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abstract

The rising incidence and persistent dismal 5-year overall survival of pancreatic ductal adenocarcinoma (PDAC)
highlight the need for new effective systemic therapies. Immunotherapy has shown significant benefits in solid
organ tumors, but has thus far been disappointing in the treatment of PDAC. There have been several promising
preclinical studies, but translation into the clinic has proved to be challenging. This is likely a result of PDAC’s
complex immunosuppressive tumor microenvironment that acts to insulate the tumor against an effective
cytotoxic immune response. Here, we summarize the mechanisms of immunosuppression within the PDAC
tumor microenvironment and provide an up-to-date review of completed and ongoing clinical trials using various
immunotherapy strategies.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is projected
to become the second leading cause of cancer-related
mortality by 2030.1 Despite modest advances in con-
ventional systemic therapies, the 5-year overall survival
(OS) for PDAC remains a dismal 11%,2 in part because
of its advanced stage at presentation precluding
curative-intent resection and a high propensity for re-
currence. Traditional fluorouracil- or gemcitabine-
based chemotherapies, with or without radiation, are
standard of care for patients with unresectable disease;3

however, development of more effective systemic
therapies remains a significant unmet clinical need.

Advances in immunotherapies, specifically immune
checkpoint blockade (ICB), have improved treatment
options for some historically chemotherapy-refractory
malignancies. In the past 10 years, ICB has shown
efficacy in metastatic melanoma, renal cell carcinoma,

colorectal cancers with microsatellite instability, non–
small-cell lung cancer, Hodgkin’s lymphoma, and
various other cancers.4-7 Anti–programmed death-1
(anti–PD-1) with or without anti–cytotoxic T-cell
lymphocyte-4 therapy is now the standard of care
for patients with advanced melanoma.8

Despite the successes of ICB, PDAC has been largely
refractory to ICB monotherapy.9 Studies of single-
agent ICB and dual-agent ICB with anti–PD-1 and
anti–cytotoxic T-cell lymphocyte-4 antibodies have
resulted in overall response rates (ORRs) of 0%10-12

and 3%, respectively.12 These disappointing results,
contrasted with the marked effectiveness of ICB in
other solid tumors, have influenced a body of research
to identify and harness immunologic pathways that
could be key to unlocking immunotherapy as a viable
treatment option for the typically immunologically cold
pancreatic cancer. Here, we summarize the mecha-
nisms of immunosuppression within the PDAC tumor
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KEY POINTS

• Pancreatic adenocarcinoma possesses several intrinsic and extrinsic properties that insulate ma-
lignant cells from an effective adaptive immune response.

• Thus far, no single immunotherapy strategy has proved to be effective, warranting investigation of
combination approaches to improve efficacy.

• Ongoing clinical trials evaluating combination immunotherapy strategies will demonstrate the role of
immunotherapy in the treatment of pancreatic adenocarcinoma.
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microenvironment (TME) and provide an up-to-date review
of promising immunotherapy strategies.

PDAC-INTRINSIC PROPERTIES LEADING TO
IMMUNE EVASION

PDAC possesses several intrinsic properties that result in
evasion of an effective immune response (Fig 1). In general,
tumor-specific antigens (TSAs) are expressed only on
malignant cells, thus providing excellent specificity for
antitumor T-cell cytotoxicity, with antigen strength corre-
lating with the level of antitumor immune response.13-17

Retrospective data of surgically resected specimens sug-
gest a survival advantage in the minority of patients whose
tumors exhibit high levels of both TSAs and CD81 T-cell
infiltrate.18 Despite this association, CD81 T cells dem-
onstrate decreased interferon-gamma and other activation
markers, indicating other immunosuppressive factors at
play.19

PDAC oncogenes and their downstream effects contribute
to the immunosuppressive TME. Mutated KRAS, resulting
in constitutive activation, is found in 92% of pancreatic
cancer20 and is associated with several downstream effects
including production of granulocyte-macrophage colony-
stimulating factor (GM-CSF), leading to recruitment of
immunosuppressive myeloid cells21; promotion, formation,
and maintenance of the fibroinflammatory stroma22;
upregulation of programmed death ligand-1 (PD-L1) ex-
pression through mRNA stabilization23; increased CD73
expression leading to elevated immunosuppressive extra-
cellular adenosine24; downregulation of major histocom-
patibility complex-1 and increasing regulatory T cells
(Tregs)25; and induction of immunosuppressive Th17 and
gamma-delta T cells.26

In addition to immunosuppressive oncogenes, PDAC cells
possess variable mechanisms that impair antigen pre-
sentation and cytotoxic lymphocyte (CTL) function. PDAC
cells selectively target major histocompatibility complex-1

molecules for lysosomal degradation through an autophagy-
dependent mechanism.27 Preclinical inhibition of autophagy
with hydroxychloroquine resulted in decreased tumor
growth28 and synergized with dual ICB to enhance antitumor
immune response.27 In addition, PDAC cells contain a high
proportion of CD47 that prevents phagocytosis and antigen
presentation by antigen-presenting cells (APCs).29 Anti-
CD47 antibody-mediated phagocytosis of cancer cells by
macrophages results in increased priming of CD81 T cells
and reduced immunosuppressive Tregs.30 PDAC cells also
produce indoleamine 2,3-dioxygenase (IDO) to catalyze the
degradation of tryptophan, a necessary component of cy-
totoxic T-cell survival and activation, thereby inducing T-cell
apoptosis and anergy.31 Furthermore, PDAC cells down-
regulate the expression of human leukocyte antigen-DR iso-
type and CD40, resulting in immature dendritic cells (DCs)
capable of directly suppressing effector CD81 T cells.32

Overall, PDAC’s intrinsic immunosuppressive properties af-
ford several mechanisms to subvert the normal host immune
response, posing unique challenges to immunotherapeutic
drug development in this tumor type.

THE IMMUNOSUPPRESSIVE PDAC MICROENVIRONMENT

Stromal Components—Cancer-Associated Fibroblasts

and the Desmoplastic Reaction

Although PDAC cells have intrinsic properties leading to
immune evasion, their interaction with the surrounding
TME poses a larger, more complex barrier to effective
immunotherapy strategies (Fig 2). The histologic hallmark
of PDAC is a heavily desmoplastic microenvironment that
accounts for approximately 70% of tumor tissue, with in-
creased fibrosis shown to be an independent prognostic
factor.33,34 Pancreatic stellate cells (PSCs; activated PSCs
have been referred to as cancer-associated fibroblasts
[CAFs]) produce this fibrotic environment and exhibit
several factors that promote tumorigenesis and abrogate
antitumor immunity.35

CONTEXT

Key Objective
What are the current strategies being investigated to overcome the profoundly immunosuppressive pancreatic adeno-

carcinoma (PDAC) tumor microenvironment (TME)?
Knowledge Generated
PDAC uses several intrinsic and extrinsic mechanisms to develop an immunosuppressive TME, thus rending previous

immunotherapy strategies ineffective. Combination immunotherapy strategies targeting these mechanisms are currently
being investigated.

Relevance
Overcoming the immunosuppressive TME will allow for immunotherapy to become a valuable treatment option in PDAC.

Well-designed clinical trials with robust correlative science are necessary to further understand potential mechanisms of
immune evasion and inform future studies.
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The marked desmoplasia results in elevated interstitial fluid
pressure limiting perfusion and diffusion of small molecule
therapies secondary to intratumoral small vessel collapse.36 The
associated hypoperfusion produces an overall hypoxic envi-
ronment resulting in a Treg-mediated CD81 T-cell inhibition.37

Preclinical work targeting hyaluronic acid (HA) through enzy-
matic degradation resulted in normalization of interstitial fluid
pressure and permanent remodeling of the TME, leading to
doubled OS when paired with chemotherapy.36,38

Beyond the physical barrier, CAFs appear to limit the mi-
gration of CTLs to the juxtatumoral stromal compartments
through hyperactivation of focal adhesion kinase (FAK) and
overproduction of C-X-C Motif Chemokine Ligand 12
(CXCL12), a ligand of C-X-C Motif Chemokine Receptor 4
(CXCR4), overall inhibiting T-cell priming.39 Preclinicalmodels
of FAK inhibition limited tumor progression, doubled survival,
decreased immunosuppressive cells, and synergizedwith ICB
therapy.40 In addition, the use of a CXCR4 antagonist in-
creased CD81 T-cell accumulation and acted synergistically

with anti–PD-L1 antibody to decrease tumor burden in
preclinical models.41 CAFs are capable of diminishing CTL
function through secretion of soluble substances such as
interleukin-10 (IL-10), transforming growth factor-b, vas-
cular endothelial growth factor, prostaglandin E1, IDO,
arginase, and expression of PD-L1.40

In addition to their interaction with CTLs, CAFs interact with
immunosuppressive myeloid cells through secretion of in-
flammatory cytokines such GM-CSF, IL-6, vascular endo-
thelial growth factor, and macrophage colony-stimulating
factor. These pathways have been shown to encourage
peripheral blood mononuclear cell differentiation toward
immunosuppressive myeloid-derived suppressor cells
(MDSCs),42 whereas CAF-derived GM-CSF directly leads to
tumor cell proliferation, invasion, and transendothelial mi-
gration.43 In turn, myeloid cell–derived IL-1b can reprogram
normal fibroblasts into proinflammatory CAFs that further
mediate tumor-enhancing inflammation by recruiting and
polarizing macrophages toward a cancer-promoting M2
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FIG 1. PDAC-intrinsic immunoevasive properties. APC, antigen-presenting cell; CAF, cancer-associated fibroblasts; DC, dendritic cell; GM-CSF,
granulocyte-macrophage colony-stimulating factor; HLA-DR, human leukocyte antigen-DR isotype; IDO, indoleamine 2,3-dioxygenase; IL, interleukin;
KYN, kynurenine; MDSCs, myeloid-derived suppressor cells; MHC-1, major histocompatibility complex-1; PD-1, programmed death-1; PDAC, pan-
creatic adenocarcinoma; PD-L1, programmed death ligand-1; SIRPa, signal regulatory protein alpha; TAM, tumor-associatedmacrophages; TCR, T-cell
receptor; Treg, regulatory T-cell; TRP, tryptophan.
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FIG 2. The highly immunosuppressive tumor microenvironment of pancreatic ductal adenocarcinoma. Pancreatic tumor cells, myeloid cells
(Mo-MDSCs, TAMs, and Gr-MDSCs), and fibroblasts within the tumor microenvironment interact through various ligands, cytokines, and
chemokines that disrupt antitumor immunity.48 CAF, cancer-associated fibroblasts; GM-CSF, granulocyte-macrophage colony-stimulating
factor; Gr-MDSC, granulocytic MDSC; IL, interleukin; MDSC, myeloid-derived suppressor cell; Mo-MDSC, monocytic MDSC; PD-L1, pro-
grammed death ligand-1; PDAC, pancreatic ductal adenocarcinoma; TAM, tumor-associated macrophage; TGF, transforming growth factor;
Treg, regulatory T-cell; VEGF, vascular endothelial growth factor.

2792 © 2022 by American Society of Clinical Oncology Volume 40, Issue 24

Ullman et al



phenotype.44 This complex interaction between tumor
cells, CAFs, T cells, and myeloid cells underscores the
intertwined protumor mechanisms within the various
components of the TME.

Cellular Components

Myeloid cells. The PDAC TME is characterized by a robust
immune infiltrate, which comprises nearly 50% of its cel-
lular component and is largely composed of CD451 bone
marrow–derived immune cells.16,22,45 PDAC induces an
altered state of myelopoiesis, recruitment, and repolari-
zation of these cells to promote their accumulation and
immunosuppressive properties within the TME.46,47 These
intratumoral MDSCs are composed of myeloid progenitors
and immature mononuclear cells, referred to as granulo-
cytic MDSC (Gr-MDSCs) and monocytic MDSC, respec-
tively. Tumor-associated macrophages (TAMs), in contrast
to MDSCs, are mature cells derived from either the bone
marrow or resident tissue macrophages.48,49 Elevated pe-
ripheral and intratumoral levels of inflammatory myeloid
cells have been associated with poor clinical outcomes.50-52

TAMs are dominated by an M2 phenotype, virtually elim-
inating an M1 (antitumor phenotype) response. M2 TAMs
produce IL-10 that maintains functional Treg populations
and drive the development of Th2 cells, which secrete IL-4
and potentiate the development of additional TAMs.51

Inhibiting IL-10 resulted in increased IL-12 secretion
from DCs and led to improved CTL infiltration and response
to chemotherapy.53 TAMs can also directly induce T-cell
apoptosis through their expression of PD-L154 and Dectin-
1/galectin-9 axis55 and inhibit CTLs through production of
arginase-1–depriving cytotoxic effector T cells of L-arginine,
a key nutrient to support viability and expansion.51

Similar to TAMs, MDSCs deplete micronutrients through
arginase-1–dependent consumption and L-cysteine se-
questration to downregulate the T-cell receptor complex
(TCR) and cause proliferative arrest of antigen-activated
T cells.47 Furthermore, MDSCs are potent generators of
reactive oxygen and nitrogen species that impair TCR
activity and interfere with IL-2, a potent proinflammatory
cytokine.51 In addition to TCR disruption, MDSCs have the
ability to cause T-cell apoptosis, inhibit natural killer cells,
and increase the activation and expansion of Tregs. Genetic
ablation of CXCR2, a chemokine receptor found predom-
inantly on Gr-MDSCs, led to increased T-cell infiltration into
the tumor stroma.56 In an orthotopic model, inhibition of
MDSCs via CXCR2 blockade led to decreased MDSCs
within the TME, decreased fibrosis, and acted synergisti-
cally with ICB.57

Preclinical studies have identified a potential mechanism of
resistance to TAM-targeted therapy by a compensatory in-
crease in CXCR21 Gr-MDSCs; dual inhibition of both TAMs
and Gr-MDSCs demonstrated increased survival.58 Modu-
lation of the myeloid receptor CD11b reduced intratumoral
TAMs andMDSCs, repolarizedM2 TAMs to an antitumorM1

phenotype, and increased infiltration of activated CD81
T cells in preclinical models.When combinedwith anti–PD-1
antibody or chemotherapy, these immunomodulatory effects
translated into potent antitumor effects and prolonged sur-
vival in orthotopic PDAC murine models.59 It is evident
through a variety of mechanisms that PDAC co-opts myeloid
cell pathways to render a cytotoxic T-cell response ineffective
and thus requires consideration when developing immu-
notherapy strategies for this disease.

Dendritic cells. Conventional dendritic cells (cDCs) are
professional APCs adept at presenting exogenous and/or
endogenous antigens to T cells. Recruitment, retention,
and spatial positioning of cDCs within the TME are limited
by PDAC-derived proinflammatory cytokines and resulting
immunosuppressive myeloid infiltrate.60 Reduced cDC
concentrations appear to be influenced by high levels of
cyclooxygenase 1 and 2 and decreased levels of locally
available cDC growth factors such as the natural killer cell–
producing fms-like tyrosine kinase 3 ligand (FLT3L).61

Soluble inhibitory factors not only work to exclude cDCs but
also to limit their function as APCs. TAM- and Treg-
generated IL-10 suppresses cDC production of IL-12, a
costimulatory molecule necessary to mount an adaptive
immune response.32 cDCs are also subject to increasing
apoptosis secondary to increased levels of IL-6.60 Combi-
nation therapy with a CD40 agonist (a stimulatory ligand for
T-cell activation) and FLT3L restored cDC abundance,
improved tumor infiltration, and resulted in superior control
of tumor outgrowth in a preclinical model.61

B cells. Recent studies have linked B cells to PDAC as
resected human PDAC exhibited increased CD20 and Ig
expression relative to normal pancreata,62 whereas de-
pletion of B cells with anti-CD20 monoclonal antibodies
inhibited progression of pancreatic intraepithelial neoplasia
preclinically.63

T cells. Although a relative minor component of the PDAC
immune infiltrate, the T-cell infiltrate exhibits both anti- and
protumor immunologic effects and includes effector CD81,
CD41 (both Th1 and Th2 helper cells), FoxP31 Tregs,
Th171, and gd T cells. There is a relative paucity of cy-
totoxic effector CD81 T cells within the TME, comprising
, 7% of the total leukocyte infiltrate.64 In addition to their
limited presence, these effector cells are often functionally
deficient as they express various coinhibitory molecules.64

CD41 helper T cells are found with greater frequency within
the TME relative to CD81 T cells and display a tumor-
promoting Th2 phenotype.65 Although less frequent than
Th2 cells, Treg density increases with disease progression
and has been found to correlate with lymph nodemetastases
and poor survival.66,67 PDAC cells produce a host of cyto-
kines that are associated with Treg migration and accu-
mulation including CCL5,68 transforming growth factor-b,
and IL-10.69 These immunosuppressive T cells possess
several protumor immunologic effects including restraint of
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tumor-associated DC expansion and suppression of the
costimulatory ligands CD86 and CD40, which are necessary
for CD81 T-cell activation32 and promotion of local immune
suppression.70,71 Eliminating Tregs in a preclinical model
allowed DCs to induce a potent antitumor immune response
that was CD81-dependent.32 However, Treg depletion in a
spontaneous murine model did not affect CD8 T-cell re-
cruitment, suggesting that Treg elimination alone is insuf-
ficient to restore productive T-cell immunity.72

The complex T-cell populations, composed of both pro-
and antitumor cells, require selective stimulatory and in-
hibitory strategies to elicit an effective adaptive immune
response. Although an effective CD81 T-cell response is
the final pathway of most immunotherapy regimens, PDAC
possesses several mechanisms to subvert activation of
adaptive immunity through ICB alone. Combination ther-
apies are likely required to garner an effective immuno-
therapy regimen.

CURRENT STRATEGIES FOR IMMUNOTHERAPY

Stromal Targeting

Strategies disrupting components of the desmoplastic PDAC
stroma have been met with variable results. Despite pre-
clinical success of enzymatic degradation of HA using peg-
vorhyaluronidase (PEGPH20), its addition to gemcitabine/
nab-paclitaxel was evaluated in the phase III HALO 109-
301 trial of patients with HA-high PDAC and demonstrated a
slight increase in ORR, 47% versus 36% (ORR ratio, 1.29
[95% CI, 1.03 to 1.63]), but no change in OS (hazard ratio
[HR], 1.00; 95% CI, 0.80 to 1.27; P 5 .97) or progression-
free survival (PFS; HR, 0.97; 95% CI, 0.75 to 1.26).73 These
disappointing results of HA-targeted therapy have led to
pairing PEGPH2O with other immunotherapies, and inves-
tigations of combining PEGPH20 with ICB are ongoing
(Table 1).

Another recent stromal-associated strategy includes
CXCR4/CXCL12 axis disruption. The phase IIa COMBAT
trial evaluated BL-8040, a CXCR4 inhibitor, in combination
with anti–PD-1 therapy with or without chemotherapy in
previously treated patients with metastatic PDAC. Treat-
ment with BL-8040 resulted in decreased suppressive cell
types within the TME and promotion of T-cell infiltration.
The cohort treated with BL-8040 plus ICB and chemo-
therapy demonstrated encouraging clinical outcomes with
an ORR of 32% and a disease control rate (DCR) of 77%.74

Contrasting the encouraging results of the COMBAT trial,
other studies evaluating CXCR4 inhibition have resulted in
poorer treatment responses. A best overall response of
stable disease (SD) in three of eight patients was found with
combination treatment of LY2510924 (a CXCR4 peptide
antagonist) and anti–PD-L1 in patients with advanced re-
fractory PDAC, similar to responses seen with ICB alone.75

Two other stromal-targeting strategies include inhibition of
FAK and the upstream Janus kinase–signal transducers

and activators of transcription (JAK-STAT) signaling path-
way. A phase I trial pairing defactinib, a small molecule
inhibitor of FAK, and anti–PD-1 therapy with gemcitabine
showed modest results with 2 of 27 and 14 of 27 patients
with PDAC showing partial response (PR) or SD, respec-
tively. Paired biopsies demonstrated increased CD81
T-cell infiltration and proliferation, whereas Tregs, macro-
phages, and stromal density decreased with treatment.76

The JAK-STAT pathway plays a key role in activation of
PSCs.77 Unfortunately, the JANUS1 and JANUS 2 trials
combining ruxolitinib and capecitabine showed no differ-
ence in OS (JANUS 1: HR, 0.969; 95% CI, 0.74 to 1.2;
JANUS 2 HR, 1.58; 95% CI, 0.89 to 2.83) or PFS (JANUS I:
HR, 1.06; 95% CI, 0.82 to 1.35; JANUS 2: HR, 1.17; 95%
CI, 0.69 to 1.98).78

The ongoing phase Ib/II Morpheus trial in metastatic PDAC
seeks to combine several immunotherapies in a variety of
treatment settings. The trial is enrolling both pretreated and
treatment-naı̈ve patients with metastatic PDAC and ran-
domly assigns them to a variety of treatment arms including
pairing atezolizumab (anti–PD-L1) with PEGPH20 or BL-
8040 as second-line treatment. Of note, one arm of this trial
that combined atezolizumab with cobimetinib (a MEK in-
hibitor) in 14 patients with refractory PDAC showed no
objective responses.79 Although translation of stromal-
targeting strategies has thus far been met with challenges,
correlative studies have been insightful. Further results are
pending from the Morpheus trial, which will shed light on
combining stromal- and immune cell–targeting therapies.

Myeloid Suppression/Reprogramming

The CCL2-CCR2 chemokine axis, which plays a role in
recruiting TAMs into the TME, has been amolecular pathway
targeted by investigators. In a phase I study of locally ad-
vanced PDAC, the combination of PF-04136309 (an oral
CCR2 inhibitor) and 5-fluorouracil, irinotecan, and oxaliplatin
(FOLFIRINOX) resulted in a 49% ORR and a 97% DCR.80

However, an additional phase I/II study pairing the same oral
CCR2 inhibitor with gemcitabine/nab-paclitaxel was termi-
nated early because of lack of efficacy.81 A combinatory
CCR2/CCR5 inhibitor with or without chemotherapy and
anti–PD-1 therapy trial in metastatic colorectal and PDAC
has finished enrollment with awaiting results (Clinical-
Trials.gov identifier: NCT03184870).

Similar to CCR2 inhibition, CSF1-R inhibition leads to
disruption of TAM recruitment and repolarization to pro-
mote antigen presentation, thus increasing T-cell activation
through synergizing with ICB.82 Unfortunately, a random-
ized phase II study of cabiralizumab (anti–CSF-1R)1 anti–
PD-1 therapy with or without chemotherapy in advanced
PDAC did not meet its primary end point of increasing PFS
(ClinicalTrials.gov identifier: NCT03336216). However,
several studies using CSF1-R inhibitors with various
combinations of chemotherapy and immunotherapy are
ongoing (Table 1).
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Contrasting TAM-targeted therapy, a phase I study evalu-
ating SX-682, a CXCR2 inhibitor targeting Gr-MDSCs, in
combination with anti-PD1 therapy as maintenance therapy
in patients with stable unresectable PDAC after first-line
chemotherapy is currently ongoing (ClinicalTrials.gov iden-
tifier: NCT04477343). In addition, dual inhibition of both
TAM and G-MDSC populations through CD11b modulation
in combination with anti–PD-1 therapy and chemotherapy is
currently being explored with minimal adverse effects re-
ported.83 With many ongoing studies, myeloid cell targeting
represents a promising component of immunotherapy
strategies to mitigate the potent immunosuppressive TME.

B-Cell Targeting

B cells were recently implicated as contributors to the PDAC-
immunosuppressive TME and were targeted in a phase III trial
evaluating ibrutinib, a Bruton’s tyrosine kinase inhibitor, in
combination with chemotherapy. Ibrutinib, used in the
treatment of various hematologic malignancies, had demon-
strated reduced stromal fibrosis and decreased tumor pro-
gression in preclinical PDAC models.84 However, the phase III
RESOLVE study examining treatment-naı̈ve patients with
metastatic PDAC found that the combination of gemcitabine/
nab-paclitaxel with ibrutinib resulted in no improvement in
median OS (9.7 v 10.8 months; P5 .3225) and reduced PFS
(5.3 v 6.0 months; P , .0001) and ORR (29% v 42%; P 5
.0058) when compared with standard chemotherapy.85

INCREASED T-CELL ACTIVATION BEYOND ICB

CD40 Agonist

In addition to targeting the immunosuppressive compo-
nents of the TME, a complementary strategy is to enhance
the cytotoxic capabilities of the adaptive immune system.
CD81 T cells express both coinhibitory and costimulatory
receptors, and activating the latter may be able to com-
pensate for the intrinsic and environmentally poor antigen
quality and presentation. Agonistic antibodies to these
costimulatory receptors, namely, anti-CD40, have shown
promise in PDAC.86

Correlative work from phase I studies of isolated CD40
agonism demonstrated CD81 T-cell enrichment, in-
creased mature DCs, reduced M2 TAMs, and increased
B-cell expression of costimulatory molecules.87,88 The in-
creasing T-cell response seen with CD40 agonists was
associated with increased expression of PD-L1 within the
PDAC TME, suggesting that pairing ICB with CD40 agonists
may be a valuable strategy.89 The phase Ib PRINCE trial
combining gemcitabine/nab-paclitaxel and the CD40 ag-
onist APX005M with or without anti-PD1 antibody in un-
treated metastatic PDAC demonstrated an overall 58%
response rate among all treated patients, while showing a
tolerable safety profile.90 In the phase II PRINCE trial,
chemotherapy plus anti-PD1 antibody and APX005M did
not show an improvement in OS when compared with
historical controls (P 5 .236). Interestingly, chemotherapy

combined with either anti-PD1 antibody or APX005M
resulted in improved 1-year OSwhen comparedwith historical
controls (57% [P5 .007] and 51% [P5 .029], respectively v
35% in historical controls).91 Correlative studies are ongoing to
identify potential biomarkers and resistant mechanisms of
therapies. Building on the findings of the PRINCE trial, the
Revolution Platform study (ClinicalTrials.gov identifier:
NCT04787991) will combine gemcitabine/nab-paclitaxel with
nivolumab plus ipilimumab or hydroxychloroquine plus ipili-
mumab as first-line treatment for metastatic pancreatic ad-
enocarcinoma. This trial is currently enrolling.

PDAC Vaccines

Similar to other immunotherapy strategies for PDAC, vac-
cination has been met with varying success. GVAX, an ir-
radiated allogeneic whole-tumor cell vaccine in which PDAC
cells are engineered to express GM-CSF, induces T-cell
infiltration when administered before resection.92 In pa-
tients with previously treated PDAC, a phase II study of
cyclophosphamide and GVAX with or without CRS-207, a
bacterium-based vaccine, found that those receiving CRS-
207 experienced improvedOSwhen comparedwith second-
line chemotherapy (6.1 months v 3.9 months [HR], 0.59;
P 5 .02).93 Although this study appeared to enhance
CD81 T-cell response, the larger Phase IIb ECLIPSE study
examining the combination of cyclophosphamide/GVAX/
CRS-207 failed to show a difference in OS compared
with single-agent chemotherapy (P 5 not significant; HR,
1.17; 95% CI, 0.84 to 1.64).94 The addition of anti–PD-1
therapy to GVAX/cyclophosphamide/CRS-207 yielded an
OS and a PFS of 5.88 months and 2.23 months, re-
spectively, not significantly different from GVAX/
cyclophosphamide/CRS-207 alone.95

Vaccine therapy has been deployed in the adjuvant setting
with mixed results. Algenpantucel-L, a whole-cell vaccine
genetically engineered to facilitate complement and
antibody-dependent cytotoxicity, was added to adjuvant
standard-of-care chemotherapy in a phase II study. This
single-arm study demonstrated favorable results finding the
1-year disease-free survival (DFS) and OS to be 62% and
86%, respectively.96 Unfortunately, the randomized phase III
IMPRESS study examining this approach failed to demon-
strate a survival advantage compared with controls (Clin-
icalTrials.gov identifier: NCT01072981). Algenpantucel-L
was also evaluated in borderline resectable disease, but
again did not improvemedian OS (HR, 1.02; 95%CI, 0.66 to
1.58; P 5 .98) nor PFS (HR, 1.33; 95% CI, 0.72 to 1.78;
P 5 .59) when compared with standard therapy.97

Another targetable antigen for vaccine therapy is Mucin-1
(MUC-1). MUC-1 is a transmembrane protein involved in
oncogenic signaling to increase invasion, angiogenesis,
and metastasis.98 A phase I study of resected PDAC using
MUC-1 peptide has shown that mucin vaccination in-
creased intratumoral and peripheral blood CD81 T cells,
with low but detectable mucin-specific T-cell response.99
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TABLE 1. Ongoing Clinical Trials

Therapeutic Mechanism ID Phase Patient Population Chemotherapy, RT ICB Treatment (target)
Recruitment
Status

Targeting stromal
elements

NCT02907099 IIb Previously treated
metastatic PDAC

NA Pembrolizumab BL-8040 (CXCR4) Active, not
recruiting

NCT03634332 II Previously treated,
HA-high,
metastatic PDAC

NA Pembrolizumab PEGPH2O (HA) Recruiting

MORPHEUS NCT03193190 Ib/II Untreated and
previously treated
metastatic PDAC

Nab-paclitaxel and
gemcitabine/
FOLFIRINOX

Atezolizumab/ Cobimetinib (MEK)/PEGPH20 (HA)/
BL-8040 (CXCR4)/selicrelumab
(CD40)/AB928 (adenosine
receptor)/tocilizumab (IL-6)/
tiragolumab (TIZIT)

Recruiting

Inhibiting
immunosuppressive
myeloid cells

NCT03184870 Ib/2 Untreated advanced
or metastatic
tumors including
PDAC

Nab-paclitaxel and
gemcitabine/
FOLFIRI

Nivolumab BMS-813160 (CCR2/CCR5) Completed
enrollment—
awaiting
results

NCT02526017 I Previously treated
advanced or
metastic tumors
including PDAC

NA Nivolumab Cabiralizumab (CSF1-R) Completed
enrollment—
awaiting
results

NCT02777710 I Previously treated
advanced or
metastatic tumors
including PDAC

NA Durvalumab Pexidartinib (CSF1-R) Completed
enrollment—
awaiting
results

NCT03153410 I Borderline
resectable or
locally advanced
PDAC

Cyclophosphamide GVAX, pembrolizumab LY3022855 (CSF1-R) Active, not
recruiting

NCT04060342 I/II Untreated advanced
or metastatic
tumors including
PDAC

Nab-paclitaxel/
gemcitabine

Pembrolizumab GB1275 (CD11b modulator) Active, not
recruiting

NCT04477343 I Previously treated
advanced and
metastatic PDAC

NA Nivolumab SX-682 (CXCR1/2i) Recruiting

CD40 agonism PRINCE NCT03214250 I/II Untreated metastatic
PDAC

Nab-paclitaxel/
gemcitabine

Nivolumab APX005M (CD40) Active, not
recruiting

REVOLUTION NCT04787991 I Untreated metastatic
PDAC

Nab-paclitaxel/
gemcitabine

Nivolumab, ipilimumab Hydroxychloroquine (tumor cell
autophagy)

Recruiting

NCT03329950 I Previously treated
advanced or
metastatic tumors
including PDAC

Nab-paclitaxel/
gemcitabine

NA CDX-1140 (CD40) and CDX-301
(rhFLT3L)

Recruiting

(continued on following page)
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TABLE 1. Ongoing Clinical Trials (continued)

Therapeutic Mechanism ID Phase Patient Population Chemotherapy, RT ICB Treatment (target)
Recruitment
Status

Cancer vaccines NCT03592888 I Resected PDAC Cyclophosphamide NA mDC3/8 (mature dendritic cell
primer and booster)

Recruiting

NCT04117087 I Resected PDAC,
MSS CRC

NA Ipilimumab plus
nivolumab

Poly-ICLC (KRAS peptide) Recruiting

Adoptive cell transfer NCT03054298 I Untreated advanced
or metastatic
tumors including
PDAC

Cyclophosphamide NA Mesothelin CAR T cells Recruiting

NCT02706782 I Previously treated
advanced and
metastatic PDAC

NA NA Mesothelin CAR T cells Unknown

NCT01935843 I/II Previously treated
advanced or
metastatic HER2-
positive solid
tumors including
PDAC

NA NA CART-HER-2 Unknown

NCT02159716 I Previously treated
metastatic tumors
including PDAC

NA NA Mesothelin CAR T cells Completed
enrollment—
awaiting
results

NCT02587689 I/II Resected PDAC NA NA MUC-1 CAR T cells Unknown

NCT02349724 I Previously treated
advanced or
metastatic solid
tumors including
PDAC

NA NA CEA CAR T cells Unknown

NCT02744287 I/II Previously treated
advanced or
metastatic solid
tumors including
PDAC

Rimiducid NA BPX-601 (PSCA CAR-T cell) Recruiting

Tumor-targeted
immunotherapies

NCT04104672 I Previously untreated
advanced or
metastatic PDAC

Nab-paclitaxel/
gemcitabine

Zimberelimab (anti–PD-1) AB680 (CD73 inhibitor) Recruiting

NCT04548752 II Previously treated
BRCA PDAC
patients with SD

NA Pembrolizumab Olaparib (PARP inhibitor) Recruiting

Abbreviations: CAR-T cell, chimeric antigen receptor T cell; CEA, carcinoembryonic antigen; FLT3L, fms-like tyrosine kinase 3 ligand; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FOLFIRINOX,
5-fluorouracil, irinotecan, and oxaliplatin; HA, hyaluronic acid; ICB, immune checkpoint blockade; IL, interleukin; MUC-1, Mucin-1; NA, not available; PARP, poly (ADP-ribose) polymerase; PD-1,
programmed death-1; PDAC, pancreatic adenocarcinoma; PEGPH20, pegvorhyaluronidase; PSCA, prostate stem cell antigen; SD, stable disease.
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TABLE 2. Closed Clinical Trials
Therapeutic Mechanism ID Phase Patient Population Chemotherapy, RT ICB Treatment (target) Significant Results

Targeting stromal
elements

NCT01839487 II Untreated metastatic
PDAC

Nab-paclitaxel/gemcitabine NA PEGPH2O (HA) No improvement in ORR (HR, 0.96; 95% CI, 0.57
to 1.61) or OS (HR, 0.96; 95% CI, 0.57 to 1.61).
Did improve PFS (HR, 0.73; 95% CI, 0.53 to
1.00; P 5 .049)

NCT01959139 I/II Untreated metastatic
PDAC

mFOLFIRINOX NA PEGPH2O (HA) Terminated early for clinical futility and AE

NCT02715804 III Untreated, hyaluronan-
high, metastatic
PDAC

Nab-paclitaxel/gemcitabine NA PEGPH2O (HA) No improvement in OS (HR, 1.00; 95% CI, 0.80 to
1.27; P5 .97) or PFS (HR, 0.97; 95% CI, 0.75 to
1.26). The confirmed ORR was 34% v 27%

NCT02826486 I/IIa Previously treated
metastatic PDAC

FOLFIRI Pembrolizumab BL-8040 32% ORR and 77% DCR

NCT02737072 I Previously treated
advanced or
metastatic tumors
including PDAC

NA Durvalumab LY2510924
(CXCR4)

DCR 37.5%

NCT02472977 I/II Previously treated
advanced or
metastatic tumors
including PDAC

NA Nivolumab Ulocuplumab
(CXCR4)

Terminated early for clinical futility

NCT02546531 I Previously treated
advanced or
metastatic tumors
including PDAC

Gemcitabine Pembrolizumab Defactinib (FAK) No PR or CRs observed. Increased CD81
infiltration

NCT02117479 III Previously treated
advanced or
metastatic PDAC

Capecitabine NA Ruxolitinib
(JAK-STAT)

OS: HR, 0.969, 95% CI, 0.74 to 1.2; PFS HR, 1.06;
95% CI, 0.82 to 1.35

NCT02119663 III Previously treated
advanced or metastic
tumors including
PDAC

Capecitabine NA Ruxolitinib
(JAK-STAT)

OS HR, 1.58; 95% CI, 0.89 to 2.83; PFS HR, 1.17,
95% CI, 0.69 to 1.98

Inhibiting
immunosuppressive
myeloid cells

NCT01413022 Ib Borderline resectable or
locally advanced
PDAC

FOLFIRINOX NA PF-04136309
(CCR2)

49% ORR, 97% DCR compared with 0% ORR and
80% in the FOLFIRINOX arm

NCT02732938 I Untreated metastatic
PDAC

Nab-paclitaxel and
gemcitabine

NA PF-04136309
(CCR2)

Terminated because of toxicity and lack of efficacy

NCT03336216 II Previously treated
advanced or
metastatic PDAC

Nab-paclitaxel and
gemcitabine/FOLFIRI

Nivolumab Cabiralizumab
(CSF1-R)

No increase in PFS

NCT02583477 Ib/II Previously treated
metastatic PDAC

NA Durvalumab AZD5069 (CXCR2) Safe and well tolerated. Awaiting results

(continued on following page)
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TABLE 2. Closed Clinical Trials (continued)
Therapeutic Mechanism ID Phase Patient Population Chemotherapy, RT ICB Treatment (target) Significant Results

B-cell inhibition NCT02436668 III Untreated metastatic
PDAC

Nab-paclitaxel/gemcitabine NA Ibrutinib (BTK) No improvement in median OS (9.7 v 10.8 months;
P5 .3225) and reduced PFS (5.3 v 6.0 months;
P , .0001) and ORR (29% v 42%; (P 5 .0058)
when compared with standard chemotherapy

CD40 agonism NCT00711191 I Previously untreated
advanced or
metastatic PDAC

Nab-paclitaxel/gemcitabine NA CP-870,893 (CD40) mOS of 8.4 months. ORR of 19%

NCT02588443 I Untreated resectable
PDAC

Nab-paclitaxel/gemcitabine NA R07009789,
selicrelumab
(CD40)

OS 23.4 months. Increased T-cell infiltration.
Decreased fibrosis and M2 macrophages. More
mature DCs

NCT03214250 I/II Untreated metastatic
PDAC

Nab-paclitaxel/gemcitabine Nivolumab APX005M,
sotigalimab
(CD40)

ORR 58%
DCR 83.3%

Cancer vaccines NCT00084383 II Resected PDAC FU-based NA GVAX Median DFS 17.3 months
Median OS 24.8 months

NCT01417000 II Previously treated
metastatic PDAC

Cyclophosphamide NA GVAX 6 CRS-207 Triple therapy OS 6.1 months
GVAX 1 Cy OS 3.9 months Enhanced mesothelin-

specific CD8 T cells

NCT02004262 IIb Previously treated
metastatic PDAC

Cyclophosphamide,
gemcitabine, or
FU-based

NA GVAX 1 CRS-207 No significant improvement in OS for Cy/GVAX 1
CRS-207 v chemotherapy

NCT02243371 II Previously treated
metastatic PDAC

Cyclophosphamide Nivolumab GVAX 1 CRS-207 No significant difference seen with addition of nivo

NCT00836407 Ib Previously treated
metastatic PDAC

Cyclophosphamide Ipilimumab GVAX Combination of CTLA-4 and GVAX had an
improved 1-year OS of 27% v 7% in CTLA only

NCT00569387 II Resected PDAC Standard-of-care adjuvant
therapy

NA Algenpantucel-L Increased 1-year DFS 62% and OS 86% compared
with 45%/65% historical controls

NCT01072981 III Resected PDAC Standard-of-care adjuvant
therapy

NA Algenpantucel-L No difference v standard-of-care therapy

NCT01836432 III Borderline resectable or
locally advanced
PDAC

FOLFIRINOX, nab-
paclitaxel/gemcitabine,
capecitabine

NA Algenpantucel-L No difference in OS (HR, 1.02; 95% CI, 0.66 to
1.58; P5 .98) and PFS (HR, 1.33; 95% CI, 0.72
to 1.78; P 5 .59)

NCT02405585 II Borderline resectable or
locally advanced
PDAC

Standard-of-care
neoadjuvant therapy
followed by SBRT

NA Algenpantucel-L Terminated study

NCT01410968 I Unresectable PDAC NA NA Poly-ICLC and
peptide-pulsed
dendritic cells

mOS 7.7 months. 3 of 4 patients with SD had
antigen-specific T cells

(continued on following page)
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TABLE 2. Closed Clinical Trials (continued)
Therapeutic Mechanism ID Phase Patient Population Chemotherapy, RT ICB Treatment (target) Significant Results

Adoptive cell transfer NCT03192462 I Metastatic PDAC Standard-of-care
chemotherapy

NA Multi-TAA–specific T
cells

8 of 13 patients with disease control
Three with PR
One with CR

NCT02465983 I Previously treated
advanced or
metastatic PDAC

Cyclophosphamide NA Autologous T cells Terminated for lack of efficacy

NCT01583686 I Previously treated
metastatic tumors
including PDAC

NA NA Mesothelin CAR T
cells

Terminated for slow accrual

NCT02159716 I Previously treated
metastatic tumors
including PDAC

NA NA Mesothelin CAR T
cells

Completed enrollment—awaiting results

NCT00570713 II Untreated advanced or
metastatic PDAC

Gemcitabine NA MORAb-009
(mesothelin)

No difference v placebo group (6.5 v 6.9 months,
P 5 NS)

Abbreviations: CAR-T cell, chimeric antigen receptor T cell; CR, complete response; CTLA-4, cytotoxic T-cell lymphocyte-4; DC, dendritic cell; DCR, disease control rate; DFS, disease-free survival; FAK,
focal adhesion kinase; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FOLFIRINOX, 5-fluorouracil, irinotecan, and oxaliplatin; FU, fluorouracil; HR, hazard ratio; ICB, immune checkpoint blockade; poly-
ICLC, Poly-L-lysine and carboxymethyl cellulose; JAK-STAT, Janus kinase–signal transducers and activators of transcription; mFOLFIRINOX, modified FOLFIRINOX; mOS, median overall survival; NA, not
available; NS, not significant; ORR, overall response rate; OS, overall survival; PDAC, pancreatic adenocarcinoma; PFS, progression-free survival; PR, partial response; RT, radiotherapy; SBRT, stereotactic
body radiotherapy; SD, stable disease.
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As mentioned above, mutated KRAS is found in more than
92% of PDAC, presenting itself as an ideal vaccination
target. Early studies paired mutant KRAS vaccine with the
GM-CSF peptide in the adjuvant setting, and although it
was found to be safe, an immune response was seen in
only 11% of patients as measured by delayed type hy-
persensitivity.100 This was in contrast to the results of a
phase I/II trial evaluating a mutant KRAS peptide vaccine in
an adjuvant setting that demonstrated an immune re-
sponse in 85% of patients. In this study, 10-year survival
was found in 20% of immune responders versus 0% in
matched controls.101 Adjuvant trials using mutant KRAS–
specific DC vaccination alone or with dual ICB are currently
ongoing (ClinicalTrials.gov identifiers: NCT03592888 and
NCT04117087).

PDAC vaccines have demonstrated ability to enhance an
antitumor T-cell response; however, the number of non-
responders is not insignificant, suggesting that vaccination
therapy is insufficient as monotherapy and that additional
mechanisms of immune evasion are present.

Adoptive Cell Transfer (chimeric antigen receptor T cell)

Rapid advances in the field of adoptive cell transfer have
resulted in unprecedented clinical outcomes for patients with
hematologicmalignancies102; however, these promising results
have not translated to PDAC. Adoptive cell transfer refers to
harvesting and ex vivo expansion of the patient’s own tumor
antigen–specific T cells. EnhancedTcells are then reinfused to
produce a robust adaptive immune response. Of the adoptive
cell transfer therapies, chimeric antigen receptor T-cell (CAR-
T) therapy is the most clinically developed.

An early trial of CAR T cells in unresectable or recurrent
PDAC used MUC-1 peptide-pulsed DCs and activated T
lymphocytes.103 Of 20 treated patients, one patient with
multiple lung metastases experienced complete response
(CR) and five had SD. Unfortunately, several subsequent
studies have attempted to use CAR-T technology in PDAC,
with the majority lacking efficacy (Table 2).

In the adjuvant setting, MUC-1–primed CAR-T in combi-
nation with gemcitabine demonstrated a DFS of 15.8months
and an OS of 24.7 months. Long-term DFS in this study was
independently associated with the average number of CTLs
administered (P 5 .0133).104 A recent phase I study of
patients with metastatic PDAC treated with a combination of
standard-of-care chemotherapy and CAR-T demonstrated a
DCR in 8 of 13 patients, an increase compared with historical
controls. Of these eight metastatic patients, three had PR
and one had CR.105

Although adoptive cell transfer is a new and promising field
of immunotherapy, it possesses many limitations. Antigen
selection poses a significant hurdle for CAR-T as most
studies to date target tumor-associated antigens, rather
than TSAs. Tumor-associated antigens might have variable
or heterogeneous expression on tumor cells and may pose
a greater risk of off-target toxicity. Serious adverse events

have occurred in patients treated with human epidermal
growth factor receptor 2–primed106 and carcinoembryonic
antigen-primed107 CAR-T therapy. In addition to tumor
antigen selection, tumor-infiltrating lymphocytes and CAR
T cells have been shown to become progressively dys-
functional over time and upregulate various inhibitory re-
ceptors including PD-1 and lymphocyte-activation gene
3,108 making them ineffective to overcome the potently
immunosuppressive TME. As with other immunotherapies,
adoptive cell transfer alone seems to be inadequate for
PDAC treatment, but may play a role in future combination
immunotherapy.

Tumor-Targeted Immunotherapy Strategies

Recently, immunotherapies have been paired with non-
immunologic PDAC-targeted therapies. An ongoing trial
combining AB680 (CD73 inhibitor) and zimberelimab
(anti–PD-1) with first-line gemcitabine/nab-paclitaxel has
demonstrated a tolerable safety profile, with 3 of 9 patients
showing PR (one CR) and 5 of 9 with SD.109 The SWOG
S2001 is an ongoing randomized phase II study (Clin-
icalTrials.gov identifier: NCT04548752), which seeks to
add pembrolizumab to standard-of-care maintenance
olaparib for patients with BRCA1 PDAC. It is still to be seen
if adding immunotherapies to targeted PDAC regimens will
be effective for these select patient populations.

Future Trial Design

Future trial design is imperative to efficiently gather and
accurately assess data to best inform on the complex im-
mune profile of PDAC. Inflammatory-specific end points,
such as iRECIST imaging criteria, and correlative studies with
explicit aims to evaluate the TMEwill prove to be invaluable to
understand the effects of immune modulation. Paired
baseline and on-treatment tumor biopsies have the ability to
provide insight into patient-specific responses. These studies
should include assessment of the investigational drug’s ability
to adequately hit its intended target, change the TME, and
identify compensatory evasion mechanisms in nonre-
sponders. Proper correlative science will allow for all patients,
both responders and nonresponders, to contribute infor-
mation to the evolving landscape of tumor immunology. With
continuing advancement in immune profiling, identification
of effective immunotherapies could be on the horizon.

In conclusion, the rising incidence and persistent dismal 5-
year OS of PDAC highlight the need for new effective
systemic therapies. Immunotherapy has shown significant
benefit in solid organ tumors, but has so far been disap-
pointing in the treatment of PDAC. There have been several
promising preclinical studies, but translation into the clinic
has proved to be challenging. This is likely a result of
PDAC’s complex TME that protects the tumor against a
cytotoxic immune response. The intricate and nonredun-
dant pathways of immune evasion will likely require a
combination approach to improve efficacy. Fortunately,
many ongoing clinical trials are evaluating combination
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immunotherapies, which at the minimum, will be able
to shed light on mechanisms of immune evasion to educate
future trials. It is our belief that through the multidisciplinary

approach with engagement of clinicians, scientists, and
most importantly patients, immunotherapy will play a key
role in the treatment of PDAC in the future.
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