal
embedding score (DOE score) and the doppelganger score to assess
the quality of physicochemical matching of decoys and risk of intro-
ducing latent active molecules, respectively. These metrics are our
primary way of assessing the generated decoy molecules.

The DOE score measures the quality of the embedding of actives
and decoys in chemical space by employing a series of receiver
operating characteristic curves (ROC curves) for each active
calculated using the physicochemical properties of interest. The
DOE score is the average absolute difference between these ROC
curves and a random distribution. An optimal embedding of actives
and decoys achieves a DOE score of zero, while complete separation
in physicochemical space results in an DOE score of 0.5.

The doppelganger score captures the structural similarity
between actives and their most structurally related decoys. We
generated functional fingerprints (similar to FCFP6) using RDKit
(Landrum, 2006) for all compounds and evaluated the structural
similarity between actives and decoys using the Tanimoto
coefficient. For each decoy molecule, its doppelganger score is the
maximum similarity across all actives. For each target, we report
the mean doppelganger score over all decoys and the maximum
structural similarity between an active and a decoy.

An alternate way to quantify the physicochemical property
matching is via predictive models trained on such properties. Bias
can be measured using machine learning performance directly (Sieg
et al., 2019) or a measure of bias can be derived from such models
(Wallach and Heifets, 2018). We assessed bias using both
approaches. First, we trained 1-nearest neighbor (1NN) and random
forest (RF) models on all possible subsets of the physicochemical
properties deemed non-informative for binding. We adopted 10-fold
cross-validation on a per-target basis and assessed performance via
the area under the ROC curve (AUC ROC), following Sieg et al.
(2019). In addition, we calculated AVE (Wallach and Heifets, 2018)
using the same properties and cross-validation splits.

We also considered the virtual screening performance of docking
using AutoDock Vina (Trott and Olson, 2010), specifically the
smina (Koes et al., 2013) implementation. Ligands were docked
against the reference receptor within a box centered around the
reference ligand with 8 Å of padding. We used smina’s default
arguments for exhaustiveness and sampling. We focused our
analysis on performance as measured by AUC ROC.

2.4 Large scale benchmarking experiments
We assessed our method using two of the most popular SBVS
datasets, DUD-E (Mysinger et al., 2012) and DEKOIS 2.0 (Bauer
et al., 2013).

Fig. 1. Illustration of training and generation procedures. (a) Pairs of structurally dissimilar molecules with similar physicochemical properties are provided as input. The model

is trained to convert one molecule into the other from a combination of the encodings of both molecules. (b) At generation time, the model is given only the active molecule

and is able to sample a diverse range of property-matched decoys by combining the encoding of the active molecule with random noise. Adapted from Imrie et al., 2020 under

the terms of a CC BY 4.0 license
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We trained a separate model for each of the datasets to demon-
strate the flexibility of our method to learn to match different sets of
properties. For DEKOIS 2.0, we used the same eight properties

employed to construct the dataset (Bauer et al., 2013). To assess
whether our framework extends to a higher dimensional property

space, we trained our model to match twenty-seven properties for
our assessment on DUD-E, instead of only the original six properties
selected by Mysinger et al. (2012). Training set construction is

described in Section 2.2 and a complete list of physicochemical
properties is provided in Supplementary Information. Despite train-

ing for this broader array of properties and selecting the final decoys
for the DUD-E set based on all 27 properties, we report results cal-
culated using the original six DUD-E properties, unless otherwise

stated. Not selecting the DeepCoy set optimally with respect to the
original six DUD-E properties will result in inferior performance of

DeepCoy, but will allow us to evaluate how our method performs
when required to unbias a larger number of properties.

We filtered the active molecules in both datasets to exclude those

containing rare atom types outside of the scope of our model (c. 1%
of actives, see Supplementary Information for a list of permitted

atom types). This led to no actives for DUD-E target FPPS due to the
presence of phosphorus in all active molecules. To address this and
demonstrate the flexibility of our generative approach, we trained a

separate model for this target (see Supplementary Information for
more details). For each active, we generated 1000 candidate decoys

using DeepCoy. We then selected final decoy sets using a similar
pipeline to DEKOIS 2.0. Generated molecules were initially filtered
by the difference in heavy atom counts and maximum doppelganger

score using an iterative procedure until at least 100 candidate decoys
remained. The final decoys were selected from these candidate

decoys in a greedy manner based on the sum of the normalized prop-
erty difference and LADS score (Bauer et al., 2013). While this
greedy selection policy is likely not optimal, we adopted it primarily

due to its simplicity. We then compared the generated decoy sets to
the original decoy sets using the metrics described in Section 2.3.

3 Results and discussion

We assessed our ability to generate property-matched decoy mole-
cules with varying requirements through two widely used SBVS

datasets, DUD-E and DEKOIS 2.0. For both sets, we generated new
decoy molecules and compared these to the original set, assessing

the generated molecules with respect to the same physicochemical
properties used to select the original decoys. We show that:

• DeepCoy generated decoys substantially improve property

matching compared to the original database decoys.
• DeepCoy generated decoys do not introduce additional risk of

false negatives.

• DeepCoy generated decoys are harder to distinguish from active

molecules than the original DUD-E decoys with docking using

AutoDock Vina, despite being as structurally dissimilar from the

active molecules as the original decoys.

Our results demonstrate that our framework is an alternative to
database approaches for selecting property-matched decoy
molecules, while offering full flexibility to the user regarding choice
of specific properties and how to choose the final decoys from the
generated molecules.

3.1 Physicochemical property matching
Across both DUD-E and DEKOIS 2.0, our generated decoy
molecules more closely matched the physicochemical properties
deemed by the respective datasets to be non-informative for binding
than the original decoys (see Supplementary Information for a full
list of properties).

When selecting decoys based on the same properties as the ori-
ginal datasets, our generated decoys improved the DOE score by an
average of 81% and 66%, respectively, decreasing from 0.166 to
0.032 for DUD-E and 0.109 to 0.038 for DEKOIS 2.0. In this set-
ting, the DOE score was improved by using DeepCoy generated
decoys for all 102 DUD-E targets (Fig. 2) and 80 of the 81 DEKOIS
2.0 targets (Supplementary Fig. S1). The only DEKOIS 2.0 target
that did not show an improvement in DOE score had DOE scores
below 0.04, corresponding to an almost perfect embedding for both
the DeepCoy and original decoy molecules. Finally, DeepCoy gener-
ated decoys achieved a DOE score below 0.1, indicating a close to
optimal embedding (Bauer et al., 2013), for 101 of the 102 DUD-E
and 79 of the 81 DEKOIS 2.0 targets, while the original decoys only
met this threshold for 32 DUD-E and 48 DEKOIS 2.0 targets.

We selected our final decoy set for DUD-E using all 27 proper-
ties, rather than just the six used to construct the original dataset.
The average DOE score of this set was 0.045, a comparable im-
provement of 73%, outperforming the original decoys for 98 of the
102 targets (Supplementary Fig. S2). Importantly, the DeepCoy
decoys experienced no drop in performance when all 27 properties
were included in the calculation of DOE score, with an average
score of 0.041 (Supplementary Fig. S3). In contrast, the original
decoys experienced a substantial decline to 0.222, proving matching
this larger set is non-trivial. This demonstrates the ability of
DeepCoy to scale successfully to a high-dimensional property space
to unbias.

A similar improvement can be seen when assessing property
matching via the ability of machine learning models to predict
whether a compound is an active or a decoy when trained on the
physicochemical properties deemed non-informative for binding
(Fig. 3, Supplementary Fig. S4). On the DUD-E set, using all 6 fea-
tures, the median (average) AUC ROC decreased from 0.66 (0.66)
to 0.55 (0.56) and 0.81 (0.80) to 0.67 (0.68) for the 1-nearest

Fig. 2. DOE scores of the original DUD-E set (blue) compared to the DeepCoy generated decoys (orange). For all targets, the DeepCoy generated decoys have lower DOE score

(lower is better), with the average DOE score decreasing by 81% from 0.166 to 0.032. The x-axis displays each DUD-E target in the same order as they appear in the DUD-E

database (http://dude.docking.org/targets). The targets with even indices are not labeled on the x-axis due to space limitations
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neighbor and random forest models, respectively, for the DeepCoy
decoys compared to the original set. A similar reduction was
observed when using any combination of the physicochemical
properties (Fig. 3).

Assessing bias using AVE also demonstrated a significant reduc-
tion in bias with a reduction in median AVE (using all 6 features) of
72% from 0.17 to 0.05 (Supplementary Fig. S5). As noted by Sieg
et al. (2019), while there is a notable correlation between AVE and
machine learning performance, AVE does not always explain high
predictive performance (Supplementary Fig. S6).

However, even with the much improved property matching of
the DeepCoy decoys, there remains some signal in the physicochemi-
cal properties. This is in part due to the high level of similarity be-
tween many of active molecules in DUD-E, a factor that should be
controlled for when constructing the dataset to ensure low levels of
bias (Wallach and Heifets, 2018). This is exemplified by the DUD-E
target SAHH. DeepCoy decoys substantially reduced the DOE for
the DUD-E properties to 0.11 (original decoys: 0.19). However,
when assessing the decoys using the larger set of 27 properties, it be-
came very challenging to unbias the decoy set (DeepCoy DOE: 0.29,
original DOE: 0.34) due to high levels of similarity within the active
set. All 63 active molecules for SAHH contain a similar fused ring
system, while around half of the active molecules have 4 stereocen-
ters (Fig. 4). The considerable structural similarity, coupled with the
high number of stereocenters for molecules of this size, was the pri-
mary cause of the poor DOE scores and is highly challenging to
overcome via better decoy selection alone.

3.2 False negative bias
It is crucial that the improvement in property matching achieved by
DeepCoy was not as a result of increasing the similarity between the
active and decoy molecules, risking increasing false negative bias.

The average doppelganger score (Vogel et al., 2011), a measure
of the structural similarity between actives and decoys, remained
consistent on the DUD-E set at 0.26 for the DeepCoy decoys and
0.25 for the original decoys, while the average maximum doppel-
ganger score per target fell from 0.37 for the original decoys to 0.34
for the generated decoys. We saw similar results for the DEKOIS
set; the average doppelganger score fell slightly (DeepCoy: 0.22,
Original: 0.25), while there was a significant drop in maximum dop-
pelganger score from 0.44 to 0.30 when using the DeepCoy decoys.

These results strongly suggest that the decoys generated by
DeepCoy should not carry an increased risk of false negative bias
compared to the original decoys.

3.3 Structure-based virtual screening
We further validated the quality of our generated decoys by docking
the DUD-E set. Several publications have shown that most docking
scoring functions are influenced by basic physicochemical properties
(e.g. Chaput et al., 2016). In particular, Wallach and Lilien (2011)
showed that property mismatching can lead to an arbitrary increase
or decrease in virtual screening performance of docking methods.

Thus docking performance cannot be used alone to evaluate decoy
molecules.

However, overall, better quality decoys should be harder to dis-
tinguish from active molecules, in particular if such decoys also
more closely match the physicochemical properties of the active
molecules and do not display an increased risk of false negatives.

The virtual screening performance of AutoDock Vina on the
DUD-E set fell to an average per-target AUC ROC of 0.63 for the
DeepCoy generated decoys compared to 0.70 for the original decoy
molecules. There was a relatively high correlation between the per-
target docking performance using the original and DeepCoy decoys
(Pearson’s R: 0.56, Supplementary Fig. S11) driven by the active
molecules, which are common between both sets. However, for 86
of the 102 targets, the DeepCoy decoys led to a lower AUC ROC
than the original decoys.

The decrease in the discriminative power of SBVS is likely driven
by the closer property matching of the generated decoys, consistent
with other studies (e.g. Vogel et al., 2011). This further reinforces
the need for unbiased benchmarking sets, even for non-machine
learning based scoring functions. For example, the original decoys
for IGF1R resulted in a DOE score of 0.23, indicating a large mis-
match between the active and decoy molecules. When this set was
docked, Vina performed well with an AUC ROC of 0.81. In con-
trast, the DeepCoy generated decoys gave a DOE score of 0.02, a c.
90% reduction, and had a lower AUC ROC of 0.56. The inability
for DeepCoy generated decoys to be easily separated from active
molecules via docking together with the lack of additional risk of
false negative is further validation of the suitability of these mole-
cules for testing SBVS methods.

Deep learning-based SBVS methods (e.g. Ragoza et al., 2017)
have become increasingly popular due to their strong empirical per-
formance. As discussed in Section 1, it has been suggested that, for
models trained on DUD-E, a driver of this could be dataset biases

Fig. 3. Results of the machine-learning based assessment of physicochemical property matching on DUD-E. Random forests were trained to predict whether a compound was

an active or a decoy based on the unbiased features. Virtual screening performance was assessed by AUC ROC for the original DUD-E decoys and DeepCoy generated decoys.

The DeepCoy generated decoys resulted in a reduction in the median per-target AUC ROC using all 6 features from 0.81 to 0.67 indicating a substantial reduction in bias

Fig. 4. Four representative active ligands for DUD-E target SAHH. The 63 active

molecules for SAHH have high levels of structural similarity, with all sharing similar

fused rings systems. These ligands all have at least four stereocenters (highlighted

in red, stereochemistry not shown), a property shared by over half of the active

molecules for this target
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(Chen et al., 2019; Sieg et al., 2019). To assess SBVS methods with
an external validation set, Ragoza et al. (2017) utilized a subset of
the datasets curated from ChEMBL (Bento et al., 2014) by Riniker
and Landrum (2013), selecting the targets to ensure that models were
evaluated on dissimilar binding sites to those in the training set.

Such an external test set should be more representative of real-
world use and should not share biases with the training set. However,
likely due to the use of decoy molecules from ZINC, the ChEMBL tar-
gets share similar biases to DUD-E as measured by the same metrics as
our assessment of DUD-E and DEKOIS 2.0 (Supplementary Figs S7–
S9). In particular, random forests trained on the unbiased physico-
chemical properties of compounds in DUD-E achieved high virtual
screening performance on the ChEMBL test sets (average AUC ROC
DUD-E features 0.70, larger feature set 0.84, Supplementary Fig.
S10). In contrast, when trained on the DeepCoy decoys, the RF model
had limited discriminative power on the ChEMBL test sets (average
AUC ROC DUD-E features 0.54, larger feature set 0.57). We thus
caution against using these datasets as external validation for models
trained on DUD-E due to the similar physicochemical biases.

Since there is limited bias between the version of DUD-E employ-
ing DeepCoy decoys and the ChEMBL test sets, we can be more con-
fident that predictive power on the ChEMBL test sets of models
trained using DeepCoy decoys arises from the model having learnt
meaningful features. We trained the convolutional neural network
architectures of Ragoza et al. (2017) and Imrie et al. (2018) on the
version of DUD-E employing DeepCoy decoys (see Supplementary
Information for more details). All of the CNN-based models outper-
formed AutoDock Vina on the ChEMBL test sets (Supplementary
Table S1). In particular, both gnina (Ragoza et al., 2017) and
DenseU (Imrie et al., 2018) improved early enrichment by around
50% (1.0% ROC EF 11.0 and 11.2, respectively) compared to
AutoDock Vina (7.5), while the performance of DenseFS (Imrie
et al., 2018) improved by 110% (16.0). These results demonstrate
that DeepCoy decoys can be used to train complex SBVS models.

3.4 Synthesisability of generated decoys
A primary reason for selecting decoys from a virtual library of mole-
cules is their high chance of synthesisability and the ability to pur-
chase such compounds. However, for retrospective screening, or
indeed training machine-learning models, decoys do not necessarily
need to be synthetically feasible, but should be chemically possible
(Yuriev, 2014).

A common criticism of molecules generated using de novo design
methods is that they are not synthetically accessible. We assessed the
synthetic feasibility of molecules using the synthetic accessibility
score (SA score, Ertl and Schuffenhauer, 2009). SA score ranges
from 1 (easy to make) to 10 (very difficult to make), with the major-
ity of bioactive molecules falling between 2.5 and 4.5. The generated
decoys have not been optimized for SA score nor selected based on
this property. Despite this, the decoys generated by DeepCoy are, on
average, relatively synthetically accessible, with an average SA score

on the DEKOIS 2.0 set of 3.55 compared to 3.21 for the original
decoys and 3.13 for the active molecules.

SA score is broadly a measure of molecular complexity, but with
no regards to the precise functionality nor whether a given molecule
should bind to a given target. Thus decoys should match the SA
score (or a similar metric) of the active molecules, otherwise molecu-
lar complexity could become a distinguishing factor between actives
and decoys.

As such, when generating decoys for DUD-E we included SA
score as one of the properties to unbias. The DeepCoy decoys (aver-
age SA score: 3.27) more closely matched the SA score of the active
molecules (2.99) than the original decoys (3.41). We further demon-
strate the effect this has on the SA score of decoy molecules by
examining FA7, the median performing target (measured by DOE
score) for the original decoy molecules, and NRAM, a target for
which the active molecules have relatively high SA scores. The distri-
butions of SA scores for FA7 and NRAM are shown in Figure 5
(mean SA score FA7 actives 2.9, NRAM actives 4.0). The DeepCoy
decoys much more closely matched the SA score of the actives mole-
cules of both targets than the original decoys, which did not match
the SA score of the actives molecules in either case. This exemplifies
the mismatch between SA scores of active and decoy molecules for
some targets in DUD-E and demonstrates the adaptability of our
generative framework.

3.5 Effect of number of generated candidate decoys per

active
We investigated how the number of candidate decoys generated per ac-
tive with DeepCoy affects the quality of the final decoy set. Ideally as
few candidates would be generated as possible; however, generating
more candidates is likely to lead to a higher quality final decoy set. This
creates a trade-off between quality and computational requirements.

To explore this, we used the DEKOIS 2.0 target P38-alpha. This
target achieved median performance as measured by DOE score with
the original decoys, with a DOE score of 0.088 and doppelganger
score of 0.22. We constructed multiple decoy sets by varying the num-
ber of candidate decoys generated by DeepCoy between 100 and 5000
per active molecule and selecting the best 30 as described previously.

Even generating only 100 candidates per active, the DOE score
of the DeepCoy decoys was 0.079, representing an improvement
over the original decoys of around 10%. As more candidates are

Fig. 5. Synthetic accessibility (SA) scores for the active molecules (blue), original

DUD-E decoys (orange) and DeepCoy generated decoys (green) for DUD-E targets

FA7 (A) and NRAM (B). The DeepCoy generated decoys much more closely match

SA scores of the active molecules than the original DUD-E decoys for both targets

Fig. 6. The effect on the DOE score of the final decoy set as the number of candidate

decoys generated by DeepCoy is varied for DEKOIS 2.0 target P38-alpha. In all

cases, 30 decoys per active molecule are chosen. The DOE score for the DeepCoy

generated decoys decreases rapidly as more candidates are generated, before slowing

after 2000 potential decoys are generated. Even with only 100 candidates, the DOE

score for the DeepCoy decoys is lower than the original decoys
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generated, this difference rapidly increases (Fig. 6), with a DOE
score of 0.026 when 1000 candidates are generated, a 70% reduc-
tion compared to the original decoys. This continues to improve as
more candidates are generated, albeit at a slower rate, reaching a
score of 0.019 when 5000 are generated. The mean doppelganger
score also decreased from 0.26 with 100 candidate per active to
0.23 when 5000 candidates were generated.

While there is a clear dependence between the quality of the final
decoy set and the number of candidates generated, DeepCoy gener-
ated molecules outperformed the original decoys even when a very
limited number of candidates were generated. Unlike a database ap-
proach where the maximum performance is limited by the dataset,
in our framework the user can decide the desired level of property
matching and risk of false negatives, generating additional candidate
decoys until this is reached.

4 Conclusion

We have developed a graph-based deep learning method for generat-
ing property-matched decoy molecules for virtual screening. Unlike
almost all virtual screening benchmarks, our method does not rely
on a database of molecules from which to select decoys but instead
designs ones that are tailored to the active molecule.

We validated our generative model using two established
structure-based virtual screening benchmarks, DUD-E and DEKOIS
2.0. For all 102 DUD-E targets and 80 of the 81 DEKOIS 2.0 tar-
gets, our generated decoy molecules more closely matched the physi-
cochemical properties deemed by the respective datasets to be non-
informative for binding, while introducing no additional false nega-
tive bias.

In particular, our generated decoys decreased the average DOE
score from 0.166 to 0.032 for DUD-E and 0.109 to 0.038 for
DEKOIS 2.0, an improvement of 81% and 66%, respectively. In add-
ition, we demonstrated that they are no easier to distinguish than the
original decoy molecules via docking with smina/Autodock Vina.

We believe that this substantial reduction in bias will benefit the
development and improve generalization of structure-based virtual
screening methods. Currently, methods can perform well on retro-
spective benchmarks without performing molecular recognition by
simply learning underlying biases (Chen et al., 2019; Sieg et al.,
2019; Wallach and Heifets, 2018). Thus it is unclear if improve-
ments are genuine or due to more closely capturing these biases.
However, when such models were trained on DeepCoy decoys
which have limited bias and do not share significant bias with the
test set, they displayed substantial predictive power (Supplementary
Table S1). While our generated decoys might contain new biases of
which we are currently unaware, these results together with recent
prospective successes (e.g. Stecula et al., 2020; Adeshina et al.,
2020) is good evidence that such methods can learn to perform mo-
lecular recognition.

DeepCoy represents a novel approach to solve this problem,
exhibiting substantial benefit over previous database-based meth-
ods. Our framework is highly customizable by the user and can
naturally be combined with database search. While experimentally
verified inactives should be used whenever possible, this is not
practically feasible apart from for limited-size benchmarking sets
(e.g. Rohrer and Baumann, 2009). As such, effective decoys are
crucial to the development of structure-based virtual screening
methods.
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