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Electrical signaling in neurons is mediated by the opening and closing of large numbers
of individual ion channels. The ion channels’ state transitions are stochastic and introduce
fluctuations in the macroscopic current through ion channel populations. This creates an
unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the
membrane potential and spontaneous spikes. While this effect is well known, the impact
of channel noise on single neuron dynamics remains poorly understood. Most results are
based on numerical simulations. There is no agreement, even in theoretical studies, on
which ion channel type is the dominant noise source, nor how inclusion of additional ion
channel types affects voltage noise. Here we describe a framework to calculate voltage
noise directly from an arbitrary set of ion channel models, and discuss how this can be
use to estimate spontaneous spike rates.
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1. INTRODUCTION
An obvious characteristic of behavior is the variability that one
observes from trial to trial in even the most controlled settings.
This behavioral variability is reflected at the neural level in the
noisy character of spike trains. Various hypotheses have been
put forward for a potential functional role of neural variabil-
ity, such as stochastic resonance (McDonnell and Abbott, 2009),
prevention of synchrony (van Rossum et al., 2002), and prob-
abilistic sampling (Buesing et al., 2011). A number of factors
can contribute to trial-to-trial variability: non-stationarity and
unobserved modulation of the nervous system; chaotic network
dynamics resulting from deterministic single neuron dynamics
(van Vreeswijk and Sompolinsky, 1996); and biophysical noise.
In this paper we concentrate on the latter, and in particular on
the noise from voltage-gated ion channels.

Ion channels are pore-forming macromolecular proteins that
allow the selective passage of ionic currents in and/or out of the
cell (Hille, 2001). Each ion channel can, at any given moment,
occupy only one of multiple discrete conformational states; at
least one of which is an open/conducting state, and at least one
of which is a closed/non-conducting state. Transitions between
states are exceedingly rapid (<1 µs) and, like all molecular reac-
tions, stochastic in nature—they are driven by thermal agitation.
In the case of voltage-gated channels (VGCs) considered here, the
transition probabilities depend on the cell’s membrane potential.
Channels are commonly modeled as Markov processes, which

lead to accurate predictions of the noise in macroscopic currents
recorded from neurons (Hille, 2001).

Because spike generation appears reliable during somatic cur-
rent injection (Calvin and Stevens, 1968; Bryant and Segundo,
1976; Mainen and Sejnowski, 1995) and the number of VGCs is
large, it is typically believed that the stochastic gating of VGC con-
tributes little to the total observed variability in neuronal spiking.
However, such a conclusion might be premature. First, during
somatic current injection the dendrites are typically more hyper-
polarized compared to the realistic case where the neuron receives
synaptic input, and the noise typically decreases strongly with
hyper-polarization (see below). Moreover, the total number of
channels in a neuron might be large, but in spatial compartments
such as narrow axons or dendrites, the number of channels is
typically small.

Several experimental studies have focused on the physiolog-
ical consequences of ion channel noise. Sigworth (1980) used
fluctuation analysis to estimate the number of Na+ channels at
a single frog node of Ranvier ∼30000, and subsequently used
formulae from Lecar and Nossal (1971a,b) to estimate fluctua-
tions in the current threshold of action potential generation due
to channel noise. Johansson and Arhem (1994) found that the
stochastic opening of a small number of channels in cultured hip-
pocampal neurons were sufficient to trigger spontaneous action
potentials. White et al. (1998) recorded subthreshold membrane
potential oscillations in stellate cells of layer II entorhinal cortex
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(EC) and found that they could only reproduce the co-existence
of both oscillations and spiking in a computational model if they
included stochastic gating of Na+ channels, suggesting a form of
periodic stochastic resonance. Subsequently, Dorval and White
(2005) used the dynamic clamp technique to inject a “virtual”
Na+ conductance which was either deterministic or stochas-
tic to EC stellate cells in vitro. Only the stochastic conductance
could reproduce the observed membrane potential oscillations.
Similarly, Dudman and Nolan (2009) used computational models
of the same cell type to demonstrate that stochastic channel gat-
ing can also account for the clustered firing patterns displayed by
these cells when stimulated by steady current pulses in vitro. Diba
et al. (2004) characterized somatic subthreshold voltage noise in
cultured hippocampal neurons due to stochastic ion channel gat-
ing. Voltage fluctuations were small, with a standard deviation
<0.3 mV and based on pharmacological experiments appeared to
arise primarily from K+ channels. Jacobson et al. (2005) reported
similar results from neocortical pyramidal cells from layer IV/V
of rat somatosensory cortex brain slices, with similar amplitude
(submillivolt) voltage fluctuations. Finally, Kole et al. (2006) used
fluctuation analysis to measure the properties and distribution
of hyperpolarization-activated cation (Ih) channels in LV neo-
cortical pyramidal cells in vitro. They found that although the
Ih single-channel conductance was exceedingly small (<1 pS), Ih
channels contribute substantially to voltage noise in the distal
dendrites of these cells.

A great deal of theoretical and numerical studies have looked
at membrane noise from stochastic ion channels, beginning with
Lecar and Nossal, who used stochastic differential equations and
a reduced dynamical system model of the action potential to
attempt to quantify the magnitude of membrane noise on action
potential threshold fluctuations (Lecar and Nossal, 1971a,b).
Skaugen and Walløe (1979) were the first to examine the conse-
quences of stochastic gating of ion channels through numerical
simulation. They found that in the stochastic version of Hodgkin–
Huxley (HH) squid giant axon model the current threshold was
lowered compared to deterministic models, the membrane could
spike spontaneously, and that the frequency-current curve was
smeared around the threshold. Subsequent simulation work by
DeFelice and colleagues (Clay and DeFelice, 1983; Strassberg and
DeFelice, 1993) further elaborated on the direct link between
the microscopic (stochastic) and macroscopic (deterministic) ver-
sions of the HH model. Rubinstein (1995) simulated a model of
the frog node of Ranvier and reproduced the spread in action
potential firing threshold due to stochastic channel gating pre-
dicted by Lecar and Nossal, in agreement with earlier experiments
(Verveen, 1960). Chow and White (1996) examined the depen-
dence of spontaneous firing rate in the stochastic HH model on
membrane patch area and found it to decrease exponentially with
area. They approximated the system as a boundary escape prob-
lem, with stochastic gating of the activation subunit of the Na+
channel as the noise source. They found that the mean escape
time as a function of area agreed well with numerical simulation
results (we will comment on this finding below). Manwani and
Koch (1999) used a perturbative approach to compare the con-
tributions of thermal noise, channel noise and synaptic “noise”
(from Poissonian inputs) to total membrane voltage noise in a

single compartment. Steinmetz et al. (2000) used similar methods
to demonstrate the voltage and channel type dependence of ion
channel noise spectra for both the HH model and a commonly
used neocortical pyramidal cell model (Mainen et al., 1995). In
the present study we employ methods very similar to both of
these works, but toward a different goal: we aim to systematically
separate all of the contributing factors that determine the contri-
bution of an ion channel type to voltage noise and spontaneous
firing.

In general detailed simulation of stochastic channels will give
the most accurate answer regarding the noise and the contribu-
tion of the different channels. But as stochastic simulation of the
full channel kinetics is very involved, several recent studies have
developed approximate stochastic-differential equation models
that efficiently capture the essence of the noise statistics of discrete
ion channels (Goldwyn and Shea-Brown, 2011; Goldwyn et al.,
2011; Linaro et al., 2011; Orio and Soudry, 2012). Our objec-
tive here is complementary but different: rather than developing a
precise model for the noise we seek to estimate the contribution of
the various channel types. Intuitively it is not clear what proper-
ties of a given channel type are important determinants for noise.
This is relevant when a full state diagram of a certain channel type
is not available, but nevertheless a coarse estimate of its contribu-
tion to noise is desired. At the same time by breaking down the
various factors that determine the magnitude of the noise of a cer-
tain channel type, a deeper insight in the results from simulations
and experiments can be obtained.

Our study is split in four parts: We use simulations to demon-
strate that in the well-studied stochastic Hodgkin–Huxley model,
most spikes are due to stochastic K+ channel gating and not the
Na+ channel. This is of interest as in the literature conflicting
findings can be found (see Discussion). Next, we review the dif-
ferent factors that explain how stochastic channel noise leads to
noise in membrane voltage, using a linear, weak noise analysis
and explain why the K+ noise is dominant. While these individual
contributing factors are well-known, a concise account was in our
opinion lacking. Third, we examine the relation between voltage
noise and spontaneous spikes using an approach recently intro-
duced for integrate-and-fire neurons. We show that this relation
is complex, but that nevertheless rough estimates are possible.
Finally, we apply the same methods to analyze a CA1 pyramidal
neuron model to show that the approach is easily generalizable to
other neuron models.

2. MATERIALS AND METHODS
All stochastic channel simulations were implemented using the
Parallel Stochastic Ion Channel Simulator (PSICS) which is
specifically designed for efficient simulations of stochastic ion
channel gating in single neuron models (see Cannon et al., 2010
and http://psics.org/ for algorithmic details). Current noise injec-
tion in deterministic HH models was done using NEURON
(Carnevale and Hines, 2006). Analysis was done using MATLAB
(The Mathworks).

2.1. HODGKIN–HUXLEY MODELS
All simulations of the Hodgkin–Huxley model used the standard
voltage-dependent equations for Na+ and K+ gating schemes,
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at 6.3◦C (Hodgkin and Huxley, 1952). For completeness the
standard parameters are given in Table 1.

In the HH squid axon model, the sodium conductance obeys

gNa(V, t) = γNaρNaAm3(V, t)h(V, t)

where γNa is the single channel sodium conductance, ρNa is the
density of channels per area, and A is the area. The gating variables
m and h move between off and on-states with a voltage-dependent
rate αm, h(V) from the off-state to the on-state, and back with a
rate βm, h(V). These rates have been empirically established as

αm(V) = 0.1(V + 40)

1 − e−(V + 40)/10
βm(V) = 4e−(V + 65)/18

αh(V) = 0.07e−(V + 65)/20 βh(V) = 1

1 + e−(V + 35)/10

where V is membrane voltage in mV and the transition rates have
units 1/ms.

In the limit of very many channels the gating variables are
a continuous quantity, namely the probability to find them in
the on-state. The dynamics of gating variable m(V, t) can be
written as

dm(V, t)

dt
= m∞(V) − m(V, t)

τm(V)
(1)

where m∞(V) is the steady-state value for the activation variable,

m∞(V) = αm(V)

αm(V) + βm(V)
(2)

and τm(V) is its time constant

τm(V) = 1

αm(V) + βm(V)
(3)

and analogous for the inactivation variable h(V, t). The dynamics
in the continuum limit is fully deterministic.

When the system is described stochastically, the gating vari-
ables of each channel are binary variables that switch between
off-state and on-state. For the Na+ channel to be open, all its 3 m’s
and the h switch need to be in the on-state. To (naively) simulate

Table 1 | The Hodgkin–Huxley parameters for model simulations.

Cm Membrane capacitance 1 µF/cm2

γNa Na+ single-channel conductance 20 pS

ρNa Na+ channel density 60 /µm2

ENa Na+ reversal potential +50 mV

γK K+ single-channel conductance 20 pS

ρK K+ channel density 18/µm2

EK K+ reversal potential −77 mV

ρLeak Leak conductance density 3 pS/µm2

ELeak Leak reversal potential −55 mV

Vm Resting membrane potential −65 mV

this case the transitions are drawn stochastically using a random
number generator, using a time-step δt such that αδt, βδt � 1.

Likewise, the K+ conductance is given by

gK (V, t) = γKρK An4(V, t)

It has four identical activation variables, labeled n, with rates

αn(V) = 0.01(V + 55)

1 − e−(V + 55)/10
βn(V) = 0.125e−(V + 65)/80

In all simulations the single channel conductance for both Na+
and K+ was 20 pS. Although this value is close to that reported
experimentally for the squid giant axon K+ conductance (Llano
et al., 1988), it is slightly larger than experimental estimates for
the Na+ conductance (Bezanilla, 1987). These values were chosen
for simplicity (it removes one confounding factor when compar-
ing channel type noise contributions) and to enable comparison
with the literature (Strassberg and DeFelice, 1993; Chow and
White, 1996; Schneidman et al., 1998). In line with the literature,
leak channels were modeled deterministically, although in more
realistic models they should be made stochastic as well.

For the simulations and analysis of the hippocampal pyrami-
dal cell model (Figure 6), we use the channel models for active
Na+, delayed rectifier K+ (Kdr), and A-type K+ channel (Ka)
exactly as previously published by Migliore et al. (1999), Jarsky
et al. (2005). However, our model was single-compartment while
these previous studies looked at multi-compartment model neu-
rons. For consistency with the HH simulations we also choose a
single-channel conductance of 20 pS. The channel densities were
matched to the macroscopic conductance densities of the soma
in the model of Jarsky et al. (2005), implying Na+: 20 channels
/µm2, Kdr: 20/µm2, and Ka: 24/µm2. In addition to these active
channels, we added two voltage-independent leak channels, one
permeable to Na+ and one permeable to K+, which we simulated
deterministically. We chose their densities 0.0065 mS/cm2 (Na+)
and 0.0185 mS/cm2 (K+), to fit two constraints: a total leak con-
ductance of 0.025 mS/cm2 (Jarsky et al., 2005), and a resting volt-
age of −65 mV. Finally, as according to Migliore et al. (1999) we
set reversal potentials ENa = +55 mV and EK = −90 mV. When
attempting to analytically calculate the membrane impedance for
this model we unfortunately found that it diverged upward at
around −60 mV. This singularity is problematic because it would
break our small voltage noise assumption. Hence we instead esti-
mated the impedance for this model empirically as is done in
experiments. We injected sine wave currents over a large fre-
quency range to the deterministic version of the model, and
measured the amplitude of the resulting voltage responses.

2.2. CALCULATION OF POWERSPECTRA OF K+ AND NA+ NOISE
As is well known, the current noise power spectrum from a pop-
ulation of ion channels follows directly from the channel kinetic
scheme and its autocovariance function (DeFelice, 1981). For ease
of presentation we first summarize this calculation for a two-state
channel. The conditional probability that a two-state channel is
open at time t given that it was open at time 0, po|o(t) is

po|o(t) = p∞ + (1 − p∞)e−t/τ
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where p∞ is the steady-state open probability and τ is the corre-
lation time. The autocorrelation 〈po(t0)po(t)〉 = p∞po|o(t). The
autocovariance of a single channel Co(t) open probability can
then be written as

Co(t) = 〈[po(t0) − p∞
] [

po(t) − p∞
]〉

= p∞po|o(t) − p2∞
= p∞(1 − p∞)e−t/τ

The autocovariance of the current through a population of N such
channels, CI(t), is simply given by

CI(t) = Ni2Co(t)

where i is the single-channel current. Note that the
autocovariance function at t = 0 is equal to the variance,
CI(0) = Ni2p∞(1 − p∞) = σ 2, and decays exponentially with
time constant τ , so that when t � τ , CI(t) → 0.

The Wiener-Khinchin theorem states that the power spec-
trum is equal to the real part of the Fourier transform of the
autocovariance function

SI(ω) = 4

∫ ∞

0
CI(t)e−2π iftdt

= SI(0)
1

1 + (
2π f τ

)2
(4)

where SI(0) = 4Ni2p∞(1 − p∞)τ and the pre-factor 4 arises from
our definition of spectral density. Thus for the two-state channel
population, the power spectrum is a single Lorenztian func-
tion with a corner frequency fc = 1/(2πτ ). Above this corner
frequency, the power of the signal falls off ∝ 1/f 2.

In an analogous way we can calculate the power spectra of the
HH Na+ and K+ channel populations. For the HH K+ channel
composed of four identical and independent sub-units, the con-
ditional probability that the channel is open at time t given that it
was open at time 0 is

pK,o|o(t) = (
n∞ + (1 − n∞)e−t/τn

)4
(5)

Hence, the autocovariance of the current noise from the HH K+
channel population is a sum of exponentials,

CIK (t) = NK i2K

(
n4∞pK,o|o(t) − (

n4∞
)2

)
= NK i2K n4∞

[
(1 − n∞)4e−4t/τn + 4n∞(1 − n∞)3e−3t/τn

+ 6n2∞(1 − n∞)2e−2t/τn + 4n3∞(1 − n∞)e−t/τn
]

The corresponding power spectrum of the current noise is

SIK (ω) = 4Nkn4∞i2Kτn

[
(1 − n∞)4 4

16 + ω2τ 2
n

+ n∞(1 − n∞)3 12

9 + ω2τ 2
n

+ n2∞(1 − n∞)2 12

4 + ω2τ 2
n

+ n3∞(1 − n∞)
4

1 + ω2τ 2
n

]

This is the sum of four Lorenztians with corner frequencies equal
to 4/(2πτn), 3/(2πτn), 2/(2πτn), and 1/(2πτn). Because at the
resting potential n∞ is close to zero, the first term in the square
brackets with correlation time τn/4 will dominate the power
spectrum.

Similarly, for the Na+ current noise power spectrum one has

pNa,o|o = (
m∞ + (1 − m∞)e−t/τm

) 3 (
h∞ + (1 − h∞)e−t/τh

)
and the Na+ current noise autocovariance is

CINa(t) = NNai2Na

(
m3∞h∞pNa,o|o − (

m3∞h∞
)2

)
= NNai2Nam3∞h∞

[
3m2∞h∞(1 − m∞)e−t/τm

+ 3m∞h∞(1 − m∞)2e−2t/τm

+ h∞(1 − m∞)3e−3t/τm

+ m3∞(1 − h∞)e−t/τh

+ 3m2∞(1 − m∞)(1 − h∞)e−t/τm−t/τh

+ 3m∞(1 − m∞)2(1 − h∞)e−2t/τm−t/τh

+ (1 − m∞)3(1 − h∞)e−3t/τm−t/τh
]

The corresponding power spectrum of the Na+ current noise is

SINa(ω) = 4NNai2Na(m3∞h∞)2
[(

1 − m∞
m∞

)
3τm

1 + ω2τ 2
m

+
(

1 − m∞
m∞

)2 6τm

4 + ω2τ 2
m

+
(

1 − m∞
m∞

)3 3τm

9 + ω2τ 2
m

+
(

1 − h∞
h∞

)
τh

1 + ω2τ 2
h

+ 3

(
1 − h∞

h∞

)(
1 − m∞

m∞

)(
τmτh

τm + τh

)
1

1 + (ωτmτh/(τm + τh))2

+ 3

(
1 − h∞

h∞

)(
1 − m∞

m∞

)2 (
τmτh

τm + 2τh

)
1

1 + (ωτmτh/(τm + 2τh))2

+
(

1 − h∞
h∞

)(
1 − m∞

m∞

)3 (
τmτh

τm + 3τh

)

1

1 + (ωτmτh/(τm + 3τh))2

]

Near rest m∞ � 1 and h∞ ≈ 0.6, so that the third and last
Lorentzians dominate the powerspectrum. The correspond-
ing corner-frequencies are 3/(2πτm) and (τm + 3τh)/(2πτmτh),
which are virtually identical.
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We calculate the quasi-active (linearized) membrane
impedance using standard methods (Mauro et al., 1970;
Koch, 1999).

3. RESULTS
3.1. STOCHASTIC POTASSIUM CHANNELS CAN TRIGGER

SPONTANEOUS ACTION POTENTIALS
Previously, it has been demonstrated that a Hodgkin–Huxley
(HH) type neural model with discrete Markovian stochastic ion
channels instead of the classic continuous deterministic rate equa-
tions can fire spontaneous action potentials if the membrane
patch is small (Skaugen and Walløe, 1979; Clay and DeFelice,
1983; Strassberg and DeFelice, 1993; Chow and White, 1996;
Schneidman et al., 1998). However, the relative contributions of
the Na+ and K+ channel populations to spontaneous activity are
less well understood. To investigate, we simulate the HH squid
axon model using the PSICS simulator (Cannon et al., 2010) with
stochastic Markovian ion channels while varying the membrane
patch area under three different conditions: first, both sodium
(Na+) and potassium (K+) channels stochastic (“all stochastic”),
second, Na+ stochastic but K+ deterministic, and third, Na+
deterministic but K+ stochastic. Comparing the spontaneous fir-
ing rate between the three conditions allows us to find whether
Na+ or K+ channels contribute most to spontaneous activity.

As observed previously (Chow and White, 1996), if a fixed
density of ion channels is assumed, then the firing rate decreases
approximately exponentially with increasing membrane patch
area (Figure 1) such that membrane areas greater than ∼400 µm2

produce almost no spontaneous action potentials approximating
the deterministic model. This exponential dependence of spon-
taneous rate with membrane area is consistent with a stochastic
barrier-escape problem (Chow and White, 1996). As the channels

are independent, the voltage variance is proportional to the num-
ber of channels N, but inversely proportional to the square of
the area A, since the input impedance decreases linearly with
area. Combining these two opposing factors, the spontaneous rate
scales as exp ( − A2/N) ∝ exp ( − A).

When either Na+ or K+ channels are switched to deter-
ministic mode, spontaneous firing rate is reduced compared to
the fully stochastic mode. Surprisingly, however, stochastic K+-
channel gating alone triggers greater spontaneous firing rates than
stochastic Na+-channel gating alone (Figure 1B). At first impres-
sion, this result might be counter-intuitive because the opening of
Na+ channels is necessary for the initiation of an action potential,
while the much slower K+ channels are conventionally consid-
ered responsible for the re-polarizing phase. A simple conceptual
model for spontaneous spike generation might therefore be that
the chance opening of a few Na+ channels depolarizes the mem-
brane and activates the runaway Na+ channel opening underlying
the action potential. However, stochastic closure of K+ channels
can also depolarize the membrane, similarly activating Na+ chan-
nels to trigger an action potential. We test this possibility by
examining the dynamics of Na+ and K+ currents. We adapt the
‘spike-triggered average’ (STA) measure from the neural coding
literature. Here we determine the average total current of a given
ion channel population x at time interval t prior to a spontaneous
action potential at time ti, averaged over n such events,

ISTA
x (t) = 1

n

[
n∑

i = 1

Ix(ti − t)

]

In the “all stochastic” mode (Figure 2A, solid curves), we find
that the STA potassium current ISTA

K (t), drops between 8 and 2

FIGURE 1 | Spontaneous action potentials in an isopotential

Hodgkin–Huxley model. (A) Example membrane potential traces from
the single compartment stochastic HH model of varying membrane
surface areas. (B) Spontaneous firing rate decreases approximately

exponentially with increasing surface area. Firing rates at all areas were
greater for the “all stochastic” model (black) than the K+ stochastic
model (red), which was in turn greater than the Na+ stochastic model
(blue).
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FIGURE 2 | Spike-triggered averaged Na+ and K+ currents preceding a

spontaneous action potential in a 100 µm2 surface area model neuron.

(A) STA currents from Na+ (blue) and K+ (red) channels. Curves shown for
three conditions: all channels stochastic (solid), Na+ only stochastic (dotted)
and K+ only stochastic (dashed). In line with convention, depolarizing
currents are plotted negative. (B) Average change in Na+ and K+ currents
compared to rest in time preceding spontaneous action potential. (C)

Average change Na currents vs. K currents during spontaneous spikes.
Same data as in (B). Dashed diagonal line denotes identity where
�INa(t) = �IK (t). (D) Proportion of trials where the K current exceeds the
Na current, �IK (t) > �INa(t).

ms before the spike, while there is a simultaneous increase in the
STA sodium current ISTA

Na (t). Nearer to the spike the Na+ and
K+ currents grow rapidly but in opposite directions as the action
potential forms. A positive current corresponds to depolarization.
This depolarizing action of the K+ current change be clearly seen
in Figure 2B where we plot �IK (t) and �INa(t), the change in
Na+ and K+ relative to resting current. Importantly, the change
in ISTA

K precedes the increase in ISTA
Na (Figure 2B), suggesting that

spontaneous action potential firing in this model is primarily
driven by K+ channel fluctuations, not Na+ noise. We test this
explanation by simulating K+ channel conductance in determin-
istic mode and repeating the STA measurement. As expected, in
this case spontaneous spikes are not preceded by a drop in K+
conductance, but instead driven by an elevated Na+ conductance
fluctuation (Figure 2A, dotted curves).

Further examination of the Na+ and K+ current dynamics
confirm these findings. In Figure 2C we plot the timecourse of
�INa(t) (y-axis) vs. �IK (t) (x-axis) from 10 to 1 ms prior to each
recorded action potential together on the same plot. Regions to
the lower-right of the identity diagonal (dashed black line) indi-
cate timepoints where K+ current fluctuations are contributing

more to voltage depolarization than Na+ current fluctuations.
The mean STA curve for the “all stochastic” model (solid curve)
initially takes off into this right-hand region. In contrast, the Na+-
only stochastic (dotted curve) moves only slightly to the right of
the origin before taking off in the vertical (Na+-driven) direction.

Figures 2A–C plot the average behavior. As the system is
stochastic, we expect that occasionally Na+ fluctuations trigger
spikes as well. To get a sense of the spike-to-spike variability
in Figure 2D we plot the percentage of cases where the potas-
sium current exceeds the sodium current, �IK (t) > �INa(t), as
a function of time before spike. In general, this quantity is time-
dependent because the depolarization due to K+ fluctuations will
most likely be maximal at some time between 8 and 2 ms before
the spike. Once the full spike upswing begins (∼1 ms before
t = 0) Na+ always dominates. In the all-stochastic case, the ear-
liest phase of most action potentials are K+-driven. In contrast,
in the Na+ stochastic case (dotted line) the majority of spikes are
driven primarily by Na+ fluctuations.

A slightly different picture appears for the K+ stochastic simu-
lations. In this mode, Na+ fluctuations are removed so all spikes
must by initially triggered by K+ fluctuations. Consequently,
the spike-triggered average K+ current fluctuation amplitude is
even greater than in the all-stochastic model (Figures 2A–C) and
an even larger percentage of spikes are driven by momentary
fluctuations in K+ currents (Figure 2D). In summary, these sim-
ulations show that K+ channel noise is the dominant driver of
spontaneous spiking in the stochastic Hodgkin–Huxley model.

Schneidman et al. (1998) looked at stochastic Na+ and K+
channel trajectories during spike initiation to address whether
a sufficiently strong stimulus can override the intrinsic channel
noise. However, in contrast to our STA analysis for determining
the contributions of Na+ vs. K+ noise to spontaneous spiking,
they examined stimulus-driven firing by injecting a fluctuating
current into the model neuron. In this stimulus-driven case, the
observed trajectories of the Na+ vs. K+ currents combine the
effect of the stimulus current dynamics and the effect of the chan-
nel noise. Our analysis however shows that the drop in noisy K+
current occurs naturally before the spike.

3.2. THE FACTORS DETERMINING A CONDUCTANCE’S CONTRIBUTION
TO MEMBRANE NOISE

These results lead to the questions: What properties of the HH K+
conductance cause it to trigger more spontaneous action poten-
tials than the Na+ conductance? And how can the contribution
of an arbitrary channel type be estimated? We proceed by first
calculating the resulting noise in the membrane voltage. In the
limit of large areas (small noise), this can be calculated exactly.
In the subsequent section we relate the voltage noise to spon-
taneous spike rates. This will turn out to be only approximately
possible.

There are at least five possible factors that determine a channel
population’s contribution to membrane noise:

3.2.1. Open probability (11 × noisier for K+)
First, Na+ and K+ have different steady-state open probabilities
at resting membrane potential. The steady-state probability of
a single ion channel being open is identical to the steady-state
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permeability fraction of the corresponding macroscopic conduc-
tance in the classic HH formalism. The steady-state Na+ conduc-
tance is obtained from the product of the steady-state values of
the m∞ and h∞ gating variables:

gNa∞(V) = ḡNa [m∞(V)]3 h∞(V)

where ḡNa is the maximal conductance through the Na+ channel
population. Hence the open probability po = (m∞)3h∞. The gat-
ing variables m∞ and h∞ can in turn be expressed in terms of the
forward and backward gating rates αm and βm, and αh and βh,
see Equation 2.The steady-state K+ open probability equals po =
[n∞(V)]4. At the resting potential of −65 mV in the HH squid
axon model, the steady-state open probabilities are ∼0.000089
for the Na+ and and ∼0.010 for the K+ channels. At any instant
the open probability follows a binomial distribution so that the
variance in the single channel current σ 2

i = i2po(1 − po), where
i is the single-channel current. The variance is parabolic in po:
zero when po = 0 or 1, and maximal at po = 0.5. As below spike
threshold, most ion channels have very low open probabilities, the
standard deviation can be approximated by

σi = i
√

po

Therefore, ion channel populations with greater po at resting
membrane potential tend to have larger current fluctuations than
populations with lesser po. This effect predicts that the standard
deviation of the K+ channel noise is 10.7 times larger than Na+
channel noise.

3.2.2. Number of channels (1.8 × noisier for Na+)
Second, because the channels act independently, the standard
deviation of the number of open channels grows proportional
to

√
N. Thus channel populations with greater N have greater

fluctuations in their absolute number of open channels. The Na+
population has 3.33× more channels in the standard HH model
than the K+ population (Table 1), yielding Na standard deviation
larger by a factor

√
10/3 ≈ 1.8.

3.2.3. Driving force (10 × noisier for Na+)
The third factor is the difference in driving force for each
conductance. As the HH model assumes that these ion chan-
nel current-conductance relationships are Ohmic (linear), the
current through an open channel is proportional to the differ-
ence between the membrane potential and the channel’s driving
force,

ix = γx(Vm − Ex)

where ix is the single-channel current, γx is the single-channel
conductance, Vm is the membrane potential and Ex is the con-
ductance’s reversal potential, given by the Nernst equation. In the
HH model, ENa = +50 mV, EK = −77 mV, and Vrest = −65 mV,
giving Na+ a driving force of +115 mV and K+ a driving force of
−12 mV. This means that the driving force for the Na+ current is
9.6× greater than the K+ current at Vrest .

3.2.4. Single-channel conductance (identical for Na+ and K+)
Fourth, the single-channel conductance γx is another impor-
tant factor determining a channel’s contribution to membrane
noise. For the same channel population current per unit squared
cell membrane, a larger γx implies smaller N, and a larger ix.
Hence channels with a larger single-channel conductance will
have greater current fluctuations. In our implementation of the
stochastic HH model, however, we assume, like most other
stochastic models, the same single-channel conductance for both
Na+ and K+ (20 pS). The value of 20 pS is close to experimentally
measured estimates for Na+ (14 pS) (Bezanilla, 1987), while the
K+ conductance in the squid axon is probably made up of mul-
tiple different channel types, with single-channel conductances
estimated at 10, 20, and 40 pS (Llano et al., 1988).

These four factors can be put together to construct a bino-
mial model of the amplitude of channel noise at steady state.
This model does not have any notion of dynamics or channel
kinetics. We calculate the steady-state open probabilities at rest
directly from the Hodgkin–Huxley equations, and test the bino-
mial model’s ability to reproduce simulated voltage-clamp data
and probe its predictions on the relative magnitudes of Na+ and
K+ channel noise (Figure 3).

We find that, as expected, the binomial model exactly predicts
the conductance and current fluctuations from voltage-clamp
simulation data at resting potential of −65 mV (Figures 3C,F).
We use the binomial model to estimate the steady-state stan-
dard deviation in open channel numbers and total current from
the Na+ and K+ populations at a range of membrane poten-
tials (Figures 3A–B,D–E). As expected from the above analy-
sis the Na+ current standard deviation is about 1.7× that of
the K+ current (matched in simulations, see circle symbols in
Figure 3E).

3.2.5. Channel gating kinetics and membrane filtering (3 × noisier
for K+)

The fifth factor is that the Na+ and K+ conductances have dif-
ferent gating kinetics. These differences are important because
the current fluctuations from each ion channel populations
are filtered differentially by the membrane impedance, hence
altering each channel’s contributions to membrane voltage
noise.

In the Methods we calculate the power-spectra of the Na+ and
K+ current noise assuming a constant membrane potential and
small noise. Both powerspectra are sums of multiple Lorentzians,

SI(f ) =
∑

k

ak

1 + (
f /f k

c

)2

where the f k
c are the corner frequencies of the Lorentzians (the

frequency at which the powerspectrum is half of the zero fre-
quency magnitude), and ak are (voltage-dependent) coefficients.
The full expressions are given in the Methods, but the K+ noise
spectrum is dominated by a Lorentzian with corner frequency
fc = 4/(2πτn). At the resting potential τn ∼ 5.5 ms (Equation
3), so that the dominant Lorentzian has a corner frequency of
115 Hz. The Na+ spectrum is dominated by a Lorentzian with
fc = 3/(2πτm). At rest τm ∼ 0.24 ms, τh ∼ 8.5 ms, so that the
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FIGURE 3 | A binomial model reproduces the steady-state features of

simulated voltage clamp data at −65 mV. (A) Mean number of open
channels as function of voltage for Na+ (blue) and K+ (red) HH conductances.
Dotted vertical line in all panels indicates resting voltage, −65 mV. (B)

Variance in number of open channels for conductances in (A). (C) Example

time series of Na+ and K+ open channels numbers from voltage-clamp
simulation at resting potential (left) with histogram of open channel numbers
(right). Gray curves overlaying the right histograms are the binomial
prediction. (D–F) Similar to (A–C) but for total channel population currents
instead of open numbers. Modeled for membrane area of 1000 µm2.

dominant Lorentzian for Na+ has a much higher corner fre-
quency of 1980 Hz—note however that we include all Lorentzian
terms in the presented results, not just the dominant one. The
analytically calculated spectra match well the estimated spectra of
the simulated stochastic currents, Figure 4A.

To calculate the voltage response to the current noise, we
approximate the active membrane by a linear impedance. The

voltage noise power spectrum SV (f ) is given by the generalized
Ohm’s law

SV (f ) = SI(f )|Z(f )|2

where SI(f ) is the power spectrum of a current noise source
and Z(f ) is the membrane impedance. The impedance relates
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FIGURE 4 | The membrane filters Na+ noise more than K+ noise. (A)

Spectral density of current noise from HH Na+ and K+ channels. Thin dashed
dark colored curves are PSD estimates from simulation data, thick light
colored curves are theoretical, derived from channel kinetic schemes. (B)

Variance of Na+ and K+ current noise from both simulation and theory. Note
Na+ channel noise variance is greater than K+ channel noise. (C) Total HH
membrane impedance at −65 mV as a function of signal frequency. (D)

Voltage noise of Na+ and K+ channels calculated from current noise spectra
and membrane impedance. Gray curve is sum of Na+ and K+ noise, while

the dashed black curve is an estimate of the voltage noise spectrum
measured from simulation data. (E) Theoretical variance of voltage noise
from Na+ and K+ channels compared with estimates from simulation. Note
K+ channels contribute more to voltage noise than Na+ channels. (F)

Comparison of voltage noise variance from theory and simulation as a
function of membrane area. Note curves substantially diverge only for areas
< 500 µm. For those small areas spontaneous spiking occurs and the
associated large voltage fluctuations are not part of the theory. All other
panels use a membrane area of 1000 µm2.

changes in voltage to changes in currents. In active membranes
the input impedance is not given by just the capacitance and leak
conductance, but also by any other channels open at rest and
their reaction to small changes in the voltage. The impedance can
be found by linearizing the four-dimensional (V , m, h, and n)

HH equations around the resting state (e.g., Mauro et al., 1970;
Koch, 1984; Carnevale and Hines, 2006). In the HH model the
presence of Na+ and K+ conductances introduce a resonance
in the impedance at ∼100 Hz, but the 1/f behavior still domi-
nates at higher frequencies (Figure 4C). The resonant peak in the
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impedance is the electrical signature of an inductor. Although
such an inductor has no physical counterpart in the biologi-
cal cell membrane, the delayed-rectifier K+ conductance opposes
changes in membrane potential and for small currents behaves as
a phenomenological inductance (Mauro et al., 1970; Koch, 1984,
1999).

Now we combine the membrane impedance with the current
noise spectra to calculate each channel population’s contribu-
tion to voltage noise. In Figure 4D we plot the theoretical power
spectra of the voltage noise from the HH Na+ and K+ chan-
nel populations, calculated at Vm = Vrest = −65 mV. The sum
of the Na+ and K+ power spectra give the total voltage noise
power spectrum (gray line in Figure 4D). This predicts almost
exactly the power spectrum measured from simulation (dashed
line in Figure 4D). The voltage noise variance from each channel
population equals the integrated power spectrum:

σ 2
x =

∫ ∞

0
Sx(f )df

where subscript x indicates the relevant channel population.
These are graphed in Figure 4E. It is clear the K+ channel fluc-
tuations contributes ∼ 4× more voltage noise variance than Na+.
While the Na+ current noise has a greater variance than the
K+ current noise, it is filtered more strongly by the membrane
impedance.

Can we summarize the total effects of membrane filtering on
noise from the two channel types? One way to quantify this effect
is to take the ratio of voltage and current noise standard devi-
ations for each channel type, rx = σVx/σIx. Doing so we find
that rNa = 44.5 M� and rK = 141.7 M�, implying that, after all
other factors are accounted for, membrane filtering attenuates
Na+ noise ∼ 3× more than K+ noise.

As both the noise spectra and the impedance are voltage-
dependent, these calculations assume that the voltage remains
at a fixed potential, which holds if the fluctuations are small.
Because here we simulate a large membrane area (1000 µm2)
with low membrane resistance, voltage changes are small and
there is only a small discrepancy between the voltage noise calcu-
lated analytically and the estimate from simulation (Figure 4E).
In particular for small membrane areas the voltage fluctuations
will be large, nevertheless the approximation remains good down
until areas where spontaneous spikes appear, Figure 4F. At this
point, currents associated to the spike will dominate the measured
current.

In summary, the contribution of each channel type to mem-
brane noise is determined by their number, single-channel con-
ductance, voltage dependencies and gating kinetics. This is true
for any neuron model. In the case of the HH model, the sum
properties of K+ channels at subthreshold voltages make their
contributions to membrane noise greater than that from Na+
channels.

3.3. EFFECT ON SPONTANEOUS SPIKE RATES
So far we have seen that the channels in the HH model con-
tribute differentially to the noise in the membrane voltage and
that K+ channels have the largest contribution. One would expect

that therefore K+ channels are the most important contributor
of noise-driven spontaneous spike activity as well. This is indeed
the case as we have seen in Figure 1 but quantitatively the link
between the spontaneous rate and the subthreshold membrane
voltage fluctuations is not trivial.

The analysis of spontaneous spiking rate in the HH model to
correlated noise is a complicated stochastic differential equation
problem. Reducing the spiking mechanism to a one dimensional
escape problem, Chow and White (1996) derived the spontaneous
rate using multiplicative, white (uncorrelated) current noise to
approximate the Na+ noise. But it is not obvious how such an
analysis can be extended to colored (correlated) noise. The time-
constants of the K+ noise, Na+ noise and the membrane are all
of similar magnitude (Figure 4), complicating any perturbative
expansion. Even in much simpler integrate-and-fire neuron mod-
els, the treatment of correlated noise is complicated, resulting in a
two-dimensional Fokker-Planck equation that can only be solved
in certain limits (Brunel and Sergi, 1998; Moreno-Bote and Parga,
2004; Alijani and Richardson, 2011).

We first examine how the correlation time in the Gaussian
noise model affects spontaneous firing rates in a HH neuron.
Traditionally, studies have kept the variance of the injected noise
fixed while varying the correlation time. However, as shown
above, this can lead to widely different voltage fluctuations due
to the differential membrane filtering. The idea we examine here
is that instead of the current variance, the voltage variance is a
better predictor of the spontaneous rate. This was recently shown
in exponential integrate-and-fire neurons: the noise driven firing
rate was relatively independent of the noise correlation time when
the voltage variance was kept constant (Alijani and Richardson,
2011).

In order to research this in the HH model, we simulated a
deterministic HH neuron and injected a Gaussian noise current
with a correlation time τ and with a correlation function

〈I(T)I(T + t)〉 = σ 2
V

z2(τ )
e−|t|/τ

The function z(τ ) is an impedance that relates the voltage vari-
ance to the current variance of injected colored noise with time-
constant τ . It is given by z2(τ ) = ∫

SI(f )|Z(f )|2df , where SI(f ) =
4τ

1 + (2π f τ )2
is the power-spectrum of the noise current, and

Z(f ) the linearized impedance of the HH model. Its shape reflects
the resonance in the impedance, Figure 5A. As a result of this
impedance correction the membrane voltage variance in the limit
of small fluctuations equals σ 2

V and is thus independent of τ .
When the amplitude of the noise is scaled up, sponta-

neous spikes appear. The resulting spontaneous rate is shown in
Figures 5B (black solid curve),C. Remarkably, across six orders
of magnitude in the noise time-scale, ranging from noise much
faster than any channel or membrane to extremely slow noise, the
spontaneous rate varies only one order of magnitude (from 40 to
5 Hz for the noise in Figure 5B). With less noise this ratio can be
larger as slow noise might then be unable to evoke the sponta-
neous spikes, Figure 5C. Furthermore, the relation is monotonic,
which is useful when comparing two noise sources. The shape
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FIGURE 5 | Spontanous action potentials in the HH model driven with

Gaussian noise with varying amplitude and correlation time. (A) The
impedance factor z(τ ) gives the voltage fluctuations resulting from a
correlated noise current as a function of the noise correlation time. It is
used to ensure the voltage variance is identical as the time constant of
the noise is varied. Membrane area of 1000 µm2. (B) Spontaneous activity
as a result of a Gaussian current noise, as a function of the correlation
time of the noise. When the variance of the current is fixed, the resulting
rates vary strongly depending on the correlation time (dashed curve).
However, when the noise is calibrated to yield the same variance in the

membrane voltage irrespective of the noise correlation time, the firing rate
is much less variable even across six orders of magnitude (solid curve). (C)

The firing rate vs. the impedance corrected current noise (expressed in σV )
for various values of the noise time-constant. (D) The spontaneous firing
rate vs. membrane area for K+ (red) and Na+ (blue) noise and their various
approximations. Solid curve: full simulation, redrawn from Figure 1B. Thick
dashed curve: approximation using Gaussian noise with identical variance
and time-constant. Thin dashed curve: binomial approximation of the noise.
In particular for Na+ noise the approximations yield rates that are
substantially too low.

of the curve highlights that fast fluctuating noise is typically an
effective driver of neurons, while slow varying noise will tend to
inactivate the Na channel close to threshold and is less effective.

Instead, the current variance is a much worse predictor of
the firing rate (dashed line). Note that in the limit of very slow
noise, the dynamics decouple and the spontaneous rate equals∫

P(I)f (I)dI, where P(I) is the distribution of currents and f (I)
is the neuron’s deterministic f-I curve.

Finally, we ask if we can use these results to estimate the spon-
taneous rates caused by K+, Na+, or in fact any arbitrary channel
noise. In the previous section the noise currents were approxi-
mated by colored Gaussian noise (an OU process) with variance
and correlation time derived from the channel kinetics at the
resting voltage, and filtered by the membrane linearized around
rest. These approximations hold very well in the subthresh-
old regime, i.e., for small noise—equivalent to large membrane
areas — see Figure 4E, but it is a priori unclear whether they
also hold for larger noise amplitudes when spontaneous spikes
appear.

We used a colored Gaussian current noise to model the K+ and
Na+ noise, and injected this into a deterministic HH model. For
example, in case of the K+ channel the variance according to the
above sections is

〈δI2〉 = ρK A[(Vrest − EK )γK n4∞(Vrest)]2

and its correlation time is τn/4. The spontaneous rate of the
neuron driven by this noise was examined as a function of
the membrane area. Although this could be accidental, for K+
noise, the noise model gave an almost perfect fit to the fully
stochastic simulations, Figure 5D compare solid and thick dashed
curves. However, the approximated Na noise lead to far too few
spontaneous spikes, Figure 5D. Its standard deviation had to be

increased by some 50% to fit the simulated spontaneous rates.
This need for a fudge factor shows that for smaller areas the
Na noise is not well described by additive, colored Gaussian
noise. There are many possible cause for this mismatch: the bino-
mial instead of Gaussian current distribution (which additional
simulations showed to be a small effect, Figure 5D thin dashed
curve), the voltage dependence of the impedance, the dynam-
ics of the full HH system, and likely most important, the strong
dependence on the noise current on the membrane voltage,
Figure 3E.

In summary then, while we find that sub-threshold noise can
be estimated accurately, caution is needed when extrapolating to
the spiking regime.

3.4. APPLICATION TO CA1 PYRAMIDAL NEURON MODEL
Above we showed how to break down the factors determining a
given ion channel type’s contribution to voltage noise and sponta-
neous spiking, using the Hodgkin–Huxley squid axon model as an
example. However, our approach is completely general and could
in principle be applied to any neuron model. To demonstrate its
straightforward application, we now perform the same analysis
on a well-studied mammalian cell type: the rodent hippocampal
CA1 pyramidal neuron. We studied a single-compartment model
of this cell type using a well-validated model from the literature
(Migliore et al., 1999; Jarsky et al., 2005). The original model con-
tained three active channel types: an Na+ channel, an A-type K+
channel, Ka, and a delayed rectifier K+ channel, Kdr. We built
stochastic versions of these active conductances with parameters
exactly as previously used (Jarsky et al., 2005).

At small areas the model fired spontaneously (Figure 6A),
similar to the HH model above (Figure 1). Also, similar to
before, our theory well predicts the variance of voltage fluctua-
tions for large membrane areas, but diverges from the simulation
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FIGURE 6 | Spontaneous firing and voltage noise in a stochastic

single-compartment model of hippocampal pyramidal neuron. (A)

Spontaneous firing rate as function of membrane area for CA1 pyramidal
cell model. Qualitative behavior is similar to Hodgkin–Huxley model,
Figure 1. (B) Comparison of voltage noise variance from theory and
simulation as a function of membrane area. As with Hodgkin–Huxley model
(Figure 4F), theory is a good predictor for large membrane areas when
there is no spontaneous spiking. (C) Contributions to voltage variance from
the different ion channel types in the model, for both theory and simulation.
Two types of potassium channels dominate the noise in this model.
Membrane area of 1000 µm2.

results for small areas < 500 µm2 when the neuron spikes
(Figure 6B).

In Figure 6C we plot the contributions to voltage variance
from each of the three voltage-dependent ion channel types in the
CA1 pyramidal neuron model. Similar to the HH model above,
noise from K+ channels dominates over noise from Na+ chan-
nels. Of the two K+ channel types in the model, the delayed
rectifier K+ channel contributes more voltage noise than the A-
type K+ channel. Interestingly, Ka has a larger current noise
variance than Kdr (not shown), but because Ka has faster kinetics
than Kdr, its current noise is more heavily filtered by the mem-
brane capacitance leading to a switch in the relative magnitudes
of their contributions to voltage variance.

These results demonstrate two points: first, our method is
readily applicable to any neuron model; and second, the domi-
nant source of ion channel noise depends on the physiological
details of the neuron. However, it should not be concluded from
these results that K+ channels will always contribute more noise
than Na+ channels. Substantial channel noise can arise from
channels permeable to any ion: Na+, K+ or any other. The rel-
ative amplitudes and effects of channel noise simply depend on
all of the earlier outlined factors and will need to be evaluated on
a case-by-case basis.

DISCUSSION
We have picked apart the various factors that determine a specific
channel population’s contribution to membrane noise. Although
applied only to the Hodgkin Huxley and hippocampal pyramidal
neuron models here, the method is applicable to any voltage gated
channel model. In summary the factors are:

(1) Channel open probability at rest, po. The s.d. is proportional
to

√
p0, provided p0 � 1.

(2) Number of channels, N. The s.d. of the fluctuations in open
channel number is proportional to

√
N.

(3) Reversal potential. Channels with a larger driving force have
a larger single-channel current and hence larger amplitude
population current fluctuations.

(4) Single channel conductance, γ . The s.d. of current fluctua-
tions is proportional to γ .

(5) Channel kinetics. Because the membrane capacitance acts as
a low-pass filter, in general the current noise from channels
with slower gating kinetics are less attenuated than current
noise from channels with faster gating kinetics.

Another qualitative factor is the polarity of current flow. Open
Na+ channels further depolarize the cell, hence increasing the
probability for other Na+ channels to open and acting as a
positive feedback loop. Hence, stochastic Na+ channels increase
excitability of the cell through regenerative depolarizing excur-
sions in membrane potential (Dudman and Nolan, 2009). Open
K+ channels, in contrast, hyperpolarize the cell and act as neg-
ative feedback to changes in membrane potential. This negative
feedback coupled with their relatively slow kinetics can, in some
cases, enable stochastic K+channels to drive sub-threshold oscil-
lations (Schneidman et al., 1998).

The combination of these factors yields an accurate prediction
of the membrane voltage noise. While it is possible to obtain a
coarse estimate of spontaneous firing rates, this is far from per-
fect and highlights two current hiatus in the theory, namely, the
absence of an accurate phenomological model for channel noise
when the noise can not be assumed to be small, and the lack of
theory for colored noise driven spontaneous activity.

In the case of the stochastic HH model we have shown that the
fluctuations from stochastic gating of potassium channels is the
dominant source of noise by three different measures. First, a HH
model where only K+ channels gate stochastically spontaneous
fires at higher rates than a HH model where only Na+ chan-
nels gate stochastically (Figure 1) (Skaugen and Walløe, 1979;
Schneidman et al., 1998; van Rossum et al., 2003). Second, exam-
ining the dynamics of Na+ and K+ currents in the milliseconds
preceding a spontaneous action potential in the “all stochastic”
HH model shows that, on average, spikes are generated by a
drop in K+ current that precedes the increase in Na+ current
(Figure 2). Third, direct calculation of the voltage noise spectra
from each channel population at resting potential shows that K+
channel fluctuations contribute ∼ 75% of the total membrane
noise (Figure 4). This finding, although consistent with results
reported by Schneidman et al. (1998); van Rossum et al. (2003), is
in contrast with other simulations (Chow and White, 1996; Faisal
et al., 2005). We discuss these two studies separately.
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Chow and White (1996) used approximate analytical methods
to directly calculate the spontaneous firing rate in the stochastic
HH model, and compared the predictions to numerical simula-
tions to find apparently very good agreement. Our own simula-
tions produce quantitatively similar results to their simulations
(data not shown), so it is likely that their simulated data are
correct. However, their analytical calculations were based on the
assumption that spontaneous spiking is driven solely by stochas-
tic activation of Na+ channels. No matter how elegant, their result
can not be accurate as it ignores the K+ noise, which is the main
cause for spontaneous firing (Figure 1). If anything, their analyt-
ical model should be a better approximation of our simulations
when K+ channels are modeled deterministically. However, their
calculations do not match this. The errors could have arisen in any
of the multiple approximating steps necessary for their calcula-
tion. For example, they assume a static absolute voltage threshold
when in reality the HH model has (1) no hard threshold for
any type of stimulus (Izhikevich, 2007) and (2) different appar-
ent spike thresholds for stimuli of different temporal structure
(Koch, 1999). A more fruitful method for future studies could be
to derive a higher-dimensional version of the spike threshold that
incorporates both fast and slow channel variable states (Newby
et al., 2013).

Faisal et al. (2005) find in cable axon HH models that Na+
channels contribute more to spontaneous spiking than K+ chan-
nels. We believe this to be a numerical simulation error as it is
inconsistent with our simulations (when implemented with both
PSICS and NEURON), and also those of Schneidman et al. (1998)
and van Rossum et al. (2003)—implemented with the “NeuronC”
simulator (Smith, 1992). Furthermore, we found the K+ channels
to be dominant not only in single compartment models but in
cable structures as well. Without access to their simulator, it is dif-
ficult to tell where the discrepancy lies. Nevertheless, it is possible
that Na+ channel noise does drive spontaneous spiking in models
other than the HH squid giant axon. Our general theory should
help to quickly estimate such possibilities without resorting to full
simulations.
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