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Abstract: Sweet bee venom (sBV) contains various pharmacologically active components of bee
venom (BV), but it is modified via the removal of the harmful substances found in BV. Thus, sBV has
been used for pain relief in Oriental medicine but has only recently been applied for the treatment of
various diseases. In this study, we examined the pharmacological effects and immunomodulatory
functions of sBV in THP-1 monocytic leukemia cells. Growth inhibition and cell death were observed
according to the concentration of sBV. However, the rapid collapse of cell cycle distribution was
shown at 20 µg/mL sBV treatment, indicating that sBV led to cell death or acute cell rupture according
to concentration. sBV administration activated Caspase-9, PARP1, RIPK1, and RIPK3, suggesting
that the pharmacological actions of sBV were associated with induction of apoptosis and necroptosis.
On the other hand, sBV or LPS administration increased cytokine expression, including IL-1β,
and showed synergistic cell death in combinatory treatment conditions. Moreover, combinatory
administration of sBV and LPS induced severe damage or death during egg development. This result
implies that sBV exhibits both pharmacological and toxic effects depending on its concentration.
Therefore, sBV might be a promising therapeutic approach, but optimal concentration should be
considered before treatment.

Keywords: sweet bee venom (sBV); THP-1 cells; apoptosis; necroptosis; cell rupture

1. Introduction

Bee venom (BV) is a well-known crude extract derived from stingers of Apis mellifera
and contains various pharmacologically active components, including melittin, apamin,
phospholipase A2 (PLA2), hyaluronidase, histamine and epinephrine [1,2]. Among these,
melittin is counted as a major component (40–50%) of bee venom, followed by PLA2
(10–12%), and apamin (2–3%), respectively [3,4].

Traditionally, BV has been used to treat pain relief as a form of acupuncture in Oriental
medicine [5]. BV acupuncture, remarkably, has shown antihyperalgesic effects in spinal
cord dysfunction. This treatment has been assumed to involve activated spinal alpha2-
adrenoceptors [6]. In addition, BV acupuncture alleviates acute cold and mechanical
allodynia induced by oxaliplatin administration in A-fiber dorsal root ganglia neuronal
cells, suggesting that membrane action potential might be changed by BV treatment [7].
Recently, therapeutic BV has also been applied as a possible treatment for inflammatory
diseases [8–10]. BV suppressed NO production and decreased the levels of iNOS, COX-2,
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NF-κB and MAPK in RAW264.7 macrophages, suggesting that BV has an anti-inflammatory
effect [11]. BV acupuncture significantly alleviated ear skin symptom severity and thickness,
inflammation, and lymph node weight in trimellitic anhydride (TMA)-induced atopic
dermatitis mouse models and inhibited the expression levels of both T helper cell type 1
(Th1) and Th2 cytokines at the molecular level [12]. Mellitin, a major component of BV
composed of 26 amino acids, reduced paw edema and nociceptive behaviors in the injected
side of the paw via decreased Fos expression in the superficial layer of the lumbar spinal
cord [13]. PLA2 decreased lipid accumulation in the liver and reduced kidney inflammation
in high-fat diet mice through immunomodulatory effects on macrophages, suggesting that
bvPLA2 could be a potential therapeutic candidate on obesity by regulating macrophage
homeostasis in adipose tissue [14].

However, another important concern during BV treatment is acute induction of ana-
phylaxis [15]. A case report showed that a patient with BV acupuncture experienced
intravascular coagulation, and finally death by hypovolemic shock, even though the victim
had no history of any medical disorders, reaction to bee stings, or allergies [16]. A cohort
study showed that the median frequency of adverse reactions was 28.87% of patients who
experienced venom immunotherapy, suggesting that BV therapy should be cautiously
applied, considering quality and quantity [17]. As part of various efforts, sweet bee venom
(sBV) has been developed, removing the harmful substances of BV that could trigger ana-
phylaxis [18]. A case report suggested that sBV treatment showed more effective results
than BV treatment in controlling itching but not in controlling pain [19].

For this reason, sBV might show promising pharmacological efficacy on various
disease models compared to BV. Although sBV has been suggested as a safer product than
BV, further studies are required to clarify the molecular mechanism of sBV administration.
Specifically, a scientific investigation should be introduced on the safety and effectiveness of
sBV to utilize as a novel therapeutic approach. Therefore, we performed these experiments
to examine the pharmacological effects and immunomodulatory functions of sBV in THP-1
monocytic leukemia cells. Interestingly, we found that sBV administration showed double-
edged effects on the induction of cell death or cell rupture according to its concentration or
combinatory treatment condition with LPS.

2. Materials and Methods
2.1. Cell Culture and Reagents

THP-1 cells were obtained from ATCC (USA) and maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Sweet bee
venom (sBV) was kindly provided by the Korean Society of Acupuncture. The sBV was dis-
solved in PBS (50 µg/mL) and kept at −20 ◦C. Lipopolysaccharides (LPS) were purchased
from Sigma (USA) and dissolved in PBS (1 µg/mL), and aliquots were stored in −20 ◦C.

2.2. Cell Viability Assay

The sBV was treated in culturing THP-1 cells in a dose-dependent manner, and then
cells were counted with 0.4% Trypan blue staining solution (Thermo Fisher, Waltham, MA,
USA). Living cells and dead cells were observed with a phase-contrast microscope. In total,
1 × 104 cells were seeded in 96-well plates for MTT assay. The sBV was administrated
in each well in triplicate and incubated for up to 48 h. Cell viability was determined by
incubation with 0.5 mg/mL MTT solution (Sigma Aldrich, Saint Louis, MO, USA) for
4 h. The amount of MTT-formazan was determined at 570 nm absorbance. The ATP
level was measured with a molecular probe ATP determination kit using a luminometer
(Thermo Fisher, Waltham, MA, USA). All the reagents were prepared as recommended by
the manufacturer’s protocol. Luciferase activity was obtained on a luminometric reader
(BioTek, Winooski, VT, USA). The procedure was repeated at least 3 times.
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2.3. FACS Analysis

The THP-1 cells were cultured after treatment with various concentrations of sBV.
The cells were harvested, washed twice in PBS, and fixed in 75% ethanol for 24 h. Cells
were stained with propidium iodide (50 mg/mL) for 30 min. Cell cycle distribution was
analyzed with flow cytometric analysis according to Becton Dickinson’s protocols.

2.4. Western Blot Analysis

Proteins were extracted using RIPA lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM
NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) and supplemented with protea-
some inhibitors. Protein concentrations were measured using Bradford reagents (Thermo
Fisher, Waltham, MA, USA). A total of 50 µg of protein was separated by SDS-PAGE gel
electrophoresis and transferred into polyvinylidene fluoride (PVDF) membranes. The
membranes were incubated with specific primary antibodies, followed by horseradish
peroxidase-conjugated secondary antibodies (Santa Cruz, Dallas, TX, USA). Finally, the
proteins were detected using an ECL protein detection kit (Amersham Inc., Amersham,
Buckinghamshire, UK). Primary antibodies for caspase 9, phospho-RIPK1, RIPK1, RIPK3,
and IL-1β were purchased from CST (Danvers, MA, USA). PARP1, BAX, BCL2, Cyclin D3,
Cyclin A, Cyclin B, and β-actin were obtained from Santa Cruz (Dallas, TX, USA).

2.5. RT-PCR

Total RNA was isolated using the TRIzol reagent method (Thermo Fisher, Waltham,
MA, USA). cDNA was synthesized using 1 µg of total RNA with M-MLV reverse transcrip-
tase (Invitrogen, Waltham, MA, USA), and then followed by PCR amplification with
appropriate primer sets. Taq polymerase was purchased from Biosolution, Inc. (Su-
won, Kyunggi, Korea). Primer sets were described by the following: IL-1α (sense; 5′-
TCGCCAATGACTCAGAGGAA-3′ and antisense; 5′-TGGTCTTCATCTTGGGCAGT-3′), IL-
1β (sense; 5′-TCCAGCTACGAATCTCCGAC-3′ and antisense; 5′-TGGAGGTGGAGAGCTT
TCAG-3′), TNF-α (sense; 5′-GAGTGACAAGCCTGTAGCCCATGTTGTAGC-3′ and anti-
sense; 5′-GCAATGCCAAAGTAGCCTGCCCAGAC-3′), and β-actin (sense; 5′-GGATTCCTA
TGTGGGCGACGA-3′ and antisense; 5′-CGCTCGGTGAGGATCTTCATG-3′). Agarose gel
electrophoresis was performed to separate the PCR products.

2.6. Immunostaining

The cells were grown on coverslips for the immunostaining experiments. The cover-
slips were fixed in 4% paraformaldehyde for 10 min, permeabilized in 0.1% Triton X-100
for 10 min and blocked in 5% BSA for 1 h. Cells were incubated with primary anti-
body overnight at 4 ◦C, and then followed by incubation with Alexa Fluor 488 or Alexa
Fluor A555-conjugated secondary antibodies (Thermo Fisher, Waltham, MA, USA). A 4′,
6-diamidino-2-phenylindole (DAPI) was used for nuclear staining. Finally, the coverslips
were mounted onto glass slides with anti-fade reagent, and the fluorescence images were
observed using a Ti2 confocal microscope from the Kangwon Center for System Imaging
(Nikon, Minato, Tokyo, Japan).

2.7. Egg Development and Blood Vessel Counting

Brown Leghorn hen’s eggs were purchased from local farms near Chuncheon, Korea.
The eggs were horizontally placed in a 37 ◦C incubator to allow exposure of the chick
chorioallantoic membrane (CAM) by detaching the membrane from the eggshell (Day 0).
On day 3 of incubation, the eggshell was opened with sterilized scissors, and the CAM was
exposed. On day 8 of incubation, sBV or LPS was administrated on the CAM membrane
after a mixture with matrigel agarose as a scaffold (Corning Inc., Corning, NY, USA). The
eggshell window was sealed with a paraffin film to maintain sterilization and was examined
upon egg development thereafter. On day 18 of incubation, blood vessel formation was
monitored and measured by ImageJ software (version. 1.53).
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2.8. Statistical Analysis

All statistical analyses were performed with GraphPad Prism software (GraphPad
Software, La Jolla, CA, USA). All values for the experiments are presented as means ± SD
(standard deviation). The number of biologically independent samples was used in a
triplicated manner. The statistically significant difference between groups was assessed by
a Student’s t-test. Statistical significance was indicated by n.s.—no significance, * p < 0.1,
** p < 0.05, *** p < 0.01, **** p < 0.001

3. Results
3.1. sBV Administration Shows Growth Inhibition or Cell Rupture According to Concentration

We treated various concentrations of sBV in THP-1 cells and performed an MTT
assay after 24 or 48 h. The viability of the cells was slightly decreased in concentrations
below 2.5 µg/mL of sBV, but was severely decreased in concentrations above 5 µg/mL
of sBV (Figure 1A). Cell proliferation by sBV was also confirmed by cell counting. The
sBV administration showed decreased cell numbers in a dose-dependent manner, but it
was almost impossible to observe living cells at 20 µg/mL of sBV treatment (Figure 1B).
Microscopic analysis showed that the decreased cell number and dead cells were observed
according to the concentration of sBV. However, interestingly, we also observed that the
cells burst out at concentrations of 20 µg/mL.
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Figure 1. Distinct cell death effect depending on sBV concentration. (A) THP-1 cells treated with
various concentrations of sBV for 24 or 48 h. A total of 10 µg/mL of sBV or more shows the growth
inhibitory effect. (B) THP-1 cells counted after staining with trypan blue solution. (C) Morphology of
cell death detected in a dose-dependent manner. Cell rupture observed in 20 µg/mL concentration.
(D) ATP level was measured using a luminometer after 1 h treatment with 20 µg/mL of sBV. Data
are presented as mean ± SD. n.s.—no significance, * p < 0.1, ** p < 0.05, *** p < 0.01, **** p < 0.001
(Student’s t-test).

There were no stained nuclei in the 20 µg/mL concentration in the DAPI staining
experiment, indicating that high concentrations of sBV induced acute cell lysis or rupture.
We also measured ATP levels to ascertain the net impact on energy production. The ATP
level was severely decreased by 1 h of treatment with 20 µg/mL of sBV, indicating that a
high concentration of sBV shows acute changes in metabolic activity. FACS experiments
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were performed to analyze the amount of apoptosis or the amount of cell cycle phase. THP-
1 cells (0 min) on the left were collected before sBV treatment and used as negative control
groups (Figure 2A). In addition, we performed non-treated negative control experiments
for every hour of the sBV administration. All negative FACS data were similar to the 0 min
cell cycle distribution. Cell cycle alterations were also examined with FACS analysis after
sBV treatment. G1 arrest slightly increased from 12 h treatment of 5 µg/mL sBV, and the
increase in the number of sub-G1 cells was detected after 6 h administration of 10 µg/mL
sBV. However, rapid G1 arrest was shown at 30 min after 20 µg/mL sBV treatment, followed
by the rapid collapse of cell cycle distribution. Quantitatively, the population of sub-G1
staged cells was dramatically increased in the 20 µg/mL sBV-treated groups after 6 h.
Western blot analysis suggested that each cyclin expression was detected up to 10 µg/mL
of sBV, but the cyclin proteins were not detected in 20 µg/mL sBV treatment (Figure 2B).
sBV administration at a concentration of 5 µg/mL slightly increased the expression of
cyclin D3. In addition, it was observed that the expression of cyclin A and cyclin B changed
with the 5 µg/mL treatment of sBV. The increased expression of Cyclin A might have been
associated with the increased G1 population, as shown in FACS analysis. However, the
expression of cyclin A proteins quantitatively decreased in the treatment with 10 µg/mL of
sBV, suggesting that the cell cycle arrest was converted into a cell death mechanism in this
concentration. In particular, the expression of most cyclin proteins could not be detected
at a 20 µg/mL concentration, indicating that the THP-1 cells were completely destroyed.
Together, these data suggest that sBV might have pharmacological activity of cell death
induction after growth inhibition or acute cell rupture according to concentration.

1 
 

 

Figure 2. Changes in cell cycle distribution depending on sBV concentration. (A) FACS analysis
performed after sBV treatment and calculated on sub-G1 cells. (B) THP-1 cells treated with the
indicated concentration of sBV and western blot analysis performed using cyclin antibodies. Data are
presented as mean ± SD. n.s.—no significance, ** p < 0.05, **** p < 0.001 (Student’s t-test).

3.2. Pharmacological Action of sBV Is Associated with Induction of Apoptosis and Necroptosis

We performed a Western blot analysis to examine which molecular mechanism was
involved in sBV-treated THP-1 cells. Apoptosis marker proteins, including cleaved-Caspase
9 and cleaved PARP1, increased by ~10 µg/mL sBV treatment but were not detected in
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20 µg/mL sBV treatment (Figure 3A). The BAX or BCL2 protein was not changed in this
experiment. A Western blot analysis on necroptosis marker proteins was also performed.
The expression of the total RIPK1 protein was not changed, but the phosphorylated form of
RIPK1 was increased by sBV treatment. On the other hand, the RIPK3 protein is normally
detected in 55 kDa but was detected in 60 kDa by sBV treatment, suggesting that necroptotic
cell death also was caused by sBV treatment (Figure 3B). The expression of RIPK1 and
RIPK3 proteins was also observed during the immunostaining experiment. RIPK1 protein
was slightly increased in cytoplasmic regions. Although there was no quantitative change
in total RIPK1 except for the increase in p-RIPK1 in the Western blot experiment, these
immunostaining data could be considered as an increased pattern of activated RIPK1. The
RIPK3 protein was localized near the nuclear membrane in ~10 µg/mL sBV treatment,
suggesting that the RIKP3 protein was activated by sBV treatment (Figure 3C,D).
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Figure 3. Changes in cell death marker proteins in sBV-treated THP-1 cells. (A) THP-1 cells treated
with the indicated concentration of sBV for 24 h, and Western blot analysis performed on apoptosis
marker proteins including Caspase 9, PARP1, BAX, and BCL2. (B) Western blot analysis performed
on necroptosis marker proteins RIPK1 and RIPK3. (C). Immunostaining experiment performed with
RIPK1 antibody. (D) Immunostaining experiment was performed with RIPK3 antibody.

3.3. Combinatory Treatment of sBV and LPS Shows Synergistic Cell Death via Cytokine Expression

We examined inflammatory cytokine expression after sBV administration in THP-1
cells. The RT-PCR analysis showed that sBV treatment upregulated IL-1α, IL-1β and TNF-α
in a dose-dependent manner (Figure 4A). Lipopolysaccharide (LPS), an inducible endotoxin
of the immune response, also upregulated IL-1α, IL-1β and TNF-α of THP-1 cells. These
cytokine genes were synergistically increased in the combinatory treatment of sBV and LPS,
indicating that the pro-inflammatory cytokines were tightly regulated by the administration
of sBV and LPS (Figure 4B). We examined amounts of intracellular and secreted forms of
IL-1β in the combinatory treatment using Western blot analysis (Figure 4C). The IL-1β
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protein was increased as cytoplasm or in a secreted form by sBV or LPS treatment and
was detected in higher amounts in combinatory treatment of sBV and LPS. These data
suggest that IL-1β proteins were increased in sBV and LPS stimulation via transcriptional
regulation. Immunostaining on IL-1β showed that the protein was mainly detected at the
perinuclear region by sBV administration, whereas it was shown as a dotted pattern in LPS-
treated cells (Figure 4D). Interestingly, we could not detect typical DAPI staining patterns
in the combinatory administration of sBV and LPS, although IL-1β may be detected in its
secreted form. The increased dead cells were detected in the combinatory treatment of sBV
and LPS using FACS analysis, indicating that the combinatory administration of sBV and
LPS was associated with the induction of strong cell death (Figure 5). These data suggest
that sBV or LPS treatment increased cytokine expression, including IL-1β, and showed
synergistic cell death in combinatory treatment conditions.
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Figure 4. Synergistic cytokine expression in combinatory treatment with sBV and LPS. (A) sBV
(left) or LPS (right) treated in THP-1 cells, respectively. RT-PCR performed to examine cytokine
expression including IL-1α, IL-1β, and TNF-α. (B) RT-PCR performed after combinatory treatment
of sBV and LPS. (C) Cytoplasmic or secreted IL-β protein evaluated using Western blot analysis.
(D) Immunostaining experiment performed with IL-β antibody. Data are presented as mean ± SD.
n.s.—no significance, *** p < 0.01, **** p < 0.001.

3.4. Egg Development Was Stopped

To examine the synergistic effects of the combinatory treatment of sBV and LPS, we
treated sBV and LPS on the chorioallantoic membrane (CAM) at day 8 of egg development.
Egg development was normally progressed in the non-treated group and was also shown
in the treatment groups of sBV or LPS (Figure 6A). However, combinatory treatment of
sBV and LPS induced severe damage to death in failing development from 4–5 days after
cotreatment. We also performed a quantitative analysis of the blood vessel by measuring
vein diameter and microvessel formation. Administration of sBV or LPS increased the
number of microvascular (branches) and the diameter of the vein compared with the control
group (Figure 6B). However, these calculations could not be performed in the combinatory
treatment of sBV and LPS due to the failure of egg development. These data strongly
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suggest that combinatory treatment of sBV and LPS has synergistic activity in inhibiting
normal development of the egg.
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Figure 5. Synergistic cell death effects in combinatory administration with sBV and LPS. FACS
analysis performed to examine synergistic effect of sBV and LPS in THP-1 cells. Data are presented
as mean ± SD. n.s.—no significance, *** p < 0.01, **** p < 0.001.
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Figure 6. Failure of egg development by combinatory administration of sBV and LPS. (A) sBV
and LPS mixed with matrigel and administrated on chorioallantoic membrane (CAM) during egg
development. Normal development was maintained in sBV- or LPS-treated groups, but failed in
combinatory administration groups. (B) Calculations of microvessel formation and vein diameters.
Data are presented as mean ± SD. * p < 0.1, ** p < 0.05.

4. Discussion

Therapeutic approaches using BV have been tried in various forms, including direct
administration of live bee stings and BV acupuncture [20,21]. Despite the successful clinical
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outcome of BV as a pharmacological drug, it has also been shown to have unexpected
side effects such as anaphylaxis [22]. Anaphylaxis by BV has been reported by several
papers, but actual cases might be far more numerous [16,23]. Since anaphylaxis is a severe
immunological reaction that can occur within seconds or minutes of exposure to allergens,
THP-1 human monocytic leukemia cells might be appropriate in vitro model cells for
studying hypersensitive reactions [24–26].

In this study, we showed distinct pharmacological efficacies on cell death patterns de-
pending on the concentration in sBV-treated THP-1 cells. In concentrations below 10 µg/mL
of sBV, THP-1 cells showed increased cell death via growth inhibition in dose-dependent
manners. However, THP-1 cells showed acute cell rupture or cell lysis in high concen-
trations (20 µg/mL) of sBV, indicating that sBV had different effects depending on its
concentration. Typical cell death marker proteins were detected in the treatment concen-
trations below 10 µg/mL of sBV. In this range of concentration of sBV, cleaved forms of
Caspase 9 and cleaved PARP1 increased. Activated Caspase 9 initiated apoptotic cell death
by sequential activation of downstream executioner caspases and finally induced PARP
cleavage in cell nuclei, indicating that sequential activation by sBV induced apoptosis of
THP-1 cells [27,28]. Necroptotic proteins RIPK1 and RIPK3 were also activated by sBV
treatment in our study. Necroptosis is a type of programmed cell death with necrotic mor-
phology, occurring in a variety of biological processes, including inflammation, immune
response, embryonic development and metabolic abnormalities [29–31]. RIPK1/RIPK3 has
been known as a critical regulator of necroptosis and inflammation. RIPK1/RIPK3 is acti-
vated by phosphorylation, or Caspase-mediated cleavage [32,33]. These post-translational
modifications, in coordination, regulate the assembly of a macromolecular signaling com-
plex [34]. Therefore, it was hypothesized that the multiple cell death mechanism proceeds
in the direction of strong mutual regulation for the enhanced pharmacological effects dur-
ing sBV treatment. These results suggested that pharmacological concentrations of sBV
induced complex cell death mechanism in THP-1 leukemia cells. The involvement of the
NF-kB signaling pathway in the apoptotic cell death by BV and melittin was also shown in
various human cancer cells [35,36]. Therefore, the induction of multiple cell deaths by sBV
might be involved in the NF-kB pathway, but this needs to be clarified in THP-1 cells.

On the other hand, our current study showed that several cytokines, including IL-1α,
IL-1β, and TNF-α, were produced within pharmacological concentrations of sBV. More-
over, the expression of these pro-inflammatory cytokines was increased by combinatory
treatment of sBV and LPS. Although inflammatory cytokines are key mediators of the
inflammatory response within tumor cells, the functional role of cytokine expression in
cancer cells is controversial [37,38]. IL-1β had a significantly pro-apoptotic effect under
various conditions [39]. Production of the inflammatory cytokine IL-1β requires two dis-
tinct signals: first, a signal that induces de novo pro-IL-1 β gene transcription through
NF-kB and a second, inflammasome-dependent signal that cleaves pro-IL-1β to produce
the mature cytokine [40,41]. Moreover, TNF-α is not only a pleiotropic cytokine in inflam-
mation, but it also exhibits effects such as apoptosis through death receptors containing a
death domain [42]. TNF-α triggers either NF-κB activation or RIPK1 kinase-dependent cell
death [43]. Therefore, the increase of TNF-α by sBV might be related to the enhancement of
the necroptosis-related mechanism. Several previous papers have suggested that cytokines
could inhibit cancer cell survival development and progression [44,45]. Alternatively, can-
cer cells can respond to host-derived cytokines that promote growth, attenuate apoptosis
and facilitate invasion and metastasis [46–48].

Interestingly, the increased dead cells were detected in the combinatory treatment of
sBV and LPS using FACS analysis, indicating that the combinatory administration of sBV
and LPS was associated with the induction of strong cell death. Most IL-1β proteins might
be secreted to extracellular regions, suggesting that inflammasome activation of caspases
might be associated with the mature form of IL-1β in sBV-treated THP-1 cells [49–51]. We
also observed similar phenomena in this experiment through CAM assay. Vessel formation
was increased by treatment with sBV or LPS alone but was not normally developed in
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the combinatory treatment of sBV and LPS. The chick chorioallantoic membrane (CAM)
is an extra-embryonic membrane, comprised of a high density of blood and lymphatic
vessels [52]. The CAM has a dense capillary network and is commonly used to study in vivo
angiogenesis and anti-angiogenesis in response to potential biomolecules and drugs [53].
Therefore, these results prove that the combination of sBV and LPS can exert a strong
apoptotic effect.

Our current experimental results show that the pharmacological effects of sBV were
converted into rapid cell rupture at a concentration of approximately 20 µg/mL in THP-1
cells. In addition, acute cell rupture was observed at a similar concentration in sBV-treated
A549 lung cancer cells. Therefore, we suggest that concentration below 10 µg/mL of
sBV shows pharmacological effects in most cell-based experiments, but concentrations of
20 µg/mL and more show side effects. Future experiments are required to determine the
effective pharmacological concentration in mouse models. Moreover, the pharmacological
concentration of sBV should be considered in clinical trials, if it is possible. According
to the previous literature, the effects of drugs and poisons were determined to be closely
related to the concentration applied [54–56]. Thus, we can suggest that sBV exhibits both
pharmacological effects and toxic effects depending on its concentration. However, once the
anaphylaxis caused by BV is considered as an unexpected phenomenon, like cell rupture,
we can predict the concentration of side effects caused by sBV. sBV shows cell death or
anaphylaxis depending on the concentration applied. Additionally, individual differences
in concentration will be an important factor for the induction of pharmacological effects or
anaphylaxis. Therefore, sBV might be a promising therapeutic approach, but the optimal
concentration should be considered prior to sBV administration.
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