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Deep brain stimulation (DBS) modulates the neuronal activity in specific brain circuits

and has been recently considered as a promising intervention for refractory addiction.

The insula cortex is the hub of interoception and is known to be involved in different

aspects of substance use disorder. In the present study, we investigate the effects of

continuous high frequency DBS in the anterior insula (AI) on drug-seeking behaviors

and examined the molecular mechanisms of DBS action in morphine-addicted rats.

Sprague-Dawley rats were trained to the morphine-conditioned place preference (CPP,

day 1–8) followed by bilaterally implanted with DBS electrodes in the AI (Day 10) and

recovery (Day 10–15). Continuous high-frequency (HF) -DBS (130Hz, 150 µA, 90 µs)

was applied during withdrawal (Day 16–30) or extinction sessions. CPP tests were

conducted on days 16, 30, 40 during withdrawal session and several rats were used

for proteomic analysis on day 30. Following the complete extinction, morphine-CPP

was reinstated by a priming dose of morphine infusion (2 mg/kg). The open field and

novel objective recognition tests were also performed to evaluate the DBS side effect on

the locomotion and recognition memory. Continuous HF-DBS in the AI attenuated the

expression of morphine-CPP post-withdrawal (Day 30), but morphine addictive behavior

relapsed 10 days after the cessation of DBS (Day 40). Continuous HF-DBS reduced

the period to full extinction of morphine-CPP and blocked morphine priming-induced

recurrence of morphine addiction. HF-DBS in the AI had no obvious effect on the

locomotor activity and novel objective recognition and did not cause anxiety-like behavior.

In addition, our proteomic analysis identified eight morphine-regulated proteins in

the AI and their expression levels were reversely changed by HF-DBS. Continuous

HF-DBS in the bilateral anterior insula prevents the relapse of morphine place
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preference after withdrawal, facilitates its extinction, blocks the reinstatement induced

by morphine priming and reverses the expression of morphine-regulated proteins. Our

findings suggest that manipulation of insular activity by DBS could be a potential

intervention to treat substance use disorder, although future research is warranted.

Keywords: conditioned place preference, deep brain stimulation, substance use disorder, insula cortex, morphine

dependence, proteomics

INTRODUCTION

Substance use disorder is a chronic and relapsing brain disorder.
It is characterized by compulsive drug-seeking and drug intake
despite severe negative consequences, loss of control in limiting
intake, and emergence of a negative emotional state (e.g.,
dysphoria, anxiety, irritability) when access to drug use is
blocked (1). Substance use disorder causes enormous emotional,
economic, medical, and legal costs to individuals and society and
a global public health concern with high morbidity and mortality
(2). Current treatments for substance use disorder including
pharmacological and/or psychological interventions are available
(3), but the relapse rates are still extremely high up to 50–70%
(4). Additional approaches are needed to reduce relapse rate and
strengthen efficacy of current strategies.

Deep brain stimulation (DBS) is a reversible, adjustable,
minimally invasive, and safe neurosurgical intervention in which
implanted electrodes deliver electrical pulses into certain targeted
areas of the brain stereotactically. It has been widely used in
the treatment of neurodegenerative diseases such as Parkinson’s
disease (5), dystonia, and tremor (6, 7) and in psychiatry for
treatment resistant depression (8). The application of DBS to
treat substance use disorder from both preclinical and clinical
studies have showed a reduction in drug-seeking through
stimulating (9).

The insula cortex plays a central role in the brain interoceptive
system (10, 11) and is important in the neurocircuitry of
addiction (1). Several studies have demonstrated that stroke-
induced insula damage could lead to an abrupt and profound
disruption of addiction to cigarette smoking without relapsing
and craving (12, 13), and patients in the insula lesion group
quit heroin use entirely at a higher rate than controls (14). In
addition, an array of recent studies using animal models and
pharmacological or chemical interventions have showed that
insula is involved in different aspects of addictive behavior of
various addictive drugs (15–20). For example, morphine-induced
conditioned place preference (CPP) in rats were attenuated in
studies using administration ofmuscarinic acetylcholine receptor
antagonists and nitric oxide inhibitors into insula (21, 22).
Previous work has also confirmed that insula is involved in the
neurocircuitry underlying all stages of substance use disorder,
and clearly suggested that insula is a fundamental brain region
in the maintenance and relapse to addictive drugs (23).

Considering the involvement of insula in substance use
disorder and the encouraging DBS results from preclinical and
clinical studies, here, we examined the effects of continuous
DBS in the anterior insula on the relapse of morphine
addictive behavior post withdrawal, as well as extinction

and priming-induced reinstatement of morphine seeking.
Furthermore, we applied isobaric tags for relative and absolute
quantitation labeling (iTRAQ)-based proteomic analysis in order
to identify the proteins in the anterior insula regulated by DBS
intervention of morphine addiction.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats weighting 230–270 g were used in
this study. The rats were housed in animal rooms maintained
under 12-h light/dark cycle (lights on at 08:00 AM to 08:00
PM) at 23−25◦C and with moderate food restriction and tap
water ad libitum and the weight of experimental animals was
controlled between 280–300 g. Experimental rats were allowed to
adapt to the laboratory environment for 1 week before behavioral
experiments. Behavioral tests were performed at semidarkness
condition during the light phase of the cycle. All procedures were
in accordance with the Institutional Animal Care Use Committee
of Ningxia Medical University, and approved by the Animal
Ethics Committee of Ningxia Medical University.

Drugs
Morphine (CAS number 21535-47-7, Shenyang First
Pharmaceutical Factory, Shenyang, China) was administered at
a dose of 10 mg/kg (s.c) showing drug reinforcement, which can
induce conditioned place preference (CPP) without affecting
movement (24).

Conditioned Place Preference (CPP)
CPP apparatus is a plexiglass box composed of three chambers.
Two side chambers of equal size (30 × 30 × 45 cm) were
separated by a neutral chamber (5 × 10 × 45 cm) containing a
removeable guillotine door. One side chamber had white walls
and a grid gray floor, while the other chamber consisted of black
walls and a frosted gray floor. The neutral area had a smooth floor
with gray walls. The removable doors were inserted to restrict
the animals to their paired environment during the conditioning
phase, and removed away to allow the rats free access to both
side chambers for testing. All CPP protocols were conducted at
semi-darkness conditions. Behavioral data was acquired using
video-tracking system (video behavior analysis software Smart
3.0, Panlab Company, Spain).

CPP Procedures
Animals were habituated to experimenter’s handling and
the experimental environment for 1 week. CPP experiment
consisted of three phases: preconditioning, conditioning,
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post-conditioning. The “biased” procedure was used in this
experiment (25, 26). In preconditioning phase, animals were
allowed to explore freely between side chambers of CPP for
15min and the rats that initially preferred the black chamber
(55–75% of total spent time) were selected and progressed to the
conditioning phase. Non-preferred side (white chamber, 25–45%
of total spent time) was considered as baseline side preference.
Conditioning phase consisted of eight training days with one
conditioning trial each day for a total of eight trials. Rats were
injected with morphine (morning on days 2, 6; afternoon on
days 4, 8, respectively) and confined to the non-preferred side
(white chamber; drug-paired side) for 45min, and given saline
(afternoon on days 1, 5; morning on days 3, 7) and restricted
to the preferred side (black chamber; saline-paired side) for
45min. During the conditioning phase, rats received a total
of four injections of either morphine or saline on alternating
days. Animals in the saline group were injected saline in two
chambers, and the non-preferred side (white chamber) was
used as reference baseline. In the post-conditioning phase,
animals were conducted drug-free CPP tests, in which they were
allowed free access to all CPP chambers (Figures 2A, 3A). The
morphine side preference considered as index of conditioning
was calculated and expressed as the percent of time spent in the
morphine-paired chamber (white chamber) to the total time
spent in both morphine-(white chamber) and saline-paired
(black chamber) chambers.

Extinction Procedure
After stable acquisition of morphine-CPP and DBS electrode
implantation, animals were placed in CPP chambers and allowed
to move freely for 15min, with no drug available. The procedure
was conducted daily, until rats reached full extinction. The
complete extinction was defined as the decline of the mean
preference for morphine-paired chamber to the baseline value.

Reinstatement Procedure
One day after the complete extinction, rats were injected a
priming-dose of morphine (2 mg/kg) in the CPP apparatus and
immediately subjected to CPP tests.

Experimental Groups and Design
Experimental rats for measuring morphine preference were
allocated to four different groups: (1) the saline group (n =

15 for experiment 1; n = 12 for experiment 2), (2) morphine
group that received alternate saline and morphine, without deep
brain stimulation(DBS) apparatus implantation (n = 15 for
experiment 1; n = 12 for experiment 2), (3) the morphine-
DBS-sham group that received alternate saline and morphine,
with DBS apparatus implantation but no active stimulation in
all experiment procedures (n = 11 for experiment 1; n = 9
for experiment 2), (4) the morphine-DBS group that received
alternate saline and morphine, with DBS apparatus implantation
and continuous electrical stimulation in every experiment phase
(n = 13 for experiment 1; n = 11 for experiment 2). Groups
(1–4) rats were used in withdrawal relapse and extinction
tests. The control drug-free rats for measuring the non-specific
physiological effects of DBS were diveded into three group: (5)

the control group (n = 6) without DBS apparatus implantation;
(6) the DBS-sham group (n = 6) that with DBS apparatus
implantation but no active electrical stimulation; (7) the DBS
group (n = 6) that with DBS apparatus implantation and active
electrical stimulation.

Experiment 1: The effect of continuous high frequency DBS
(HF-DBS) of anterior insula (AI) on the relapse of morphine
seeking behavior post withdrawal (Figure 2A).

The rats were trained to morphine conditioned place
preference and then bilaterally implanted into the insula with
DBS electrodes and allowed to recovery from surgery for 5
days. The rats underwent drug abstinence for 25 days. CPP
tests were conducted on days 16, 30, and 40 during the
drug withdrawal phase. In the morphine-DBS group, HF-DBS
(130Hz, 150 µA, 90 µs, rectangular stimulation pulse waveform)
was continuously applied for 14 consecutive days (day 16–30).
The morphine-DBS-sham rats received no active stimulation
during the whole withdrawal session. The saline and morphine
groups as controls received no surgery or stimulation. Total
locomotion was analyzed during the preconditioning, post-
conditioning and withdrawal phases by quantifying total distance
traveled using Smart 3.0 video tracking system.

Experiment 2: The effect of continuous HF-DBS of AI on
extinction and morphine-induced reinstatement of morphine
seeking behavior (Figure 3A).

After acquisition of morphine-CPP and implanted with DBS
apparatus, the rats underwent 10 days of extinction sessions
and 1 day reinstatement test. HF-DBS (130Hz, 150 µA, 90
µs, rectangular stimulation pulse waveform) was continuously
applied for 11 days during extinction (Day 16–25) and
reinstatement phase (Day 26) in morphine-DBS group but
morphine-DBS-sham rats received no active stimulation during
the whole extinction and reinstatement period.

Different from the stimulation electrodes used in the previous
animal experiment studies, the DBS apparatus used in present
study was designed and based on the DBS treatment system
applied in the clinic. The DBS apparatus (Beijing PINS Medical
Co., Ltd. Beijing, China) consisted of implantable electrical
stimulation system and external programmer. The electrical
stimulation system included bipolar electrodes, lead-extension
and implantable pulse generator (IPG) (Figure 1A). Briefly, the
implantable electrode is coaxial and the structure of its tip was
shown as Figure 1A. The outer stainless-steel tube (diameter
0.3mm) served as the reference pole. Its inner stainless-steel core
(diameter 0.2mm) was coated with an insulating Parylene layer
and the uncoated tip served as the stimulating pole of negative
polarity. The total length of the electrode is designed to be about
12mm. The IPG was composed of microprocessor-controlled
circuit board, button-type battery and electrode connection
ports. The lead-extension was a flexible insulated coated wire,
which connected with the electrodes end and the electrode
connection ports of the pulse generator device. The total weight
of the implantable DBS stimulation system was 5–7 g.

The external programmer communicated with the IPG
through radio frequency. When the DBS stimulator was working
in vivo, pulse parameters (pulse frequency, pulse width, pulse
amplitude) and simulation mode (continuous or cyclic) can be
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FIGURE 1 | Deep brain stimulation (DBS) device and bilateral electrodes implantation in rat anterior insula (AI). (A) Photograph of the DBS device comprising an

implantable pulse generator (IPG) and two electrodes. (B) Schematic view illustrating the electrodes that are secured in the skull over AI and the subcutaneously

implanted IPG. (C) A representative rat brain section stained with cresyl violet showing the successfully placed electrode in the AI. (D) Locations of implanted

electrodes (colored dots) in the AI of rats included for further analysis (n = 56). Experiment 1: morphine-DBS-sham (red), n = 11; morphine-DBS (green), n = 13.

Experiment 2: morphine-DBS-sham (orange), n = 9; morphine-DBS (blue), n = 11. Open field and novel object recognition tests: DBS-sham (black), n = 6; DBS

(purple), n = 6. CPu, caudate putamen. The brain coronal sections are adapted from the atlas of Paxinos and Watson (27).

set by the external programmer, and its current working state
information such as its output parameters, battery capacity,
and electrode impedance were displayed. The effective telemetry
distance was 0–5 cm.

The rats were anesthetized by isoflurane inhalation (3–5%
induction, 2–3% maintenance) and mounted in a stereotaxic
apparatus. The body temperature was kept with the heating
device. The IPG of DBS device was implanted in the back, and
the electrodes and electrode-extension were threaded over neck
and exited dorsally from the head subcutaneously (Figure 1B).
Four stainless steel screws were fastened to the exposed skull.
Corresponding to the target area of bilateral anterior insula,
two holes with a diameter of 2mm were drilled on the skull to
expose to the dura mater. The electrodes were implanted into
the anterior insula according to the following coordinates (27),
relative to bregma: +1.2mm anteroposterior(A/P), ±4.9mm
mediolateral(M/L), and −7.0mm dorsoventral(D/V). Electrodes
were cemented in place by affixing dental acrylic to the
screws tightened into the skull and the excess plastic end
of the electrodes were removed. One day after the surgical
implantation, the rats recovered completely to the pre-operative
state and maintained hygiene (grooming behavior). Throughout
the experimental period, DBS functioned normally, and the rats
were in good condition without any impact on their walking.

Open Field Test
The open field test was used to measure locomotor activity and
anxiety-like behavior in the current study. Eighteen rats were
divided into control (n = 6), DBS-sham (n = 6) and DBS (n =

6) groups. One hour before testing, the rats were acclimatized
to the testing room. Then, the rat was placed onto the central
zone of the open field box facing one of the walls and allowed
to explore for 10min. Their exploring behavior was filmed using
the video-tracking system and the data was analyzed by Smart
3.0 software package. The entire area of the open field box was
cleaned with 70% ethanol and paper towel, before proceeding
to the next rat. Continuous HF-DBS was applied 24 h prior to
and during the behavior testing. Total traveled distance and time
spent in the periphery (within 20 cm of the walls) of the arena
were measured (28).

Novel Object Recognition Test
After the open field test, the same rats then underwent the novel
object recognition (NOR) test to evaluate the effect of DBS system
on learning and memory (29). The experimental procedure
consisted of three phases (habituation, training, testing) and
was carried out in the same open field box, where the rats
had been habituated to (day 7) when they were measured for
locomotion and anxiety-like behavior. Twenty-four hours after
the habituation (day 8), two identical subjects were presented
10 cm away from walls in opposite corners and each rat was
allowed to explore the arena and objects for 10min in the training
phase. In the testing phase (day 9), one subject used during the
training phase (i.e., the familiar subject) and one novel object
were placed in the arena. The locations of the familiar and novel
object were same as used during training phase for each rat. The
rats were placed back into the arena and allowed to investigate
the objects for 10min. Exploration was defined as when the nose
pointed at the object at a maximum distance of 2 cm from it
and/or sniffing or touching it with snout. Time spent exploring
the familiar and novel object during testing phase were recorded.
The results were expressed as recognition index and calculated
as the time spent exploring the novel object divided by the
total time for the familiar object and novel object during the
testing. Continuous HF-DBS was applied for all sessions in the
DBS group.

Verification of Electrode Position in
Histology
At the conclusion of all experiments, the rats with implanted
electrodes were given an overdose of pentobarbital (100
mg/kg) and transcardially perfused with saline followed by 4%
paraformaldehyde. The brains were removed and immersed in
4% paraformaldehyde for 24 h, and then washed with phosphate-
buffered saline (PBS) and submerged in 30% sucrose in PBS for
48 h. The brains were then frozen on dry ice and sliced (40µm
thick sections) using a cryostat microtome, and serial coronal
sections were collected at the level of the insula. Sections were
mounted on glass slides (coated with 2% gelatin), stained with
Cresyl violet, covered with neutral balsam mounting media, and
subsequently examined under a microscope (Leica, Germany) to
verify the placement of the electrode.
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Real Time Quantitative PCR (RT-qPCR)
Analysis
Three rats were bilaterally implanted with DBS electrodes in
the anterior insula (AI) and received continuous electrical
stimulation (130Hz, 150 µA, 90 µs) for 14 days. RT-qPCR
was performed to analyze the expression of activity-dependent
genes (Arc, c-fos, and Npas4) in the AI of control and DBS
rats. Total RNA was extracted from AI using TRIzol reagent
(Invitrogen; Thermo Fisher Scientific, Inc.) and then reverse
transcribed to cDNA using the PrimeScriptTM RT Reagent Kit
with gDNA Eraser (Takara) according to the manufacture’s
recommendations. All qPCR amplifications were performed in
triplicates by a SYBR-based assay using SYBR Green PCRMaster
mix (Takara Biotechnology Co., Ltd.) and a 7,300 Real-Time PCR
system (Applied Biosystems; Thermo Fisher Scientific, Inc.). The
PCR reactions were performed with the following conditions:
2min at 95◦C, 40 cycles of 95◦C for 15 s, 55◦C for 30 s, 72◦C
for 30 s. Ubiquitin C (Ubc) served as the reference gene. The
primer sequences (5′-3′) for Arc, c-fos, Npas4 and Ubc are listed
as follows: Arc, forward- AGTCTTGGGCAGCATAGCTC,
reverse-GTATGAATCACTGCTGGGGGC; c-fos, forward-
CCGACTCCTTCTCCAGCAT, reverse-TCACCGTGGGGA
TAAAGTTG; Npas4, forward- CTGCATCTACACTCGCAAGG,
reverse- GCCACAATGTCTTCAAGCTCT; Ubc, forward-
ACACCAAGAAGGTCAAACAGGA, reverse-CACCTCCCC
ATCAAACCCAA. The relative changes in gene expression were
calculated using 2−1Cq method and Cq is the quantification
cycle.

iTRAQ-Based Proteomics Analysis
Tissue Preparation, Protein Extraction and

Quantification
The animals (three rats from each saline, morphine, and
morphine-DBS groups in experiment 1) were anesthetized by
inhalation of isoflurane (3–5%) and decapitated immediately
after the behavioral test on day 30 during withdrawal phase. The
whole brain was removed and placed into the brain slice mold
on ice and 1-mm thick slices close to the electrode channel were
obtained. The anterior insula was isolated and lysed in the lysis
buffer (100mM ammonium bicarbonate, 8M urea, 0.2% SDS, pH
= 8). The extracted protein pellets were dissolved in the buffer
(6M urea, 100mM triethylammonium bicarbonate TEAB, pH=

8.5) and the protein concentration was determined by Bradford
protein quantitative kit.

iTRAQ Labeling of Peptides and LC-MS/MS Analysis
The protein samples were trypsinized in TEAB buffer overnight,
mixed with formic acid and centrifuged for 5min at room
temperature. The supernatant was loaded to the C18 desalting
column and eluted by elution buffer (0.1% formic acid,
70% acetonitrile). The eluents were collected, lyophilized,
reconstituted with TEAB buffer and mixed with iTRAQ labeling
reagent with shaking for 2 h at room temperature. The reaction
was stopped by adding 50mM Tris-HCl (pH = 8). All labeling
samples were fractionated in a Rigol L-3000 HPLC system.
Retained peptides were eluted with iTRAQ Mobile phase A
(2% acetonitrile, pH = 10) and B (98% acetonitrile, pH = 10).

Ten fractions were collected and lyophilized under vacuum.
For transition library construction, shotgun proteomics analyses
were performed using an EASY-nLCTM 1200 UHPLC system
(Thermo Fisher) coupled with an Q Exactive HF(X)mass
spectrometer (Thermo Fisher) operating in the data-dependent
acquisition (DDA) mode. Sample was injected into a C18 Nano-
Trap column (2 cm × 75µm, 3µm). Peptides were separated in
an analytical column (15 cm × 150µm, 1.9µm), using a linear
gradient elution. The separated peptides were analyzed by Q
Exactive HF(X)mass spectrometer (Thermo Fisher). The top 40
precursors of the highest abundant in the full scan were selected
and fragmented by higher energy collisional dissociation (HCD)
and analyzed in MS/MS. The raw data of MS detection was
named as “.raw.”

Protein Identification and Quantification
The resulting spectra from each run were searched separately
according to protein database by the search engines: Proteome
Discoverer 2.2 (PD 2.2, Thermo). The searched parameters are
set as follows: mass tolerance for precursor ion was 10 ppm and
mass tolerance for product ion was 0.02 Da. Carbamidomethyl
was specified as fixed modifications, Oxidation of methionine
(M) and iTRAQ plex were specified as dynamic modification,
acetylation and iTRAQ plex were specified as N-Terminal
modification in PD 2.2. A maximum of two miscleavage sites
were allowed.

In order to improve the quality of analysis results, the software
PD 2.2 further filtered the retrieval results: Peptide Spectrum
Matches (PSMs) with a credibility of more than 99% was
identified PSMs. The identified protein contains at least one
unique peptide. The identified PSMs and protein were retained
and performed with FDR (false discovery rate) no more than
1.0%. The protein quantitation results were statistically analyzed
by Student’s t-test. Differentially expressed proteins (DEPs) were
identified as proteins with a fold change ratio > 1.2 or < 0.83 (p
< 0.05).

Statistical Analysis
Data are presented as mean± standard error of the mean (SEM).
Two-way repeated measures analysis of variance (ANOVA)
were performed to determine statistical differences in morphine
preference experiments. Bonferroni post hoc analyses were used
for multiple comparisons. One-way ANOVA was used to assess
differences in locomotion activity, anxiety-like behavior, and
novel object recognition. Multiple unpaired Student’s t-tests
were used to analyze qPCR results. P < 0.05 was considered
statistically significant. SPSS 23.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 8 (GraphPad Software, La Jolla,
CA) were used to perform all statistical analyses and plot
graphs, respectively.

RESULTS

Verification of DBS Electrode Placement
The DBS device consists of an implantable pulse generator
(IPG) and two electrodes (Figure 1A). We bilaterally implanted
the electrodes to rat anterior insula (AI) and placed the IPG
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subcutaneously in the rat (Figure 1B). After the completion of
all behavior tests, the animals were sacrificed followed by the
removal of the electrodes. We further prepared brain coronal
sections stained with cresol violet and verified the placement of
electrodes (Figures 1C,D). Only the rats with correct electrode
placement in the AI were included in the analysis of behavior
tests. The locations of electrode tips in the AI from different
groups of animals were displayed in Figure 1D.

Continuous High Frequency-DBS of
Anterior Insula Suppresses Relapse of
Morphine-Induced Conditioned Place
Preference (CPP) During the Withdrawal
Stage
To evaluate whether our HF-DBS protocol is sufficient to
modulate the activity in AI, we analyzed the expression of
activity-dependent genes (Arc, c-fos, and Npas4) in AI of rats
that received continuous HF-DBS (130Hz, 150 µA, 90 µs) for
14 days. The levels of c-fos and Npas4 but not Arc transcripts
were significantly increased in DBS rats compared to control
rats (Supplementary Figure 1). The injection of morphine
(10 mg/kg) for eight alternate days resulted in a significant
preference for morphine-paired white chamber in three groups
of rats (morphine, morphine-DBS-sham, and morphine-DBS),
as compared with the saline-treated group (Figures 2A,B, day
9, post-C, two-way repeated measures-ANOVA followed by
Bonferroni multiple comparison test, p < 0.001) [phase: F(4, 47)
= 332.771, p < 0.001; group: F(3, 50) = 323.751, p < 0.001;
interaction: F(12, 147) = 20.674, p < 0.001]. We further implanted
bilateral DBS electrodes in two groups of rats (morphine-DBS-
sham, and morphine-DBS) on day 10 followed by recovery for
5 days (Figure 2A). On day 15, the expression of morphine
CPP was persistent in both morphine group and electrode-
implanted groups (morphine-DBS-sham and morphine-DBS,
Figures 2A,B,D). All groups of rats underwent subsequent 25-
day period of abstinence for drugs and the CPP tests were
performed on day 16, 30, and 40 (Figure 2A). For morphine-
DBS rats, the IPG delivering continuous HF-DBS was turned on
for 14 consecutive days (Day 16–30) followed by 10-day off (Day
31–40). On day 30, the morphine CPP was significantly reduced
in DBS rats, as compared with both morphine and morphine-
DBS-sham rats (Figure 2C, Bonferroni Post hoc comparisons
analysis, p < 0.001). In contrast, Bonferroni’s test showed that
there was no significant among morphine-DBS (61.9 and 59.9%),
morphine-DBS-sham (62.5 and 60.6%), and morphine (63.3 and
61.6%) groups in the expression of morphine-CPP on days
16 (p = 0.615, p = 0.222, p = 0.462) or 40 (p = 0.558, p
= 0.154, p = 0.558) (Figure 2C). Therefore, continuous HF-
DBS suppressed the morphine CPP during the withdrawal stage.
We also analyzed the total distance traveled during CPP tests
in saline, morphine, morphine-DBS-sham, and morphine-DBS
groups. Two-way ANOVA showed that there was no significant
change in total distance traveled among the four groups during
the preconditioning, post-conditioning and withdrawal phases
[phase: F(4, 164) = 0.401, p = 0.808; group: F(3, 41) = 0.075, p =

0.973; interaction: F(12, 164) = 1.091, p= 0.371].

Continuous HF-DBS Accelerates
Extinction and Prevents Priming-Induced
Relapse of Morphine-Induced CPP
Next, we evaluated whether continuous HF-DBS could affect
extinction and prevent subsequent recurrence of morphine-
CPP. Rats from morphine-DBS group as well as morphine-
DBS-sham, morphine and saline groups received 10 days of
extinction trials (Day 16–25, drug-free CPP tests) followed by a
morphine reinstatement on day 26 (Figure 3A). Continuous HF-
DBS (130Hz, 150 µA, 90 µs) was delivered to AI of morphine-
DBS rats during this period, whereas morphine-DBS-sham rats
receive no electrical stimulation. In morphine-DBS rats, 5-
day extinction trains completely eliminated the expression of
morphine CPP on day 20, which was significantly different from
morphine and morphine-DBS-sham rats (Figures 3A,B, Two-
way repeated-measures ANOVA, [phase: F(12, 29) = 195.486, p
< 0.001; treatment: F(3, 40) = 152.651, p < 0.001; interaction:
F(36, 93) = 5.392, p < 0.001]; Post hoc test, Extinction day
20: p < 0.001 for morphine-DBS vs. morphine-DBS-sham and
morphine). In contrast, 10-day extinction trials resulted in a
complete extinction in morphine and morphine-DBS-sham rats
on day 25 (Figure 3B). These findings suggest continuous HF-
DBS of AI facilitates extinction of morphine place preference.

Twenty-four hours after the complete extinction of morphine
place preference, each rat was given a priming dose injection of
morphine (2 mg/kg) and CPP test was immediately conducted
for assessing associative reward/drug-associatedmemory. On day
26, morphine and morphine-sham-DBS rats showed significant
reinstatement of preference to the morphine-paired side as
compared with their previous test on day 25 (38.4%→ 66.4% for
morphine, p < 0.001; 38.4%→ 65.8% for morphine-sham-DBS,
p < 0.001, Figure 3B) and as compared with morphine-DBS or
saline rats (p < 0.001, Figure 3B). The above results indicate
continuous HF-DBS prevents extinguished morphine-seeking
relapse induced by a priming dose injection.

Continuous HF-DBS of Anterior Insula (AI)
Does Not Influence Locomotor Activity,
Anxiety-Like Behavior and Novel Object
Recognition
We further examined whether continuous HF-DBS caused non-
specific effects. The locomotor activity and anxiety-like behavior
were evaluated by the open field test. After 5-day recovery from
electrode implantation, continuous HF-DBS (130Hz, 150 µA, 90
µs) was delivered to AI in DBS rats for 24 h prior to and during
the test task (Figure 4A). The DBS-sham rats received no active
electrical stimulation. One-way ANOVA showed that there were
no significant differences in the total traveled distance in the open
field area [F(2, 17) = 0.307, p = 0.740] and the time spent in the
peripheral zones of the open-field [F(2, 17) = 0.022, p = 0.978]
among control, DBS and DBS-sham rats (Figures 4B,C).

The NOR test was subsequently performed to assess the
effect of DBS on recognition memory. HF-DBS was continuously
applied to AI in DBS rats during the habituation, familiarization
and choice phases of the test (Figure 4A). The recognition
index did not differ among the control, DBS-sham and DBS
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FIGURE 2 | Continuous high frequency-DBS (HF-DBS) of anterior insular (AI) suppresses morphine-induced conditioned place preference (CPP). (A) Experimental

timeline. The morphine CPP protocol starts with a pre-conditioning test (Day 0, pre-C) followed an 8-day conditioning (i.p. 10 mg/kg morphine or 0.9% saline on

alternating days) and a post-conditioning test (Day 9, post-C). Once the morphine CPP was successfully established, the rats were bilaterally implanted with DBS

electrodes to AI (Day 10) followed by a 5-day recovery and a CPP test was performed (Day 15, DBS-I). The rats further underwent morphine abstinence for 25 days.

HF-DBS (130Hz, 150 µA, 90 µs) was continuously applied for the first 14 days (Day 16–30) and CPP tests were performed (Day 16, 30, and 40). (B) The 8-day

morphine conditioning induced significantly higher morphine preferences than the saline control group (Bonferroni’s post hoc test, day 9, post-C, ***p < 0.001 vs.

saline control) [phase: F (4, 47) = 332.771, p < 0.001; group: F (3, 50) = 323.751, p < 0.001; interaction: F (12, 147) = 20.674, p < 0.001]. Morphine elicited significant

side preference in electrodes-implanted rats and the morphine-induced CPP persisted 5-day after the implantation of DBS electrodes (Bonferroni’s post hoc test, day

15, ***p < 0.001 vs. saline control). (C) Continuous HF-DBS (Day 16–30) reduced morphine-induced CPP on day 30 as compared with the morphine-DBS sham

group (Bonferroni’s post hoc test, day 30, ***p < 0.001 vs. saline group, #p < 0.001 vs. morphine- and morphine-sham-DBS). The morphine-induced CPP recurred

10 days after turning off DBS in the morphine-DBS group (Day 40) (***p < 0.001 vs. saline group). (D) Representative heat maps of CPP tests in electrodes-implanted

before morphine conditioning and post electrodes implantation. White chamber: morphine-paired chamber; black chamber: saline-paired chamber. Data are shown

as mean with SEM. Two-way repeated ANOVA with post-hoc Bonferroni test, n = 15 for saline and morphine, n = 11 for morphine- DBS -sham and n = 13 for

morphine-DBS groups.

groups [Figure 4D, one-way ANOVA, [F(2, 17) = 0.355, p =

0.707]], suggesting continuous HF-DBS of AI does not impair
recognition memory.

Identification of Differential Expression
Proteins in the AI Associated With HF-DBS
Intervention of Morphine Addiction by
iTRAQ-Based Proteomics Analysis
We performed the quantitative proteomic approach based on
iTRAQ coupled with 2D-LC MS/MS to identify the key proteins
in the AI associated with DBS therapy of morphine addiction.
We prepared AI protein samples from three animals in each
saline, morphine, and morphine-DBS groups in experiment
1 immediately after the behavioral test on day 30 during

withdrawal phase. A total of 4,650 non-redundant proteins were
identified by global proteomic analysis with >99% confidence
in correct sequence identification. Proteins with significant
quantitative difference among groups (ratio fold change > 1.2
or < 0.83, p < 0.05) were defined as differential expression
proteins (DEPs). The list of DEPs identified by the comparisons
(morphine-DBS vs. morphine, morphine vs. saline, morphine-
DBS vs. saline) is shown in Supplementary Table 1. Our
results showed that eight DEPs were commonly present in
the comparison groups of morphine-DBS vs. morphine and
morphine vs. saline and 3 out of 8 DEPs (Q8R462, B2RYT9,
and O88658) were also identified in the morphine-DBS vs.
saline comparison (Figure 5A). These eight common DEPs
were A0A0G2K526 (Guanine nucleotide-binding protein G[olf]
subunit alpha), A0A0G2K933 (Eukaryotic translation initiation
factor 4E family member 2), B2RYT9 (Translational activator
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FIGURE 3 | Continuous high frequency-DBS (HF-DBS) of anterior insula (AI) accelerates extinction and prevents priming-induced relapse of morphine-induced

conditioned place preference (CPP). (A) Experimental scheme. After an 8-day morphine-CPP training, the rats were bilaterally implanted with DBS electrodes to AI

(morphine-DBS and morphine-DBS-sham groups) followed by a 5-day recovery. All groups of rats were further subjected to drug-free daily extinction sessions (Day

16–25). HF-DBS (130Hz, 150 µA, 90 µs) was continuously applied in morphine-DBS rats. Twenty-four hours after the complete extinction, all groups of rats received

a priming dose of morphine (2 mg/kg) followed by a CPP test. (B) The morphine-DBS group expressed the complete extinction of morphine-induced CPP on day 20,

which were 5 days earlier than both morphine and morphine-DBS-sham groups (Two-way repeated-measures ANOVA, phase: F (12, 29) = 195.486, p < 0.001;

treatment: F (3, 40) = 152.651, p < 0.001; interaction: F (36, 93) = 5.392, p < 0.001; Post hoc test, Extinction day 5: p < 0.001 for morphine-DBS vs.

morphine-DBS-sham and morphine). On day 26, the priming injection of morphine failed to reinstate morphine-induced CPP in the morphine-DBS group (p < 0.001

for morphine or morphine-DBS-sham vs. saline or morphine-DBS). Data are shown as mean with SEM. Two-way repeated ANOVA with post hoc Bonferroni test. 6=p

< 0.001, Saline vs. morphine or morphine-DBS or morphine-DBS-sham. ***p < 0.001, morphine-DBS vs. morphine or morphine-DBS-sham. #p < 0.001, morphine

or morphine-DBS-sham vs. saline or morphine-DBS. n = 12 for saline and morphine, n = 9 for morphine- DBS -sham and n = 11 for morphine-DBS groups.

of cytochrome c oxidase 1), A0A140TAH3 (Glutamate-rich
WD repeat-containing protein 1), O88658 (Kinesin-like protein
KIF1B), Q64350(Translation initiation factor eIF-2B subunit
epsilon), Q8R462 (Amino acid transporter), Q9WTT7 (Basic
leucine zipper and W2 domain-containing protein 2) (Table 1).
Notably, six proteins (A0A0G2K526, B2RYT9, A0A140TAH3,
O88658, Q64350, and Q9WTT7) were significantly deceased in
the morphine group post withdrawal as compared with saline
group, but increased in the morphine-DBS group (Figure 5B
and Table 1). In contrast, the expression levels of two proteins
(A0A0G2K933 and Q8R462) were significantly down-regulated
in the morphine group but up-regulated after DBS intervention
(Figure 5B and Table 1).

DISCUSSION

Here, we provide direct experimental evidence that DBS of
anterior insula is a potential approach to treat substance

use disorder. Using a rodent morphine addiction model, we
have demonstrated continuous HF-DBS of anterior insula
suppresses the morphine-induced CPP during the withdrawal
stage, facilitates the extinction and prevents the priming-induced
relapse of morphine CPP. We also have shown that continuous
HF-DBS of anterior insula did not alter locomotor activity during
open field and CPP tests, anxiety-like behavior and novel object
recognition in rats.

In this study, we first established a stable morphine CPP rat
model, followed by DBS electrode implantation and stimulation
intervention, mimicking the clinical treatment situation in pre-
clinical models (30, 31). In addition, we used a new-designed
implantable stimulus generator which was programmed through
the skin by an external wireless device. This new DBS apparatus
allows unrestricted moving and feeding of experimental animals
and delivers long-term chronic stimulation (at the effective
voltage for over 3 months), which is more advantageous than
the majority of previous DBS devices used for rodent models
(32, 33). We have observed that HF-DBS increases the expression

Frontiers in Psychiatry | www.frontiersin.org 8 October 2020 | Volume 11 | Article 577155

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Chang et al. DBS of Anterior Insula for Addiction

FIGURE 4 | Behavior performance of rats after the continuous high frequency DBS (HF-DBS) stimulus of anterior insula (AI). (A) Experimental scheme. The rats in

DBS and DBS-sham groups were bilaterally implanted with DBS electrodes to AI followed by a 5-day recovery. HF-DBS (130Hz, 150 µA, 90 µs) was continuously

applied in DBS-rats between day 6 and 9. The open field test was performed on day 7 followed by the novel object recognition (NOR) test on day 8 and 9. (B)

Representative track maps of rats from control, DBS-sham and DBS groups in the open field tests. (C) Total traveled distance in the arenas and time spent in the

peripheral regions were measured in the open field tests to assess the locomotor activity and anxiety-like behavior, respectively. There were no significant differences

among groups on locomotor activity [F (2, 17) = 0.307, p = 0.740] and in the time spent in the peripheral zones of the open-field arena [F (2, 17) = 0.022, p = 0.978]. (D)

The NOR test was performed to evaluate memory and cognitive functions. The recognition index was calculated by the ratio of time spent exploring the novel object

to the total time of both novel and familiar objects. There were no significant differences in the recognition index among control, DBS-sham and DBS groups [F (2, 17) =

0.355, p = 0.707]. Data are shown as mean with SEM. n = 6 for three groups.

of activity-dependent genes c-fos and Npas4 in the AI, which
suggests our stimulation protocol modulates AI cellular activity
and is in line with previous DBS studies (34–37).

The insula cortex is considered as the central hub of
interoception that plays an important role in the onset and
maintenance of substance use disorder (38–42). Pharmacological
inactivation or lesion of the anterior/posterior insula can reduce

relapse of drug seeking (15, 16, 18, 19, 43). For instance, a
reversible inactivation of the anterior insula by injection of
muscimol and baclofen decreased relapse to methamphetamine
seeking after voluntary abstinence in a rat model (44). Moreover,
HF-DBS of the rat insular region significantly attenuated
nicotine-taking, under both schedules of reinforcement, as well
as nicotine-seeking behavior induced by cues and priming (17).
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FIGURE 5 | HF-DBS reverses the expression of morphine addiction-related proteins in the anterior insula during the withdrawal phase. (A) Venn diagram for the

number of differentially expressed proteins (DEPs) identified by the three comparisons morphine-DBS vs. morphine, morphine vs. saline and morphine-DBS vs. saline.

Eight DEPs were identified commonly in the two comparisons (morphine-DBS vs. morphine and morphine vs. saline) and 3 out of 8 DEPs were also identified in the

morphine-DBS vs. saline comparison. (B) Relative expressions of 8 differential expressed proteins among saline, morphine, and morphine-DBS groups. Six proteins

(A0A0G2K526, B2RYT9, A0A140TAH3, O88658, Q64350, and Q9WTT7) were significantly down-regulated in the morphine group as compared with the saline group

(morphine vs. saline, p < 0.05) but up-regulated in the morphine-DBS (morphine-DBS vs. morphine, p < 0.05), whereas two proteins (A0A0G2K933 and Q8R462)

increased in the morphine group (morphine vs. saline, p < 0.05) but decreased in the morphine-DBS (morphine-DBS vs. morphine, p < 0.05). The expression of

differentially expressed protein was assessed with unpaired Student’s t-tests. *p < 0.05. n = 3 for saline, morphine, and morphine-DBS groups.

TABLE 1 | The list of differentially expressed proteins in the anterior insula that overlap between morphine vs. saline and morphine-DBS vs. morphine and morphine-DBS

vs. saline comparison.

Protein ID Protein name Morphine vs. Saline Morphine-DBS vs. Morphine Morphine-DBS vs. Saline

Down/Up Fold

Change

P-value Down/Up Fold

Change

P-value Down/Up Fold

Change

P-value

A0A0G2K526 Guanine nucleotide-binding

protein G(olf) subunit alpha

Down 0.7648 0.0294 Up 1.7456 0.0217

A0A0G2K933 Eukaryotic translation initiation

factor 4E family member 2

Up 1.2197 0.0267 Down 0.7490 0.0007

B2RYT9 Translational activator of

cytochrome c oxidase 1

Down 0.7964 0.0443 Up 1.9842 0.0012 Up 1.5803 0.0020

A0A140TAH3 Glutamate-rich WD

repeat-containing protein 1

Down 0.7002 0.0391 Up 1.7305 0.0461

O88658 Kinesin-like protein KIF1B Down 0.7763 0.0125 Up 1.6088 0.0001 Up 1.2489 0.0049

Q64350 Translation initiation factor

eIF-2B subunit epsilon

Down 0.5732 0.0127 Up 1.6132 0.0026

Q8R462 Amino acid transporter Up 1.3149 0.0213 Down 0.5170 0.0008 Down 0.6797 0.0338

Q9WTT7 Basic leucine zipper and W2

domain-containing protein 2

Down 0.8280 0.0028 Up 1.3536 0.0015

Our finding that the relapse of morphine CPP and morphine
priming-induced reinstatement are blocked by continuous
HF-DBS is in line with aforementioned studies, suggesting
the anterior insula is a potential neuromodulation target in
the prevention of drug relapse. The high-frequency electrical
stimulation has been shown to inhibit neuronal activity of the
stimulated area and cause a functional lesion, although the
electrical effects of DBS are strongly influenced by the parameters

(single pulse or continuous stimulation, amplitude, voltage,
polarity, frequency, pulse width, pulse shape) and temporal
aspects of stimulation itself (45). Consistent with our findings,
previous studies have shown that HF-DBS in various brain
regions could affect different aspects of drug reinforcement.
For example, HF-DBS of the orbitofrontal cortex significantly
blocked the establishment and reinstatement of morphine
induced CPP (46). HF-DBS of the bilateral nucleus accumbens
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prevented the morphine-induced reinstatement of morphine
seeking in the CPP test and accelerated the rate of decay of
drug craving in morphine-preference rats (47). Interestingly, HF-
DBS of the dorsal but not ventral region of the ventral striatum
impaired extinction in morphine-CPP (35).

The establishment of drug-chamber association is a process
of experiencing and evaluating unprecedented drug use
interoceptive effects. During the withdrawal and extinction
phase, when animals are placed in CPP chambers, interceptive
central representative of drug use in insula is reactivated, which
promotes associative reward/drug-associated memory through
interoception processing (48, 49). Therefore, in this study
animals tend to stay in morphine-associated context for a longer
time in order to obtain the expected interoceptive effect of drug
use. This is a form of decision-making behavior that is influenced
by drug use interoception processing. Because the anterior
insula is involved in the process of interoception processing and
decision-making in associative reward/drug-associated memory,
continuous HF-DBS of this area disturbs the preference for
morphine reward.

The insular cortex is a part of the cerebral cortex, and connects
with addiction-related areas to form a wide range of addictive
brain network, and plays an important role in the three stages
of substance use disorder cycle (23). Through its projections to
the pre-frontal cortex, the amygdala and the ventral striatal nodes
of the corticostriatal circuitry, the anterior insula influences
executive functions and reward-related behavior (50). In rodents,
the anterior insula is associated with decision-making (51),
impulsivity, and vulnerability to develop compulsive behavior
(50). The damage or inactivation of anterior insula can also
affect the intake of nicotine, cocaine seeking and the response
to cocaine related cues (19, 52), suggesting a role of insular
mediated interoceptive mechanism in the reinforcement effect
and incentive properties of addictive drugs, which can easily
increase the desire for addictive drugs and guide reward seeking
behavior (53, 54). HF-DBS inactivated neurons in the insular
cortex of stimulated area and significantly decreased nicotine
self-administration and cue- and priming-induced reinstatement
of nicotine seeking. These neurons required longer durations
of HF-stimulation to elicit this response (17). Similarly, the
results of this study also showed that the relapse of morphine
CPP occurred again on day 40 post withdrawal after 10 days
of cessation of DBS. Therefore, continuous HF-DBS inactivated
neurons in the stimulated area, prevent the further processing
of the information of drug use interoceptive effect and output
the signal to the downstream target involved in the high-level
cognitive decision-making process.

This study has explored the effect of HF-DBS in insular on
morphine addiction animal models, but whether LF-DBS or the
combination of HF and LF-DBS can also affect the development
of morphine addictive behaviors requires further studies. In
addition, the therapeutic effect of DBS depends on different
stimulation parameters that have not been examined in detail
in this study. Previous studies have shown that administration
of HF-DBS in different brain areas either in extinction (45) or
reinstatement sessions (55, 56) could prevent the reinstatement
of drug seeking during the reinstatement session. However, in

this study we applied HF-DBS to AI in both extinction and
reinstatement sessions and could not distinguish the long-term
or acute therapeutic effect of DBS. Substance use disorder is a
chronic recurrent brain disorder, so the exact therapeutic effect
of DBS remains to be determined.

Our proteomic analysis reveals that 17 proteins are
differentially expressed in the anterior insula after 8-day
morphine exposure and subsequent withdrawal as compared
with saline-treated rats. Previous studies have reported that
the expression levels of four DEPs (CaM kinase-like vesicle-
associated protein, Guanine nucleotide-binding protein G[olf]
subunit alpha, Serine protease inhibitor A3K, Striated muscle-
specific serine/threonine-protein kinase) are altered in the brain
or heart by morphine treatment and withdrawal (57–59). The
rest of 13 DEPs are not identified in the Morphinome Database
(addiction-proteomics.org) which includes the morphine-
regulated proteins from 29 published proteomics studies (60).
The discrepancy can be explained by a variety of factors, for
example, morphine doses and times of exposure, types of
animals, tissues and brain sub-regions. Another important
finding of this study is that the expression of 8 out of 17
DEPs are reversed by HF-DBS intervention. For example,
guanine nucleotide-binding protein (olf) subunit alpha (Gαolf)
is down-regulated in the anterior insula of morphine-treated rats
but up-regulated in DBS-morphine rats. Gαolf is a subunit of
trimeric GTP-binding protein (G-protein) stimulating adenylyl
cyclase enzymes, which regulate the cAMP signaling pathway
and further modulate brain functions such as synaptic plasticity
drug dependence (59, 61). In the rat brain, Gαolf is mainly
expressed in olfactory neurons and striatum (62), but it is also
present in other sub-regions including the pre-frontal cortex
(63). In agreement with our results, a previous study has shown
that chronic morphine treatment decreases the expression of
Gαolf in the striatal presynaptic fractions of rats (57). Similarly,
repeated injection of amphetamine or cocaine results in a
markedly decrease of Gαolf in the rat nucleus accumbens
(64, 65). Although the role of altered Gαolf expression in drug
dependence remains unclarified, the decreased expression of
Gαolf may reduce the coupling of G-protein-coupled receptor
(GPCR)-Gαolf -adenylyl cyclase and downstream signaling
pathways (66). The effects of DBS on the cellular and molecular
level are complex (45), but our findings that DBS reverses the
expression of several morphine-regulated proteins may provide
some clues to the underlying mechanisms of DBS suppression of
morphine-induced CPP.

One limitation of this study is that only male animals were
used. Although more than 80% of the addiction research is
conducted in males, accumulating evidence has showed that
addiction occurs differently in males and females (67–71).
Compared to males, females are more likely to make a rapid
transition from casual drug use to dependence, experience
higher levels of craving and relapse during withdrawal, and
consume more drugs during relapse (72, 73). During abstinence,
females experience stronger drug cravings (74). This is mainly
due to the ovarian hormone cycle in females, and short-term
exposure to estradiol will increase drug availability (75). Animal
studies further indicate that estradiol may be necessary for the
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development of substance use disorder. In rodents, short-term
estradiol intake in female rats enhanced the acquisition and
escalation of drug intake, drug abuse motivation and relapse like
behavior (76–78). These findings suggest that sex and hormonal
status are the main determinants of substance use disorder, and it
is essential to include bothmales and females in addiction studies.
The effects of HF-DBS in female morphine-addiction rats will be
further explored.

In conclusion, we have shown that continuous HF-DBS in
the bilateral anterior insula prevents the relapse of morphine
place preference after withdrawal, facilitates its extinction,
blocks the reinstatement induced by morphine priming and
reverse the expression of morphine-regulated proteins, but does
not affect locomotor activity, anxiety-like behavior and novel
object recognition. In view of previous work and this study,
manipulation of insular activity by pharmacological or other
means, such as DBS, can be a potential intervention to treat
substance use disorder.
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