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Semi-Automated Biomarker 
Discovery from Pharmacodynamic 
Effects on EEG in ADHD Rodent 
Models
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Hiroyama2, Junhua Li1, Yuji Takahara2, Koichi Ogawa2, Kohei Nishitomi2, Minoru Hasegawa2 
& Andrzej Cichocki1

We propose a novel semi-automatic approach to design biomarkers for capturing pharmacodynamic 
effects induced by pharmacological agents on the spectral power of electroencephalography 
(EEG) recordings. We apply this methodology to investigate the pharmacodynamic effects of 
methylphenidate (MPH) and atomoxetine (ATX) on attention deficit/hyperactivity disorder (ADHD), 
using rodent models. We inject the two agents into the spontaneously hypertensive rat (SHR) model of 
ADHD, the Wistar-Kyoto rat (WKY), and the Wistar rat (WIS), and record their EEG patterns. To assess 
individual EEG patterns quantitatively, we use an integrated methodological approach, which consists 
of calculating the mean, slope and intercept parameters of temporal records of EEG spectral power 
using a smoothing filter, outlier truncation, and linear regression. We apply Fisher discriminant analysis 
(FDA) to identify dominant discriminants to be heuristically consolidated into several new composite 
biomarkers. Results of the analysis of variance (ANOVA) and t-test show benefits in pharmacodynamic 
parameters, especially the slope parameter. Composite biomarker evaluation confirms their validity 
for genetic model stratification and the effects of the pharmacological agents used. The methodology 
proposed is of generic use as an approach to investigating thoroughly the dynamics of the EEG spectral 
power.

Neurogenic cognitive and behavioural disorders constitute an ever-growing challenge to societies1, barely met by 
the continuing development of pharmacological treatments. Biomarker discovery is essential to drug develop-
ment, and also constitutes a formidable challenge in evaluating the effects of newly developed pharmacological 
agents. In particular, non-invasive biomarkers are of high value in diagnosing diseases and evaluating disease pro-
gression and the efficacy of medication. This applies specifically to diseases of pathoneurological origin, where the 
cognitive and behavioural health of the individual is affected. The existence of a battery of non-invasive biomark-
ers capable of identifying neurogenic alteration of normal functioning and capturing the response to pharmaco-
logical agents would be of great importance in clinical practice. Specifically, electroencephalography (EEG)-based 
markers have the potential of serving as such a battery, due their noninvasiveness and well-established recogni-
tion in clinical practice.

Indeed, recent evidence indicates that quantitative electroencephalogram (QEEG) is a powerful tool in 
pharmaco-EEG applications. The identification of treatment responsive QEEG subtypes has been described in 
depression2,3, obsessive compulsive disorder4,5 and schizophrenia6, suggesting that understanding the underlying 
neurophysiology of the patient can contribute significantly to treatment optimization. QEEG has been shown to 
distinguish between attention deficit/hyperactivity disorder (ADHD) responders and non-responders to stimu-
lant medication7–9.

Unfortunately, to date there is no established methodological approach to the design of QEEG derived bio-
markers, in particular, in an automatic, objective and reproducible way. Also, the methodological approaches 
currently used and reported underutilise the informational contents of EEG signals. Neither do they provide a 
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consistent roadmap to obtain novel combinations of information-bearing components of EEG signals. Here, we 
propose a methodology aimed at resolving this, and we design a sequence of generic steps converging towards 
obtaining novel EEG markers in neuropathological disorders. We illustrate our methodology using a specific 
experiment, involving three genetic strains of rat, namely spontaneously hypertensive rat (SHR), Wistar-Kyoto rat 
(WKY), and Wistar rat (WIS), with the goal of reproducing leading behavioural characteristics of these strains, 
namely various degrees of locomotor activity and impulsivity.

SHR is a well-characterised and fairly readily available animal model of ADHD, widely used for pharmacolog-
ical studies on the effects of ADHD treatments. A number of characteristics of SHR have been reported, such as 
inattention10, impulsively11, hyperactivity12,13, working memory impairment14, dopaminergic dysfunctions15, and 
genetics16. The SHR model was developed in the 1960s17 by inbreeding the WKY, which exhibited high systolic 
blood pressure. Therefore, SHR develops hypertension over time18 and as a result, SHR develops a significant and 
unexpected hyperactivity when compared with WKY rats19,20. In addition to hyperactivity, SHR displays inatten-
tion and distinct impulsivity which can, however, be alleviated by methylphenidate (MPH), amphetamine and 
other drugs involved in the treatment of ADHD21,22. Together, these similarities support the validity of SHR as 
animal model of ADHD. Somkuwar et al. studied the effects of ADHD treatments on cocaine self-administration 
by using SHR, WKY, and WIS rats23,24, where WKY served as an animal model of a depression patient25, WIS 
served as an animal model of a normal control group, and both were compared with SHR.

These strains have been extensively studied, primarily by Sagvolden et al.10,26–28. It is, however, evident that 
SHR as an animal model of ADHD is not unambiguous. For example, amphetamine and MPH, which reduce 
hyperactivity in ADHD children, induce an increase in activity in both SHR and WKY rats29,30. The extent of the 
stimulation has been found to be lower in SHR but it is in stark contrast to clinical studies31. In the open-field test, 
the rat is exposed to novel and unnatural surroundings and its behavioural reactions are to an important degree 
determined by this stress. SHR displays a marked increase in exploratory rearing activity in this test26,30. Brain 
dopamine systems play an important role in open-field locomotor activity and exploratory behaviour. These find-
ings support the essential role of dopamine in the development of spontaneous hypertension in rats30.

We test our methodology on two types of ADHD pharmacological agents/medications, namely methylpheni-
date (MPH), a stimulant acting through inhibition of catecholamine reuptake, primarily as a dopamine reuptake 
inhibitor, and a selective inhibitor of norepinephrine transporters (SNRI), atomoxetine (ATX). In an animal 
study, Koda et al.32 analysed the effects of acute and chronic administration of both MPH and ATX on mice and 
found selective activation of the prefrontal catecholamine systems. Umehara et al.33 analysed the effects of ATX 
and MPH on locomotion and prefrontal monoamine release in SHR rats. They found that both ATX and MPH 
increased the extracellular levels of norepirephrine (NE) and dopamine (DA) in the prefrontal cortex (PFC) of 
SHR. Urban et al.34 showed that the juvenile prefrontal cortex is supersensitive to MPH, due to significant depres-
sive effects on pyramidal neurons of both single dose and chronic treatment with MPH at low doses (1 mg/kg). 
However, the same dose in adult rats resulted in excitatory effects. Administration of stimulants such as MPX 
appears to correct prefrontal hypoactivity which is considered to be the leading cause of ADHD. In the juvenile 
PFC, even a dose of MPH thought to be within the clinically relevant range of 1 mg/kg may in fact cause exces-
sively high levels of DA and NE. The majority of studies investigating ATX have assumed noradrenaline to be 
primarily affected, even though ATX can target prefrontal dopamine at only slightly higher doses. In conclusion, 
the majority of studies involving ATX to date appear not to have employed an adequate animal model of ADHD 
or, as some researchers point out35 have used administration methods incongruous with human use, where the 
drug is administered in tablet form.

ADHD is a developmental disorder affecting children, in particular, which leads to attention deficit, impul-
siveness and hyperactivity. Its ethiology is, however, not fully understood36. ADHD is caused by multiple genetic 
and environmental factors and is thought to be related to an imbalance in the functioning of neural systems in 
the brain. In children who are diagnosed as having ADHD, the functions of DA and NE transporters are overly 
working, while the neurotransmission function is lagging. This systemic imbalance is considered to cause symp-
toms of attention deficit, impulsiveness, and hyperactivity37,38. Decreased function of working memory caused 
by the destabilized neurotransmission is also related to the attention deficit in ADHD39. Further, ADHD is likely 
to occur in conjunction with rebellious behavioural disorder, depression, anxiety disorder and tic disorder40,41. 
The exact causes and mechanisms of ADHD development remain unknown, leaving precaution, diagnosis, and 
treatment as open, unsolved problems. MPH42 and ATX43 are widely used in symptomatic treatment of ADHD.

QEEG has been shown to have sensitivity and specificity levels varying from 90% to 98% in discriminating 
normal subjects from those with ADHD and ADHD children from children with learning difficulties8,44–46. QEEG 
has also proved useful in the management of treatment response to stimulant medication. A number of studies 
have investigated changes in the EEG due to stimulant medications, with the majority of studies finding that the 
stimulants result in some normalization of the EEG. Swartwood et al.47 and Lubar et al.48 failed to find changes 
in EEG power due to stimulant medication, but Chabot et al.49 found that 56.9% of a group of children with 
ADHD showed normalization of the EEG after the administration of a stimulant. Loo et al.50 found that after the 
administration of methylphenidate, good responders had decreased theta and alpha but increased beta activity 
in the frontal regions, while poor responders showed the opposite EEG changes: Skirrow et al.51 concluded nor-
malisation of theta activity indicative of a role for dynamic impairments rather than stable cognitive deficits in 
cognitive performance and functional brain changes that are sensitive to administered task conditions. Clarke  
et al.52–54 consistently found that stimulant medications resulted in normalization of the EEG with a reduction in 
theta activity and an increase in beta activity.

Barry et al.55 investigated the effects of a single dose of ATX on the electroencephalogram (EEG) and perfor-
mance of children with ADHD. They concluded that ATX can produce substantial normalization of the ADHD 
QEEG profile, together with behavioural performance improvements. It has been previously shown that ATX 
increased extracellular concentrations of NE and DA in the PFC56. Furthermore, chronic administration of ATX 
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for 21 days also increased NA and DA levels in the prefrontal cortex32. Leuchter et al.57 used the theta cordance 
index in predicting ATX treatment response in adult ADHD. Left temporo-parietal cordance in the theta fre-
quency band after one week of treatment was associated with ADHD symptom improvement and quality of life 
measured at 12 weeks in ATX-treated subjects, but not in those treated with a placebo. There is only one study 
that investigated the acute treatment effect of 20 mg of ATX in children and adolescents with ADHD55. The EEG 
was recorded after 1 h of ATX administration. Acute ATX administration produced a significant decrease in pos-
terior absolute theta and an increase in absolute beta (especially in right and midline anterior regions). Relative 
delta was increased, particularly in central regions, and relative beta was globally increased. There were no signifi-
cant medication effects on absolute alpha activity. However, this study has minimal implications for the long-term 
effects of ATX on QEEG changes which were investigated by Chiarenza et al.58. They found increased absolute 
power in alpha and delta in frontal and temporal regions in the responders compared with widely distributed 
increased absolute power in all frequency bands in non-responders.

However, it should be noted that Robbins and Arnsten59 point out that an inverted U-shape function links the 
efficiency of behavioural performance to the level of activity in the ascending monoaminergic systems. A general 
principle that has emerged in the past decade in considering the functions of the chemical modulatory inputs to 
the PFC has been that of the Yerkes-Dodson inverted U-shaped function linking the efficiency of behavioural 
performance to the level of activity in the ascending monoaminergic (mainly DA- and NE-ergic) systems. The 
inverted U dose response has been demonstrated with pharmacological agents in both animals, e.g.60,61, and 
humans62. Further complications have related to heterogeneity of function within the PFC and the fact that the 
Yerkes-Dodson relationships may posit different U-shaped functions depending on the nature of the task; there-
fore, a level of monoaminegic function optimal for one may be sub- or supraoptimal for another. In particular, in 
contrast to the essential effects of moderate levels of catecholamines, very high levels of catecholamine release in 
the PFC during stress exposure markedly impair working memory function through network collapse and sup-
pression of PFC cell firing. However, as already observed by Pliszka et al.63, it seems unlikely that ADHD is related 
to a simple hypo-functioning of the dopamine system, Indeed, the complex multistage hypothesis of ADHD 
suggested by Pliszka et al. remains a plausible model of the complex interactions involved in ADHD ethiology.

Since the symptoms of ADHD are caused by an anomaly in brain network function, characterised by an 
increase in slow-wave (delta and theta) characteristics in particular64, it is worth analyzing the EEG of ADHD 
patients or ADHD-like animals. EEG is, however, a small, distortion and artefact prone voltage signal meas-
ured on the scalp, reflecting electrical potential transmission of neuronal population activities in the brain. EEG 
forms high-dimensional digital data, and due to noise content and high complexity, it requires analysis using 
state-of-the-art sophisticated statistical and probabilistic methods of signal processing.

There is no universal agreement regarding the utility of EEG-based markers for ADHD. Literature reviews 
reveal individual EEG spectral component-based biomarkers, often reporting contradictory findings65. The lack 
of a methodological basis for discovering more robust biomarkers is evident in both clinical and animal labora-
tory experimental research, leading to difficulties in establishing translational markers and testing their validity. 
In this study, we conducted an experiment to investigate the differences in EEG spectral power with and without 
MPH and ATX administration to SHR, WKY and WIS genetic strains. This experiment was designed to quantify: 
i) the effects of these ADHD treatments on each particular genetic strain considered, ii) the difference between 
individual rodent models, and iii) the effects of the pharmacological agents used. To investigate the effects of 
pharmacological agents on the individual rodent models, we applied a novel approach to the semi-automatic 
biomarker design, which consists of three steps of feature extraction and of three types of statistical analysis. 
The feature extraction is an essential procedure to quantify the dynamical records of EEG spectral power into 
meaningful parameters. In general, temporal records of EEG spectral power form high dimensional data arrays. 
They also contain substantial levels of noise and outliers. For these reasons they are complicated to evaluate. We 
use a median filter to reduce noise, a functional boxplot algorithm to detect outliers, followed by linear regres-
sion to quantify the signals in terms of slope and intercept parameters. Linear regression has several advantages 
compared to simply calculating the average value. Firstly, linear regression significantly reduces information loss 
of time-varying EEG signals with only one additional parameter. Secondly, slope and intercept parameters con-
tain potentially important time-varying information, in particular that of the pharmacodynamic effects of the 
agents. Since the evaluation of the slope and intercept parameters for the EEG pharmacodynamic effects is a novel 
approach, we consider this to be a major methodological contribution of this work.

For the statistical analysis, analysis of variance (ANOVA), t-test, and Fisher discriminant analysis (FDA) were 
applied. ANOVA evaluates the significance of extracted feature parameters: slope, intercept and temporal aver-
age of spectral power. The t-test finds the significant difference between individual treatments in each rodent 
model. The FDA reveals dominant biomarkers for stratification of the animal model and effects of pharmaceu-
tics via EEG spectral power features, and evaluates dominant differences in parameters of individual EEG fre-
quency bands before and after the administration of the agent. We used the FDA to discover biomarkers in a 
semi-automatic way.

We have organized the remainder of the paper as follows. Firstly, in the Materials and Methods section, we 
explain the experimental environment and introduce the proposed methodology entailing analysis methods for 
noise reduction, outlier detection, feature extraction (linear regression), statistical tests and classification. Next, 
we present and evaluate the results of the analysis in the Results section. Finally, in the Discussion section, we 
discuss the advantages of the novel methodology proposed.

Materials and Methods
Animals.  SHR, WKY, and WIS rats were obtained from Charles River Laboratories Japan, Inc. at 5 weeks of 
age. There were 10 animals of each genetic strain; 30 animals were obtained in total. The animals were supplied 
with standard food and water ad libitum under controlled temperature and humidity with a 12/12 hours light/
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dark cycle. The animal study protocol for this study was carefully reviewed by the Institutional Animal Care and 
Use Committee (IACUC) and then approved at Shionogi & Co., Ltd. by the director of the institute, based on the 
report by the IACUC. All experiments were performed in accordance with relevant guidelines and regulations.

Pharmacological Agents.  MPH hydrochloride and ATX hydrochloride were obtained from Sigma-Aldrich 
and Tokyo Chemical Industry Co., Ltd., respectively. Both pharmacological agents were dissolved in a saline 
solution (0.9% NaCl) and were administered by intraperitoneal dosage. Three dose ratios of MPH (0.3, 1.0, and 
3.0 [mg/kg]) and two dose ratios of ATX (1.0 and 2.0 [mg/kg]) were prepared.

Experiment.  The rats had electrodes implanted on their scalps at 5 weeks of age, then were allowed to recover 
for 5–7 days after electrode implantation. After the recovery from surgery, EEG recording was done at 6–7 weeks 
of age. Six EEG electrodes were implanted on the left and right frontal (±2.0 mm lateral and 3.2 mm anterior from 
the bregma), parietal (±3.5 mm lateral and 1.8 mm posterior from the bregma) and occipital cortex (±2.0 mm 
lateral and 5.2 mm posterior from the bregma) of the rodents’ scalps. The left occipital cortex electrode was used 
as a reference. With this set-up, five time series of EEG recordings were obtained. The time series of EEG signals 
were recorded for 1.0–1.5 hours each day according to the protocol devised (see Fig. 1). Eight experiment days 
were considered: no agent administration on Day 0, vehicle (saline) on Day 1, 0.3 [mg/kg] of MPH on Day 2, 1.0 
[mg/kg] of MPH on Day 3, 3.0 [mg/kg] of MPH on Day 4, 1.0 [mg/kg] of ATX on Day 5, 2.0 [mg/kg] of ATX 
on Day 6, and no agent administration on Day 7. This provided a total of five time series of eight experimental 
conditions for each individual animal.

Data Analysis.  The main objective of this study was to investigate the effects of the pharmacological agents 
applied to each particular genetic strain of the rats used, as reflected in the EEG time series. However, time 
series recordings of extensive duration contain a range of brain activity modalities due to the particular behav-
ioural characteristics of individual animals. This results in both a substantial inter-subject/animal variability and 
in intra-subject/animal variability in the signals observed. Furthermore, EEG signals commonly include noise, 
artefacts and outliers of various origins. Our purpose was to extract meaningful common dynamical behaviour 
due to individual pharmacological agents applied for each separate genetic strain of rat. To this end, we applied 
a dedicated sequence of pre-processing steps: smoothing filter, outlier detection, and linear regression followed 
by the analysis of the results using ANOVA, t-test and FDA. In Fig. 2, we schematically illustrate the flow of data 
processing and graphically show the main data analysis concepts involved.

Time-frequency analysis.  We considered 9 frequency sub-bands of the EEG spectral power labelled as follows: 
Total (0–250 Hz), lDelta (low Delta in 0.1–1.5 Hz), Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–
30 Hz), Gamma (30–55 Hz), High (70–170 Hz), and vHigh (very high frequencies in 190–250 Hz). Frequency 
band-specific dynamical behaviour of the spectral power of all the individual sub-bands was computed for all the 
time series for the entire duration of each recording session at 250 ms steps. These temporal records of spectral 
sub-band power time series were cropped at 1-hour duration, records of days were aligned so that the time of 
injection fell in the sample occurring 9 minutes after the first sample. The resulting dataset used for the analysis 

Figure 1.  Experimental procedure and signal acquisition. (A) EEG signals of each animal were recorded 
10 minutes before and 60–90 minutes after injection of medication. No medication was administered on days 
0 and 7. Day 4 was followed by a two-day washout period. (B) Schematic layout of electrode locations, left 
occipital (LO) electrode was used as a reference.

Figure 2.  Schematic illustration of the data processing flow and the main data processing concepts utilised.



www.nature.com/scientificreports/

5SCIENTIFIC REPOrTS |  (2018) 8:5202  | DOI:10.1038/s41598-018-23450-y

was stored as a high-dimensional array consisting of values of spectral power for 9 frequency sub-bands, 14396 
time samples, 5 EEG channels, 8 experimental days, 10 animals, and 3 genetic strains.

Smoothing via median filter.  The recorded EEG signals included a range of unavoidable noise caused by periph-
eral devices, external sounds and animal motor activity. Since the focus of this study was on extracting the 
dynamical information contained in the temporal records of EEG spectral power, such persistent noise, tran-
sient nonstationarities, bursts and isolated spikes were undesirable. In order to reduce the degenerative effect 
of these noise phenomena on signal quality, we applied a median filter. For the details of the median filter, see 
Supplementary Note 1 and Supplementary Figure 1.

Outlier detection via functional boxplot.  After the median smoothing, signals from individual animals of the 
same genetic strain still possessed high inter-individual variability. As the next pre-processing step, we identified 
the central region of the group of signals and detected possible outlying signals. A total of 216 groups consisting 
of 3 genetic strains, 8 experimental days, and 9 frequency sub-bands were considered at this stage. In each group, 
there were 50 signals consisting of 5 recording channels and 10 animals in each genetic strain and each frequency 
sub-band. In order to find the outliers in a group, we employed the technique of the functional boxplot66, which 
is a generalisation of the method of the boxplot for the group of scalar values, suitable for application to the group 
of time-varying continuous signals considered here. For the details of the functional boxplot, see Supplementary 
Note 2 and Supplementary Figures 2, 3.

Linear regression and mPower.  To date, in almost all EEG studies of both rodent and human ADHD, EEG spec-
tral power has been assessed using mean values of the total spectral power. Such mean values are usually obtained 
using averaging of spectral power, to obtain one grand mean value per frequency sub-band (mPower). This is 
performed using short-time binning of each frequency band, which are in turn summed up as follows:

∑ =N
y t1 ( ),n

N
n1

where y(t) is the EEG spectral power per time bin tn and = ...n N1, ,  is a running time index. This operation 
destroys all the temporal information contained in the original EEG. In Fig. 3 we present the results of the stand-
ard mPower for all the EEG frequency bands for all the days of our experiment and for all the animal strains 
investigated.

The crux of our novel approach here is in that we preserve the temporal dynamics of the EEG by retaining the 
values of the band-specific spectral power as a time-varying function y(t), where y(t) is the EEG spectral power 
per time bin tn and n = 1, …, N is a running time index. Furthermore, we explicitly modelled this dynamics by 
using a parsimonious linear regression model.

The linear model is given by

α β= +� �~y t y t t( ) ( ) , (1)

where α and β are the slope and intercept parameters. The appropriate values of α and β were obtained as

∑α β α β= − −
α β



 y t t( , ) argmin ( ( ) ) ,
(2)t,

2

where t was aligned to the moment of the injection of the pharmacological agent at t = 0. The fitting was done over 
an interval 49 minutes long, starting 2 minutes after the injection of the pharmaceutical at the time annotated as 
t = 0. We removed from the analysis the first two minutes after injection, when the animal’s behaviour was par-
ticularly prone to impulsive responses to the human intervention.

The estimated value of the slope parameter α captures the dominant trend of the EEG power in the spectral 
sub-band considered. This is strongly related to the pharmacodynamical response of the animal of the particular 
genetic strain considered to the pharmacological agent used. The value of the intercept β estimate reflects the 
estimated instantaneous response immediately after the intervention (injection), again in terms of the spectral 
sub-band of EEG considered for the particular genetic strain and in response to the pharmacological agent 
applied.

Both parameters were estimated for all spectral sub-bands, experiment days, and genetic strains considered 
and shown in Fig. 3. The results of the linear regression and mPower are shown in online Supplementary Figure 4.

Significance test.  ANOVA and t-test: ANOVA of two-way design was conducted for the slope, the intercept, and 
the mPower parameters obtained for all the nine spectral sub-bands, while the experimental condition (agent 
administration type) and genetic strains were considered as factors. ANOVA evaluates the rate of between-class 
variance and within-class variance of some parameter. When between-class variance is large and within-class 
variance is small, the f-value becomes large, and its significance with respect to the parameter is evaluated based 
on the f-value. By using ANOVA, we evaluated the significance of the strain factor (three classes), experimental 
condition factor (eight classes), and their interaction with respect to each parameter involved.

Next, the t-test between individual experimental conditions was conducted for the parameters of slope, inter-
cept, and mPower. The t-test evaluates the significance of the difference between two distributions based on 
their mean value, variance and the number of samples. We evaluated the effect of the experimental conditions 
on the three parameters for all the spectral frequency sub-bands and for all the rodent models/genetic strains 
considered.
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Classification test.  Fisher discriminant analysis: FDA is a feature extraction method to separate labelled samples 
into two classes. We applied the FDA to the extracted parameters of the three genetic strains (SHR, WKY, and 
WIS). There were a total of 150 samples, consisting of 5 EEG channels for 10 animals of each strain, where each 

Figure 3.  Result of experimental conditions in SHR, WKY, and WIS: Average and standard error of the mean 
(SEM) of slope, intercept and mPower parameters are depicted as bar and error bar. The marks ‘*’ and ‘#’ 
indicate the results of the statistical significance test, the one-tailed t-test, between the vehicle and other specific 
pharmacological agent administration for which the significant levels are 0.05 and 0.01, respectively. Positive 
and negative significance are colour-coded using black and red, respectively.
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sample was a 144-dimensional vector. These 144 dimensions consisted of 8 (experimental days) × 9 (spectral 
sub-bands) × 2 (parameters of slope and intercept).

A linear feature extraction model is given by

= 〈 〉 −w fz z, , (3)i i 0

where fi is the original data, zi are the extracted features, w is a weighting parameter vector, and z0 is a threshold 
parameter. FDA is considered to be a method to infer w by using the following criterion:

w S w
w S w

max ,
(4)w

T
B

T
W

where µ µ µ µ= − −S : ( )( )B
T

1 2 1 2  and = +S S S:W 1 2 are between and within variance matrices, respectively, 
and µc and Sc for c ∈ {1, 2} are the mean vector and the covariance matrix of each class. The optimal weights can 
be analytically obtained as

µ µ= − .−
w S ( ) (5)W

1
1 2

There are several methods to estimate the threshold z0. For example, it can be obtained as
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where = 〈 〉 Ss w w: ,c c . Each new sample fnew was assigned to a particular class using the threshold and the 
weights obtained for the learning set
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We calculated the classification ratio via 10-fold cross-validation (CV) by using the FDA classifier for several 
variations of the feature vectors. In the 10-fold CV, we separated all 150 samples into 10 subsets, randomly and 
uniformly, obtained the classifier by using 9 subsets, and calculated the classification rate by using the remaining 
subset. We reiterated this classification procedure 10 times, using all possible combinations.

Semi-automatic biomarker search using FDA: We propose a new semi-automatic biomarker identification 
methodology, which consists of three steps: (1) detection of the best candidate spectral sub-bands, (2) obtaining 
the weighting parameters using FDA, and (3) spectral sub-band consolidation into the composite biomarkers.

In the first step, we narrow down the spectral contents to the most relevant candidate sub-bands, using 
ANOVA and FDA. For example, the spectral bands of lower frequency (lDelta–Beta) appear to be more relevant 
than the higher frequency sub-bands (Gamma–vHigh), according to Table 1 and Fig. 4 (see Section “Results” for a 
detailed explanation). For this reason, we selected the low Delta–Beta sub-bands as candidates for the biomarkers.

The actual classification rates for each frequency band are shown in Fig. 4 (panel C), top row (for the entire 
experiment). These are higher than 80% for low frequencies in the majority of pairwise comparisons of genetic 
strains. Further to this point, we believe that the higher discriminative power of lower frequency bands is related 
to the greater role these lower frequency bands play, both in the differences between behavioural phenotypes of 
the strains and in their response to the pharmacological agents applied. Lower frequency bands have long been 
implicated in ADHD in humans67–69, resulting in Food and Drug Administration approval of the theta/beta ratio 
as an additional criterion for ADHD diagnosis. The discriminative power of low frequencies further extends over 
network characteristic64 and has also been observed in the very low frequency range of EEG70. Further, some 
evidence of increased low frequency in one of the specific models of rats (SHR) used in our experiments has also 
been reported71.

bands

Slope Intercept mPower

Exp. Cond. Strain Interaction Exp. Cond. Strain Interaction Exp. Cond. Strain Interaction

Total 6.64** 42.90** 3.15** 10.80** 45.24 ** 2.54 ** 12.81 ** 90.13 ** 2.39**

lDelta 7.00 ** 28.43 ** 1.97 * 8.28** 20.19 ** 3.68 ** 9.19 ** 57.82 ** 3.44**

Delta 5.66 ** 29.24 ** 2.37 ** 13.74** 56.21 ** 3.44 ** 15.98 ** 130.68 ** 3.29**

Theta 6.02 ** 34.71 ** 3.30 ** 7.74 ** 32.16 ** 1.22 6.05 ** 57.58 ** 1.73 *

Alpha 7.52 ** 52.66 ** 3.79 ** 15.64 ** 27.87 ** 2.94 ** 19.95 ** 76.79 ** 3.44**

Beta 7.49 ** 65.89 ** 3.56 ** 15.99 ** 80.28 ** 3.03 ** 19.65 ** 147.82 ** 3.20**

Gamma 16.32 ** 38.85 ** 1.65 7.97 ** 2.77 1.40 4.69 ** 0.00 1.43

High 13.37 ** 13.21 ** 2.73 ** 10.72 ** 7.65 ** 1.07 11.32 ** 20.38 ** 1.25

vHigh 7.75 ** 0.78 4.90 ** 9.52 ** 7.41 ** 2.55 ** 4.09 ** 8.10 ** 3.95**

Table 1.  Results of two-way ANOVA analysis: each f-value and its significance is described. *There is a 
significant difference with α = 0.05. **There is a significant difference with α = 0.01.
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In the second step, we obtained the weighting parameters for the candidate frequency bands selected through 
FDA. Figure 5 shows the weighting parameters of the selected candidate frequency bands (lDelta–Beta), where 
the absolute values of the weighting parameters define the importance of the corresponding frequency bands. 

Figure 4.  Results of FDA: (A) shows the visualization of all samples via PCA and FDA from a 144-dimensional 
original feature space, which consists of slope and intercept parameters for 9 frequency bands and 8 
experimental condition days; (B) shows the visualization of weighting parameter obtained by FDA for two 
classification objectives. Individual bar plots depict the horizontal or vertical sums of the absolute values of 
classification outcomes; (C) shows the matrices of rounded averages of classification rates via 10-fold CV for all 
combinations of experimental conditions and sub-bands in each classification objective.
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Finally, we consolidated the most important frequency bands selected and combined them in parsimonious func-
tional forms as composite biomarkers according to the weighting parameters. This final step was performed heu-
ristically. The composite biomarkers we discovered in this study, based on Fig. 5, are listed in Table 2.

Figure 5.  Results of average and SEM of weighting values of individual biomarkers and their classification rates. 
We focused on the difference in strains after the vehicle administration (left column), effects of MPH (centre 
column) and ATX (right column) compared with the vehicle, and discerned the weighting parameters via FDA 
for slope features (panel A), intercept features (panel B), mPower features (panel C), both slope and intercept 
features (panel D), and both slope and mPower features (panel E) in lDelta–Beta frequency bands. Bar plots 
depict the average and SEM of individual normalized weighting parameters, and values show average ±SEMs 
of classification rates via 10-fold CV test. Since the scale of slope and intercept parameters, and individual 
frequency bands are quite different (e.g., lDelta > delta > Theta > Alpha > Beta), individual weighting 
parameters were normalized depending on the individual scale, as ascertained for this visualization. Note that 
this normalization does not have any effect on the classification accuracy.
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Results
The process of biomarker discovery starts with an overview of parameters computed from recorded EEG. Table 1 
and Fig. 3, respectively, show the results of the ANOVA and t-test. These results allow us to evaluate the signifi-
cance of multiple individual parameters computed for each strain, in this figure via their f-values, averages and 
standard errors of the mean (SEMs). Each individual parameter can be used to discriminate between various 
groupings, such as those based on strain or common dose and medication. Using individual features as markers 
is the first and simplest approach. Next we show that further gains in discriminative power can be obtained by 
combining features.

Features can be combined by linear combination. Well-established methods for this are, for example, principal 
component analysis (PCA) and FDA. Figure 4(A) shows the samples projected into a two-dimensional feature 
space via PCA and FDA from the 144-dimensional real-valued original feature space. The left PCA panel shows 
samples in space spanned by principal components. The variance of WIS was the smallest, the variance of SHR 
was the largest, and the variance of WKY was at an intermediate level. The same features projected into space 
spanned by the FDA components are shown in the right panel of Fig. 4(A). The panel shows three categories–
genetic strains–separated into three somewhat overlapping clusters. Outliers detected by the functional boxplot 
were included with the samples projected in this figure; in total 150 samples are shown. Only a half of the available 
samples were used for inferring the FDA components to prevent over-fitting. Separation of samples into SHR 
and the other strains was done along the X-axis, with the vertical line (zero intercept) providing the best cluster 
threshold. Similarly, the horizontal line provided the threshold to separate samples into WKY and WIS clusters. 
FDA weights were obtained as a 144-dimensional vector. The vector was next transformed into two (8 × 9) matri-
ces, shown in Fig. 4(B). The upper and right side bars show sums of the absolute values for each horizontal or ver-
tical direction. Figure 4(C) shows the rounded off and averaged recognition rate matrices of Fisher’s discriminant 
classifier computed with the 10-fold CV test.

Exploratory experiments in the classification of strains were conducted using various combinations of fea-
tures: i) slope and individual parameters for each frequency band and each experimental condition (2 dimen-
sions), ii) both parameters of one sub-band and all experiment days (16 dimensions), iii) both parameters of 
one experiment day and all frequency bands (18 dimensions), iv) both parameters of all experiment days and all 
frequency bands (144 dimensions), and v) those of only mPower. We considered three classification objectives, 
for differentiation between: SHR vs WKY, SHR vs WIS, and WKY vs WIS. As a general observation, except for the 
‘ALL’ sub-bands, which obviously contained all the available information, lower frequency sub-bands (i.e., lDelta–
Beta) were more effective for these classification objectives than the higher frequency sub-bands (see Fig. 4(C)). 
SHR vs WKY and SHR vs WIS were easier to distinguish than WKY and WIS. In the cases of SHR vs WKY and 
SHR vs WIS, the distinction was clearer for Total-Beta bands and D0-D3 experiment days, resulting in relatively 
higher accuracy than for other combinations of classification entries (except for the entries labelled ALL, which 
contained all the information available).

The exploratory experiments were concluded by computing weights for features comprising power, slope and 
intercept parameters computed for selected lower frequency EEG bands. Figure 5 shows the results of the com-
parison using individual lower frequency sub-band-based biomarkers. There, the relative importance (weighting 
value) of individual biomarkers was compared using signs and lengths of bars, together with the corresponding 
classification performance for each objective and for each experimental condition. Furthermore, several compos-
ite biomarkers can be designed.

The final consolidation step consisted of a careful review of Figs 3–5, and translation of observed lawful rela-
tionships into parsimonious functional forms. Table 2 presents the formulas obtained for the dominant composite 
biomarkers using several frequency sub-bands of mPower and slope parameters. Figure 6 shows the results of 
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Table 2.  Biomarkers and effects on mPower.
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values of the composite biomarkers for the determination of each rodent genetic strain and the effects of MPH 
and ATX. The respective biomarkers were the simplified and slightly modified versions based on Fig. 5. For exam-
ple, positive alpha, negative delta, and negative beta of mPower could be important for SHR vs others. In this case, 
we heuristically considered α

δ β

p

p p

( )

( ) ( )
 as a biomarker for SHR, where α p( ) stands for values of mPower of alpha band, 

and other expressions are denoted in the same way. Next, we considered alternative heuristic combinations of 
slope parameters of several dominant frequency bands for the additional usage for mPower, since the slope 
parameter is sensitive to multiplication. For example, positive delta, negative lDelta, and negative Theta of slope 

Figure 6.  Biomarkers to identify SHR, WKY, and WIS (panel A), and to identify the effects of MPH (panel B) 
and ATX (panel C): ratios of mPower parameters and combinations of mPower and slope parameters are used 
for the construction of biomarkers. Individual bars show the averages and SEM of values of: (left in each graph) 
the biomarker using only mPower; and (right in each graph) the biomarker using both mPower and slope for 
SHR, WKY, and WIS (in left, centre and right column, respectively). In addition, significant levels (P-values) are 
described above the bar obtained by one-tailed t-test: *(P ≤ 0.005), **(P ≤ 0.001), ***(P ≤ 0.001), #(P ≤ 10–5), 
and ##(P ≤ 10−10).
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were obtained by FDA for SHR vs others. In this case, we considered δ θ− −ms s s( ) ( ) ( ) as a biomarker for SHR, 
where (s) stands for values of the slope. This was added to a biomarker of mPower with a multiplicative factor 
λ λ δ θ+ − −α

δ β
m: ( )s s s( ) ( ) ( )p

p p

( )

( ) ( )
 as a parameter. The parameter γ was chosen from two candidate values differing 

by one order of magnitude {0.1, 0.01}. The hybrid biomarkers discovered proved consistently useful in identifying 
SHR, WKY, WIS and the effects of individual agents on each strain.

Discussion
In this section, we discuss the results obtained from a methodological point of view.

Methodologies.  In the experiment reported here, we used three genetic strains, namely SHR, WKY, and 
WIS, and two types of pharmacological agents/medications, namely MPH and ATX, and recorded EEG signals 
in accordance with the protocol. No such simultaneous investigation into the effects on EEG of MPH and ATX 
in SHR, WKY, and WIS has been considered in related research reported to date. Furthermore, to the best of our 
knowledge, no other study has made use of the slope and intercept parameters of the dynamical records of EEG 
spectral power, nor proposed a semi-automatic approach to the pharmacodynamic biomarker search by using FDA.

In this study, we used ANOVA and FDA for different objectives. However, the two methods are closely related 
with respect to taking into account the ratio of two kinds of variance: variance between classes and variance of 
error. Specifically, ANOVA is a method to test the significance of factors with respect to a control parameter 
considered by evaluating the ratio of variance between the classes and the variance of error. FDA maximizes 
the ratio of the variance between classes and the variance of error by tuning weights of parameters. In other 
words, ANOVA can evaluate the importance of each parameter and FDA can obtain the combinatorial weights 
of parameters to maximize the difference caused by some common factor. ANOVA has been widely used in this 
research field, for example in71, however FDA has not often been used. Introducing an effective usage of FDA for 
discovering dominant biomarkers semi-automatically is one of the contributions of this study to the research 
field considered. In treating large-volume data, such a semi-automatic approach could prove particularly useful.

From the results of ANOVA (Table 1), slope, intercept, and mPower parameters were significantly altered 
depending on the strains considered, the experimental conditions, and their interactions. In particular, the strain 
factors had a substantial effect on the lower frequency bands (lDelta–Beta). This suggests that lower-frequencies 
could be particularly important for the stratification of the rodent model and the pharmacological agent. The 
results of the t-test for different protocol stages (Fig. 3) show significant differences in slope, intercept, and 
mPower. Therefore, by introducing the slope parameter, we are able to identify significantly different protocol 
stages, which is not possible using the mPower parameter.

In the proposed biomarker search algorithm, we considered all the frequency bands as candidates for the bio-
markers, evaluated all the sub-bands automatically, systematically removed the relatively unimportant sub-bands, 
and finally consolidated the relevant sub-bands into the heuristic parsimonious composite biomarkers. Using 
such a semi-automatic approach to biomarker design/determination, we were able to discover several domi-
nant candidates of composite biomarkers in an unbiased way. Finally, it should be emphasized that the proposed 
approach is not only useful for EEG analysis of animal models of ADHD, but also potentially applicable to the 
EEG analysis of human subjects suffering from a range of diseases such as Alzheimer, depression, bipolar disorder 
or autism. Applications of the proposed semi-automatic approach to such EEG biomarker analysis may contrib-
ute to a wide range of research involving effects of pharmacological agents, especially in large-scale data analysis.

Sensitivities of Biomarkers.  In this study, we have discovered effective/dominant biomarkers using slope 
and mPower parameters. Table 2 summarises the biomarkers for each genetic strain and for the effects of the 
pharmacological agents used. Figure 1 shows the sensitivities of these biomarkers, specifically, of the biomarker 
using only mPower and the hybrid biomarker using mPower and slope.

From the results (Fig. 6), biomarkers discovered for the strains distinguish each strain well. In particular, 
the upper panel (Fig. 6A) shows how the strains can be identified using the biomarkers listed in Table 2. The 
structure of the graphs in the left, centre and right sub-panels corresponds with the mPower, and mPower plus 
slope biomarkers for the SHR, WKY and WIS strains, as listed in Table 2. Each of these strains is identified by the 
respective biomarkers, and the sub-panels have a distinct appearance for each biomarker. Therefore, the results 
for each biomarker are distinctly different, with significance levels, from the other strains indicated in the graphs.

These results reflect the difference in impulsivity between the rat strains reflected in the EEG21,72,73. It should 
be noted that EEG behaviours of WKY and WIS were similar and difficult to distinguish by standard means (see 
Fig. 4). However, they could be distinguished by using the newly discovered biomarkers (see Fig. 6). This is the 
main result of this study–proposing the methodology to devise good stratification measures for a number of dif-
ferent rodent genetic strains subject to different pharmacological agents.

Moreover, the biomarkers discovered for the effects of MPH and ATX well capture the effects with respect 
to the amounts of the pharmacological agents (Fig. 6B,C). In particular, it appears that the biomarkers for MPH 
effects on WKY closely reflect the amount of the pharmacological agent applied to this genetic strain (centre 
graph in panel B of Fig. 6).

The hybrid biomarker (mPower & slope) proved consistently to achieve superior results compared with the 
mPower biomarker. While the mPower-based biomarker did not distinguish between WIS and SHR, the hybrid 
biomarker distinguished WIS from the other strains well. The hybrid biomarker also retained or improved the 
significance level in the stratification of SHR and WKY. In evaluating the effects of MPH on SHR, the hybrid bio-
marker consistently achieved high significance, while only in one particular case of the highest MPH dosage did 
mPower significantly distinguish the effects on SHR. In evaluating the effects of MPH on WKY, both biomarkers 
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achieved similar significance, however, the hybrid biomarker was more significant, even for the lowest dosage 
MPH 0.3. Similarly, superior results from the hybrid biomarker were obtained for the effects of ATX.

Conclusions
We have proposed a novel methodology to capture pharmacodynamic effects of drugs on the EEG spectral power 
by using linear regression, to identify dominant discriminant components using FDA, and finally to consolidate 
them into effective biomarkers. We applied the methodology to rodent EEG records of SHR, WKY and WIS 
genetic strains, subject to different doses of MPH and ATX. The novel pharmacodynamic feature of ‘slope’ pro-
vided a stable, highly significant classification and served in the heuristic design of superior composite biomark-
ers. The proposed semi-automatic approach is a generic, parsimonious way to design such improved biomarkers 
using pharmacodynamic information. Using the proposed methodology, we succeeded in devising several robust 
biomarkers to stratify SHR, WKY, WIS genetic strains, and to capture the effects of MPH and ATX. The proposed 
methods can be applied to a wide range of pharmacological studies using EEG.
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