
N
H
P

M
A

F
Tu

In
N
be
th
Fr
en
pr
N
si
co
di
fe
in
in
it
fr
it
w
si
th
in

www.transonc.com

Trans la t iona l Onco logy Volume 11 Number 2 April 2018 pp. 374–390 374
HERF1 Between Promises and
opes: Overview on Cancer and
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Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein, with two tandem PDZ domains and a
carboxyl-terminal ezrin-binding (EB) region. This particular sticky structure is responsible for its interaction with
different molecules to form multi-complexes that have a pivotal role in a lot of diseases. In particular, its
involvement during carcinogenesis and cancer progression has been deeply analyzed in different tumors. The role
of NHERF1 is not unique in cancer; its activity is connected to its subcellular localization. The literature data
suggest that NHERF1 could be a new prognostic/predictive biomarker from breast cancer to hematological
cancers. Furthermore, the high potential of this molecule as therapeutical target in different carcinomas is a new
challenge for precision medicine. These evidences are part of a future view to improving patient clinical
management, which should allow different tumor phenotypes to be treated with tailored therapies. This article
reviews the biology of NHERF1, its engagement in different signal pathways and its involvement in different
cancers, with a specific focus on breast cancer. It also considers NHERF1 potential role during inflammation
related to most human cancers, designating new perspectives in the study of this “Janus-like” protein.
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troduction
HERF1 emerged on the scientific panorama at the end of the ‘90s, and
cause of its sticky structure, which is able to link different molecules,
e great possibilities that it retained in its nature were immediately clear.
om its physiological role it was but a short step to realize its
gagement in different diseases, and in particular in cancer. In fact,
otein-protein interaction studies underlined the relation between
HERF1 and other molecules, many of which involved in cancer
gnaling [1–5]. Very early it became clear that NHERF1 role was not so
herent in cancer, but it fitted into the multifaceted context of tumoral
sease. Further, there was already a consensus, emerging from the first
w studies, that linked its activity to its subcellular localization as it was,
fluenced by the state of cells and different NHERF1-protein
teractions. NHERF1 in the cell can play as tumor suppressor, when
is present in the apical membrane, as well as oncogene, after the switch
om membrane to cytoplasm and nucleus. This opposite activity makes
a “Janus like” protein, which is a significant obstacle to study it. Here,
e will review the main data regarding the biology of the NHERF1
gnaling and its interplay with other prominent signaling pathways in
e cell, its relevance in cancer development, and its potential role during
flammation related to most human cancers.
NHERF1 is a scaffolding protein identified independently as a
-regulator of the exchanger NHE3 in rabbit kidney epithelia [6],
d as a phosphoprotein that associates with high affinity and
ecificity with ezrin and moesin (EBP50, ezrin-radixin-moesin
nding phosphoprotein 50) [7].
Na+/H+ exchangers (NHEs) is a family of integral membrane
oteins with multiple transmembrane domains and a large cytosolic
rboxyl-terminal domain. This family consists of six isoforms, and
ery member mediates electroneutral exchange of Na+ for H+ at the
asma membrane and across the membranes of some intracellular
ganelles [8]. NHE3 isoform plays a central role in the
e)absorption of Na+ and HCO-3 across the epithelial layer and is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2018.01.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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ainly found at the apical membrane of polarized epithelial cells of
gans such as kidney, gastrointestinal tract, and gallbladder [9].
Scaffold proteins allow the formation of protein complexes,
teracting with a wide variety of cellular targets. They bring together
o or more proteins, for example membrane receptors/transporters
d cytoplasmic signaling molecules, in a relatively stable configura-
on, building macromolecular complexes. Scaffolds contribute to the
ordination and the positive or negative regulation of specific
gnaling pathways. This can occurs by modulating, for example, the
tivity of specific kinase or phosphatases, by regulating the activity of
embrane protein such as transporters and receptors or by
ncentrating and localizing transporters, receptors or enzymes in
ose proximity of their substrates or regulatory proteins [10,11]. In
affolding proteins, the association of multiple target proteins is
cilitated by the presence of post-synaptic density protein/Drosophila
sc large tumor suppressor/zonulaoccludens1 protein (PDZ)modular
otein–protein interaction modules. These domains interact with
ecific carboxyl-terminal motifs on target proteins. Moreover, the
affolding function can be enhanced by oligomerization with other
Z domains [12].
These interactions can protect signaling molecules from inactiva-
on and lead to a different subcellular localization of the proteins
volved in the signaling pathway, giving to NHERF1 a role as
ordinator of multiple signaling pathways such as those depending
tyrosine kinase (TK) receptors [13].
NHERF1 is encoded by SLC9A3R1 gene, localized on human
romosome 17q25.1, which contains six exons. It is a protein
gure 1.NHERF1 structure. (A) Intramolecular head-to-tail NHERF1 con
d Ser 339-340 disturb self-association, favoring PDZ-ligands interact
mprising 358 amino acids and is characterized by the presence of
o NH2-terminal PDZ domains, PDZ1 (11-97 amino acids) and
Z2 (150-237 amino acids) and a carboxyterminal ezrin–radixin–

oesin (ERM) binding region [14] (Figure 1). These two PDZ
mains show 74% identity to each other. Human NHERF1
esents 84% and 48% overall sequence identity to rabbit protein
factor Na+/H+ exchanger regulatory factor (NHE-RF) and to human
yrosine Kinase Activator Protein 1(TKA-1), respectively. NHE-RF is
protein that is involved in the regulation of the rabbit renal brush
rder Na+/H+ ion exchanger [15]. NHERF1 andNHE-RF align very
ell over their entire lengths, while the sequence of TKA-1 diverges
ter G261 in NHERF1, and PDZ1 together with PDZ2 are found in
arly identical versions in both protein cofactor and TKA-1.
NHERF1 is enriched in the microvilli, which are specialized cell
rface structures present in polarized epithelial cells of various
ssues, including kidney, intestine, liver, and placenta. Microvilli
e also enriched in members of the ERM family protein [16,17].
RM proteins organize protein complexes that link the membrane
the cytoskeleton. The structure of ERM proteins comprises an
ino (N)-terminal FERM (band 4.1, ERM) domain and a short
rboxy (C)-terminal domain. ERM proteins bind to transmem-
ane or membrane-associated proteins with the FERM domain and
teract, with their C-terminal domains, with actin of the
toskeleton [3].
By now is well known that NHERF1 is a physiologically relevant
rin-binding protein, as demonstrated by Reczek et al. [7]. By
munoprecipitation experiments with extracts of purified placental
formation; (B) phosphorylation sites: phosphorylations on Thr156
ion.
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icrovilli they demonstrated that NHERF1 coprecipitates some of
e ezrin, and vice versa. Moreover, in the placental syncytiotropho-
ast, immunoelectron microscopy reveals that NHERF1, like ezrin,
specifically associated with the microvilli. Apical localization of
HERF1 and its interaction with ERM proteins plays a pivotal role
the constitution of microvilli, and consequently they are both
quired to maintain epithelial integrity [18]. This has been
nfirmed by observations of polarized epithelia of the kidney and
all intestine in NHERF1−/− mice, which have shown that
HERF1 is important for stabilizing active phosphorylated ERM
oteins at the apical membrane. Moreover, NHERF1−/− mice
esent structural defects of the intestinal brush border membrane
at are similar to defects found in ezrin−/− mice [14,19].
According to several studies, the function of NHERF1 in cancer is
termined by its subcellular localization, which depends on cellular
ate and on proteins with which NHERF1 interacts and regulates.
hysiologically, NHERF1 is localized in the sub-plasma membranous
gion of cells, associated with the cortical actin cytoskeleton. This
teraction is possible thanks to the presence of a cholesterol-binding
te in PDZ1 domain and thanks to the ezrin-binding (EB) domain
0]. The association between NHERF1 and its ligands can be
evented by an intra-molecular interaction between the N-terminal
DZ2 domain and the C-terminal EB domain. This “head-to-tail”
lding conformation inhibits the association of NHERF1PDZdomains
ith PDZ ligands, such as PTEN or β-catenin (Figure 1A). Thus, it is
ssible to find NHERF1 in a “dormant state” in the cytosol [3].
teraction of EB domain with ERM proteins inhibits folding of
HERF1, and in this way the interaction expose the PDZ domains.
However, an aberrant nuclear localization of NHERF1 has been
und in various cell lines and specimen of hepatocellular, colon, and
east cancer. PDZ and EB domains seem to be critical for NHERF1
clear localization. After deletion of PDZ2, NHERF1 is excluded
om the nucleus, whereas loss of EB or PDZ1 domains causes
HERF1 delocalization in the nucleus [21]. Subcellular localization
NHERF1 can be regulated by phosphorylation in specific sites
igure 1B). NHERF1 structure contains 31 Ser and 9 Thr residues,
d their phosphorylation represents the main post-translational
odification of NHERF1 [22].
Phosphorylation can also alter NHERF1 ability to oligomerize,
at means its association with itself or with other proteins containing
DZ domains, which facilitates the formation and regulation of
llular signaling complexes [23,24]. For example, oligomerization
n potentiate the signaling of NHERF1 binding proteins, as has
en well demonstrated in vitro for platelet-derived growth factor
ceptor (PDGFR) [25].
A large portion of NHERF1 in cells can be found in a
nstitutively phosphorylated state on Ser289 by G protein-coupled
ceptor kinase 6A (GRK6A), a kinase having a high affinity for
HERF1 [26], and this state has been demonstrated to promote
HERF1 oligomerization [27].
This latter can also be enhanced by phosphorylation on Ser339/340 by
C, and this increases the PDZ2 accessibility to its targets [28].
Ser77 found in PDZ1 domain is phosphorylated upon stimulation
ith PTH and dopamine, and this disassociates NHERF1 from the
dium-dependent phosphate transporter 2a (Npt2a), which plays a
votal role in the regulation of renal phosphate transport [29].
HERF1 phosphorylation status is variable throughout the various
ases of cell cycle and is important for its progression, in particular
r correct cytokinesis. In particular, it has been found that NHERF1
heavily phosphorylated by cdc2 on Ser280/302 during mitosis [30].
ore recently, RSK1 has been identified as phosphorylating
HERF1 in HeLa cell line. RSK1 is a kinase activated downstream
the Ras-ERK pathway, and phosphorilates NHERF1 on Thr156
sidue binding to its PDZ1 domain, thus leading to the nuclear
calization of NHERF1. Even this phosphorylation seems to be a cell
cle-dependent event, as it is enhanced in mitotic cells [31].
Since its discovery, a broad variety of proteins interacting with
HERF1 have been identified: transporters, receptors, junction
oteins and signaling molecules.
The regulation of the PI3K/AKT pathway by NHERF1 upon
imulation with PDGF, is one of the most studied pathway.
HERF1 can interact with both AKT [32] and its negative regulators
TEN [33] and PHLPP [34]. As demonstrated by Takahashi and
lleagues, PTEN C-terminal tail contains a PDZ-binding motif able
interact with PDZ1 domain of NHERF1. NHERF1 binds to

DGFRβ and recruits PTEN to the membrane compartment close to
DGFR, scaffolding a complex between PDGFRβ and PTEN. This
rnary complex regulates PI3K/AKT signaling in response to PDGF
and, avoiding an overactivation of the pathway. Indeed, utilizing
HERF−/− mouse embryonic fibroblasts (MEFs) and NHERF-de-
eted cells, they observed that after PDGF stimulation there was a
olonged activation of the PI3K pathway. The interaction
TEN-NHERF1 enhances PTEN protein stability and depends on
TEN phosphorylation status, as PTEN phosphorylation reduces its
cruitment to the plasma membrane. Normally, PTEN is degradated
means of the ubiquitin proteasome pathway, but PTEN-NHERF1
teraction prevents the binding of PTEN with NEDD4, an
iquitin E3 ligase, thus preventing ubiquitination-dependent
TEN degradation [35]. A higher level of PTEN and a consequent
duced level of p-AKT has been observed by Cardone et al. in breast
ncer cells after overexpression of NHERF1 [36].
The formation of PTEN/NHERF1/PDGFRb complex can be
fected by two point mutations in the NHERF1 sequence, K172N
d D301V, found in breast tumors and in the SUM149PT breast
ncer cell lines.In pull-down experiments with protein extracts from
OS-7 cells, NHERF1- K172N and NHERF1-D301V were both
le to bind to PTEN, but their affinities with PTEN were reduced
mpared with that of NHERF1-wt. Moreover, NHERF1-D301V
omoted up to a 2-fold increase in NHERF1-PDGFRb interaction.
he se r e su l t s sugge s t ed tha t NHERF1-K172N and
HERF1-D301V mutations can compromise the formation of
TEN/NHERF1/PDGFRb complex [37].
Aberrant Wnt signaling has been described as a key player in the
itiation of and/or maintenance and development of many cancers. First
idence for a possible involvement of NHERF1 in the regulation of this
thway came from a study of Songyang et al. [38], demonstrating that
izzled (Fzd) proteins, that act as the primary receptors for Wnt signals,
rminate in a canonical PDZ ligand domain.
β-Catenin is a well-established partner of NHERF1. It is member
a complex of proteins important not only for assembling and
nctionality of adherens junctions, but also for acting as a nuclear
anscription factor in the Wnt pathway.β-catenin translocates to the
cleus, where it associates with T-cell factor/lymphoid enhancer
ctor (TCF/LEF) family of DNA-bound transcription factors to
tivate several oncogenes and other gene targets [39]. Association
tween NHERF1 and β-catenin has been demonstrated by Shibata
al. [40] in HepG2 cells, a human hepatocarcinoma cell line, where
ese proteins coimmunoprecipitate. Only PDZ2 domain of
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Figure 2. NHERF1 pathways. In the middle part (A), in physiological conditions NHERF1 phosphorylates Na+/H+ exchangers (NHEs)
affecting their activity and microenvironment acidification. On the left (B), NHERF1 acts as an oncosuppressor protein negative regulating
the proliferative activity of EGFR pathway, when it is localized at the plasmamembrane. On the right (C), NHERF1 appears as oncogene, in
fact it imports β-catenin into the nucleus to form a bridge complex with the trancription factor TCF. This complex activates oncogenes
transcription such as cMyc, CD1 etc.
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HERF1 seems to bind β-catenin. Immunofluorescence analysis
owed that in HepG2 cells β-catenin was expressed, as expected,
th at the level of the plasma membrane and in the nucleus. Even
HERF1 was frequently observed in the nucleus. Although
HERF1 interacts with β-catenin through its PDZ2 domain,
HERF1 binds TCF-1B via its PDZ1 domain. Thus, NHERF1 can
t as a positive regulator of Wnt signaling, binding to both β-catenin
d TCF-1B, forming a ternary complex that enhances the activity of
ese transcription factors (Figure 2C). Moreover, in NHERF1−/−

EFs, β-catenin is delocalized from the plasma membrane to the
toplasm and forms weaker complexes with E-cadherin. These cells
esent an anchorage-independent growth, indicating that NHERF1
uld have a tumor suppressor role, controlling the intracellular
stribution of β-catenin by stabilizing complexes with E-cadherin at
e plasma membrane. Indeed, NHERF1−/− cells show a lower
catenin membrane immunofluorescence staining compared to
HERF1+/+ cells, and a higher cytoplasmic expression in fractioned
oteins [41]. These data have been confirmed in vitro in mice
testinal epithelial cells.
Further evidence of NHERF1 regulating the canonical Wnt
gnaling and acting as a tumor suppressor was found by Wheeler and
s research group [42]. They first demonstrated, in CHO-N10 cell
e, that NHERF1 can bind directly to Fzd receptors, such as Fzd4,
a its PDZ2 domain, allowing an anchorage of the receptor to the
rtical actin cytoskeleton. Afterwards, MCF7 and MDA MB-231
man breast cancer cell lines (expressing respectively high and very
w levels of NHERF1) were used to show that upon stimulation with
nt proteins, β-catenin activation, cyclin D1 levels and proliferation
te were higher in cells lacking NHERF1.This could explain the
creased duct density and nuclear β-catenin levels that the authors
served in the mammary glands of NHERF1 knockout mice.
oreover, in breast cancer biopsies of varying stages and ER/PR
atus, stained for NHERF1 and β-catenin, a negative correlation
tween these two proteins, where an increased expression of
catenin was accompanied by an increase in the percent of nuclear
catenin, has been observed. The expression level of NHERF1 has
en demonstrated to regulate expression and function of the
idermal growth factor receptor(EGFR) in normal cells [43].
EGFR is a member of the tyrosine kinase receptor family, and its
erexpression represents one of the primary mechanisms involved in
e pathogenesis and progression of different carcinoma types. Upon
nding with its ligand, epidermal growth factor (EGF), signaling
thways involved in cell growth, survival and migration are activated
4]. In basal conditions there is not a co-localization at the plasma
embrane of breast cancer cells between NHERF1 and EGFR, while
imulation with EGF brings back NHERF1 at membrane, where if
rms a complex with EGFR [45].
Lazar et al. [43] have demonstrated that PDZ1 domain of
HERF1 specifically binds to an internal peptide motif within the
OOH-terminal regulatory domain of EGFR, retaining the receptor
the cell surface and retarding its down-regulation, as demonstrated
inserting a point mutation in the binding site. This interaction,
at seems to be independent of ligand binding and autophosphor-
ation of EGFR, enhances EGFR signaling through inhibiting
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Figure 3. Frequency of researches about NHERF1 divided for cancer. The majority of the studies explore the role of NHERF1 in breast and
colorectal cancer, followed by tumors of the central nervous system, urogenital tract and pancreas. 15% includes studies about:
hepatocarcinoma, melanoma, esophageal, biliary, gastric and lung cancer.
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and-induced endocytosis. This prolongs the activated state of
GFR and the subsequent activation of the downstream signaling
otein ERK.
Yao and colleagues [46] studied the effect of NHERF1 expression
EGFR signaling pathway in the breast cancer cell lines

DA-MB-231 and MCF-7. They found that NHERF1 expression
hibits the autophosphorylation of the receptor and the activation of
wnstream effectors ERK1/2 and AKT, suppressing EGF-induced
oliferation of BC cells. The NHERF1-EGFR complex formation is
tered by E43G mutation, localized in PDZ1 domain and identified
BCs [47]. In cholangiocarcinomas a delocalization of NHERF1 to
e cytoplasm can be often observed, and this associates with EGFR
pression. In vitro experiments carried out on biliary carcinoma cell
es showed that NHERF1 silencing enhances the expression of
GFR at plasma membrane and its downstream signaling,
rthermore leading to acquisition of epithelial mesenchymal
ansition (EMT) [48] (Figure 2B).
Given the regulatory role of NHERF1 in pathways which
sregulation plays an evident role in tumorigenesis, various research
oups in the last years have studied the behavior of this adaptor
otein in different cancer types (Figure 3). In particular, our group
ve focused its attention on analyzing the biological role of
HERF1 in different cancers: colorectal, gastric, lung and breast,
nding evidence of its involvement in these diseases.
The following paragraphs will illustrate the "state of the art" of
HERF1 knowledge and its future study perspectives.

HERF1 in Gastrointestinal Tract Cancers
Hepatocellular Carcinoma (HCC). The initial investigations have
own the involvement of NHERF1 during development and
ogression of solid tumors. Shibata et al., showed a close association
tween NHERF1 and β-catenin in HCC model. Binding assay has
monstrated that β-catenin carboxyl terminal region is associated to
e carboxyl PDZ2 NHERF1 domain. The co-localization of
HERF1 and β-catenin in the nucleus, their protein overexpression
clinical cases and the high mRNA levels of NHERF1 in different
CC cell lines, highlighted it as a possible cause of HCC
velopment [4]. Peng et al., supposed that NHERF1 overexpression
uld inhibit the growth of two HCC cell lines and stimulate
optosis by β-catenin/E-cadherin pathway [49]. Moreover, high
HERF1 mRNA levels in tumor compared to non-tumor tissues
ti
ve been detected in HCC [50]. Thus, NHERF1 may be considered
potential therapeutic target in HCC.
Colorectal Cancer (CRC). In CRC it has been demonstrated a

gnificant positive correlation between cytoplasmic β-catenin and
clear NHERF1 (nNHERF1) to support the close relationship of
ese two protein and their association in carcinogenesis. Further,
w evidences in favor of involvement of NHERF1 in Wnt signaling
thway and consequently in CRC development have been collected.
positive correlation among RAS-association domain family 1
ethylation, isoform A (RASSF1A) and nuclear β-catenin has been
und too, noting that Wnt pathway activation is mediated by
ASSF1A, a putative tumor suppressor RAS effector, whose
igenetic silencing by promoter methylation has been reported
ring cancer progression [51,52]. These observations support the
HERF1 limelight in the cancer development and its trigger role,
ven by its intrinsic nature, that makes it a highly versatile molecule.
Evidence of NHERF1 dynamism has been provided by Hayashi
d colleagues. They reported a heterogeneous pattern of NHERF1
primary colorectal cancer (CRC) during the colorectal adenoma-
-carcinoma transition. The study showed the loss of the normal
ical membrane arrangement of this protein and an ectopic
toplasmic overexpression. In normal-like cellular model of CaCo2
lls they mimed the same membrane NHERF1 depletion, and
served morphological and biochemical changes characteristic of
MT, and an increase of cellular migration and invasion. Only the
topic NHERF1 re-expression at the apical membrane restored the
itial morphology and reduced cellular motility, clarifying for the
rst time the importance of NHERF1 location in CRC development,
d indicating NHERF1 as a probable diagnostic marker in this
mor type [53]. Then, these results have been confirmed in a further
udy on a 3D model of human intestinal gland formation. High
milarities have been found between the above colorectal adenoma-
-carcinoma transition and normal gland morphology–to-tumor-like
gland formation for NHERF1 membrane loss. These tumor-like
glands were characterized by aberrant growth, enlarged nuclei and

creased migration, consistent with high grade dysplasia and
served in CRC progression [54].
Independently, our group have demonstrated that nuclear
HERF1 expression, which is present in the early stages of
rcinogenesis, may contribute to the onset of malignant phenotype
CRC patients. Colorectal cancer samples, including non-neoplastic
ssue, primary tumors, synchronous lymph node and liver
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etastases, were used in this study. A shift of NHERF1 expression
ommembrane to nucleus has been observed, and it was associated at
e adenoma-carcinoma sequence. Interestingly, the loss of the apical
embrane expression and occurrence of a cytoplasmic and nuclear
aining, had already been observed in normal adjacent mucosa,
dicating it as an early marker of pre-morphological triggering of
rcinogenesis [55] (Figure 4). Further analysis has confirmed the
portance of nNHERF1 localization, dynamism and its ability to
rrelate with different molecules, which emphasizes the oncogenic
le of NHERF1 in CRC. We demonstrated an overexpression of
clear NHERF1 in no longer polarized epithelial cells, converted to
mesenchymal phenotype in hypoxic colonic areas. Furthermore, we
ported that nNHERF1 nuclear expression was related to poor
fferentiation grade and to high HIF-1α (Hypoxia-inducible factor)
d TWIST1 expression, which supports a more invasive phenotype.
HERF1 close relation with these two oncogenic transcription factor
ked it to a wide range of genes involved in cellular responses to
fferent signals, linked to tumoral microenvironment [56], tumor
vasion and metastasis [57]. However, in this report only the nuclear
esence of NHERF1 seemed to be a more potent marker of
gressiveness in advanced CRC [58]. A positive linear correlation
tween cytoplasmic NHERF1 (cNHERF1) and protease-activated
ceptor-2 (PAR-2), and a significant co-expression of the two
oteins mostly in the margin of the tumor mass, has been observed
o. Cytoplasmic PAR-2/NHERF1 expression immunophenotype
edicted poor prognosis for CRC patients, being associated with the
esence of nodal and distant metastasis, poor differentiation grade
d lymphovascular invasion [59]. NHERF1 identification as
tential targeted biomarker is reflected in another study, in which
s expression was positively correlated with VEGFR2 expression.
apid NHERF1 up-regulation in hypoxia suggested NHERF1 as a
pid response element to the tumor microenvironment and as
gulator of VEGF/VEGFR signaling pathway in metastatic progression
0]. This result fits in a prospective view that hopes to increase
gure 4. Representative images of NHERF1 immunoreactivity and loca
membrane of DNT mucosa; (B) in the cytoplasmic and nuclear of SN
HERF1 is present in T, (E) LnM and (F) LM. DNT: distant non-neoplastic
primary tumor, LnM: synchronous lymph node metastasis, LM: live
tient-oriented clinical management, permitting different immunophe-
types to be treated with tailor-made therapies, to improve therapeutical
sponse and prognosis.
Controversial NHERF1 behavior as a tumor suppressor or promoter
s been found by Lin Y.Y and colleagues too, relating to cellular
nfluence in tumor area. In fact, they reportedNHERF1 in the nucleus
the invasive front of CRC samples, while it was retained at the
embranous and cytosolic portions in the central corpus of tumors, a
mparable distribution pattern with β-catenin [61]. They linked also
HERF1 to EMT, suggesting that it could play a regulatory role in
quiring mesenchymal characteristics through a possible ternary
idge-formation among NHERF1- β-catenin-TCF-1, that facilitates
entry into the nucleus. A detailed analysis to clarify the interacting
thway of NHERF1 during intestinal neoplasia onset has highlighted
inhibitory activity onWnt-β-catenin pathway. The complete absence
membrane expression (NHERF1−/−) was necessary to trigger a
morigenic process in a mouse in vivo model, while heterozygosis
ndition did not abolished its onco-suppressor activity. Tumor
cidence and size was increased in this model and the tumors showed
high nuclear expression of cyclin D1, a protein connected to cell cycle
ogression and growth. A screening of possible upstream cyclin D1
thways revealed an increase of β-catenin and Yap expression, showing
e link between NHERF1−/− phenotype and intestinal tumorigenesis.
he Hippo-Yap pathway implication in tumorigenesis is a recent
unding, and un-phosphorylated Yap increase has been observed in
RC too [62–64].
Pancreatic Cancer (PC). The role of NHERF1 has been studied
other cancer sites with different results depending on tumors, sites,
armacological treatment etc.
NHERF1 delocalization and its role in cancer progression is
nfirmed by a study in PC. By quantum dot-immunohistochemistry
say, NHERF1 expression was observed at the apical membranes of
rmal pancreatic tissue, with a decrease of membrane staining and
toplasmic overexpression moving on to tumor area. In in vitro tests,
lization in metastatic CRC. (A) NHERF1 staining is present mostly
T and (C) in ADN; (D) over-expression of cytoplasmic and nuclear
tissue, SNT: surrounding non-neoplastic tissue, ADN: adenoma,
r metastasis.
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HERF1 down-regulation stimulated the cell proliferation, support-
g its role as important tumor suppressor in PC. Further, the authors
ve explored the possible molecular mechanism involved in this
havior considering the expression of phosphorylated Rb (Retino-
astoma protein), cyclin E, p27 and β-catenin, which play an
portant role in the growth and proliferation of human cancer cells.
hey found increase of phosphorylation of Rb and cyclin E and
duction of p27 protein expression following NHERF1 silencing.
his indicates a potential effect of NHERF1 alterations on regulation
cell growth, repression, proliferation and tumor formation, in

hich these proteins are involved [65]. A subsequent in vitro and
vivo study provided that NHERF1 overexpression inhibited the
owth of the PC tumors inducing cell apoptosis, by decreasing Bcl-2
pression [66]. The same research group have improved this results,
monstrating as NHERF1 overexpression inhibited PC cell growth
d invasion targeting the β-catenin/E-cadherin pathway, and
dicating NHERF1 as a potential tumor suppressor and a possible
erapeutic target [67]. In a 2013 study it has been demonstrated that
HERF1 is a bridge between CXCR2 (CXC chemokine receptor 2),
receptor for the CXC chemokines, involved in cancer progression,
d PLC-β3 (phosphatidylinositide-specific phospholipase C), an
tivator of protein kinase C and Ca2+ release, both possessing a
nsensus PDZ at their carboxyl terminals [68,69]. This complex has
en associated to proliferation, invasion and tumor growth. In fact,
s disruption reverted malignant cellular functions [70].
Gastric and Esophageal Carcinomas. Non canonical NHERF1
pression has been observed in a series of advanced gastric cancers
C), treated with the epirubicin, oxaliplatin, and capecitabine
emotherapy regimen. In these samples was found an increase of
toplasmic and nuclear pattern of NHERF1, in association with
ultidrug resistance proteins, such as P-gp and sorcin. These patients
owed lower nNHERF1 and tended to have a high expression of
-gp and sorcin, although not statistically significant. This relates to
emotherapy-resistance and worse outcome and indirectly to
echanisms of drug resistance. A multivariate analysis revealed a
gnificant correlation between nNHERF1 and clinical response,
dicating it as an independent predictive factor of therapeutic
sponse in these patients [71]. Previously, in a cohort of Chinese
tionality patients, NHERF1 had been associated with several
alignant clinicopathological features of GC, but it had not been
aluated as a predictive outcome factor for GC patient prognosis
2]. A chemogene therapy regarding NHERF1 was hypothesized in
12, following the study of Lv XG and colleagues. They found an
optotic increase induced by 5-Fluorouracil (5-FU) in GC cells
erexpressing NHERF1 compared to wild type cell line, and they
oposed a combination of adenovirus-NHERF1 and 5-FU as a
tter possible treatment for GC [73]. In esophageal squamous cell
rcinoma has been reported a decrease of mRNA and protein
HERF1 expression in tumor compared to non-tumor tissues. In
ese patients the loss of membranous (mNHERF1) was associated
ith malignant progression and poor prognosis. Furthermore, the
HERF1 knockdown in in vitro experiments promoted cell growth
d cycle progression [74].
Biliary Carcinoma. A comparative proteomic analysis of protein
pression profiles in four histologically different cholangiocarcinoma
ll lines, to represent cholangiocarcinoma development (from
oderately differentiated adenocarcinoma to adenosquamous cell
rcinoma) has been carried out. The analysis has permitted to
entify protein differently expressed in the four cell lines, including
HERF1. Verification using IHC analysis on tissues has been
rformed and NHERF1 overexpression has been detected in the
toplasm and in the membrane of cholangiocarcinoma tissues. Its
pression was also associated with tumor invasion of lymphatic and
ood vessels and with reduced survival after surgery [75].
Loss of NHERF1 at the plasma membrane of biliary cancer cells
ntributed to biliary carcinogenesis throughEGFR activation. In normal
liary epithelium a mNHERF1 expression has been reported, whereas a
toplasm delocalization has been observed in about 60% of the tumors,
sociated to EGFR expression, suggesting a defective interaction
HERF1/EGFR when NHERF1 ectopic expression was present. In
ct, in cells expressing mNHERF1 there is a close interaction, just
ported, with EGFR and β-catenin [4,43].
To define the NHERF1/EGFR relation has been used a biliary
rcinoma cell line, expressing endogenous EGFR and mNHERF1,
which NHERF1 was silenced by small interfering RNA (siRNA)
8]. In normal conditions, mNHERF1 links EGFR and β-catenin
3,40,43], thus stabilizing the β-catenin/E-cadherin complex [41].
uring cancerogenesis, the loss of NHERF1 at the plasma membrane
stroys NHERF1-EGFR connection and increases EGFR expres-
on/activation, triggering its downstream effectors transcription and
clear translocation of β-catenin, which results in EMT program
tivation [76,77]. A recent work reports NHERF1 down-regulated
pression levels in extra-hepatic bile duct carcinoma tissue, in
lation with an increase of pathological stage and malignant
enotype. To confirm and elucidate tissue observations, the authors
ocked down NHERF1 by siRNA in an extra-hepatic bile duct
rcinoma cell line, observing cell proliferation and migration. In
nclusion it has been hypothesized a link between NHERF1
d incidence and development of extra-hepatic bile duct carcinoma
8].
The overview of the gastrointestinal tract allows us to indicate
NHERF1 as a realistic expected prognostic/predictive biomarker
r these tumors from colorectal cancer to extra-hepatic bile duct
rcinoma, although extensive studies and clear guidelines need to
andardize real application.
NHERF1 in Lung Cancer. For the first time, we have reported a
ss of mNHERF1 staining in non-small cell lung (NSCLC) cancer
o [79]. By analyzing different types of sample, fine needle aspiration
tology (FNAC) and surgical specimens, it has been demonstrated
at in lung parenchyma tissue, NHERF1 immunoreactivity was
ainly at apical membrane in the bronchial epithelial cells and in
ntiguous non-tumor lung tissue of the surgical samples, whereas it
as negative in the alveoli. Considering the three different
mpartments, NHERF1expression resulted higher in cytoplasm
d nucleus compared to plasma membrane, both in FNACs and
SCLC samples. A statistically significant correlation was found
tween cNHERF1 expression and tumor stage, and between
HERF1 expression and histotypes. This latter finding might

dicate NHERF1 expression as a diagnostic tool to distinguish the
fferent phenotypes and a probable marker of aggressiveness in lung
ncer. A non-congruent data showed a negative cytoplasmic
HERF1 expression in almost all IV stage tumors, indicating that
toplasmic NHERF1 expression might be associated to a less
gressive phenotype, which is in contrast with previously results in
east cancer studies [80,81]. The different microenvironment and
ncer biology of this tumor might explain the different behavior and
e different function for the multitasking NHERF1 [79]. Recent
vitro studies examined the role of NHERF1 during EMT in
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n-small cell lung cancer cells. NHERF1 down-regulation was
volved in EMT regulated by TGF-β1, reverted by its re-expression
cellular system. In conclusion, the authors proposed an inhibitory
nction of NHERF1 on migration and invasion malignant
enotype of lung cancer cells, modulating EMT-associated markers,
cluding E-cadherin and N- cadherin, snail family transcriptional
pressor 1 and snail family transcriptional repressor 2 [82].
NHERF1 in Brain Cancers. In the last decade, the design of

able, safe and effective molecules has been significantly improved
eclinical in clinical trials for cancer therapy. Despite that, there are
ill some tumors associated with significant morbidity and
ortality, such as central nervous system (CNS) tumors. Under-
anding the molecular mechanism of these cancers is important to
prove diagnosis and to successfully use novel targeted therapies
d improve patient outcomes. Increased NHERF-1 gene expression
s been observed in invasive glioma cells in vivo, isolated from
mor core or invasive rim, of 19 samples of glioblastomamultiforme
BM). GBM is the most frequent form of primary brain cancer
aracterized by an aggressive phenotype and a lethal nature [83]. By
ne expression profiling, genes that were differentially regulated in
e core and the rim of the tumors were analyzed, and NHERF1 was
erexpressed in the rim of more than 50% of the tumors. Its
erexpression in invasive cancer rim links NHERF1 to migration
tivity of tumor cells in GBM. Higher levels of NHERF-1
pression in the invasive rim compared with the core has been
tected by immunohistochemistry too. In vitro experiments in
ioma cells showed inhibition of migration, increased cellular
hesion and morphological change after NHERF1 knockdown.
rther, NHERF1 inhibition amplified apoptotic cell death caused
pharmacological treatments [84,85]. These results permit us to
dicate NHERF1 as a possible therapeutic target for treatment of
BM. Subsequently, the involvement of NHERF1 and PTEN, its
and by PDZ motif, has been studied in normal adjacent brain,
ade III anaplastic astrocytoma (AA) and in grade IV GBM samples.
normal region NHERF1 was observed at plasma membrane level,
hile in tumor areas a double pattern both cytoplasmic and
embranous has been seen. Further, cNHERF1 has been associated
ith AKT activation and PTEN cytoplasmic translocation. AKT is a
gnal transduction pathway that promotes survival and growth in
sponse to extracellular signals and is a part of PI3K/AKT pathway.
he re-expression of NHERF1 in membrane restored normal
embranous PTEN and suppressed cell proliferation triggered by
kt activity [86]. Consequently, the mechanism underpinning
HERF1-PI3K interaction in this type of cancer has been
vestigated in depth. A cellular model of glioblastoma doubly
lenced for NHERF1 and PTEN showed a synergic effect on Akt
tivation, already observed for NHERF1 only. Further, to validate
e PI3K/Akt inhibitory activities of NHERF1, has been studied a
I3K-Akt suppressor molecule with PDZ-binding motifs, that
eans PH domain leucine-rich repeat protein phosphatase 1
HLPP1). It is a new NHERF1 ligand, that regulates its plasma
embrane enrollment and growth suppressive effect. The PTEN-N-
ERF1-PHLPP1 network was distorted in glioblastoma, when
mparing high grade to low-grade gliomas or normal samples a
gnificant reduction of all three suppressors and an increase of
tivated Akt was detected [87]. These data demonstrated that
HERF1 was involved in PTEN redistribution in cancer cells and
is supposed a crucial role in controlling of PI3K/Akt pathway, thus
ening a new area of molecular targeted therapy for GBM.
ecently, it has been observed that NHERF1 has high sensitivity
d specificity for microlumen in ependymal tumors. Ependymo-
as are well-delineated tumors resulting from uncontrolled
owth of ependymal cells or precursors and characterized by
rivascular and ependymal rosettes [88]. They are categorized as
bependymomas (grade I), ependymomas (grade II) and
aplastic ependymomas (grade III), on the basis of their mitotic
oliferative activity. In ependymomas, neoplastic cells arrange in
aracteristic polarized perinuclear dot-like structures, corre-
onding to microlumens, and in rosettes delimiting a lumen. In
th structures, NHERF1 stained the apical membrane of cancer
lls, where it builds protein complexes with moesin and PTEN.
o establish the diagnostic role of NHERF1, more than 100
imary brain tumors (ependymomas, anaplastic ependymomas,
d lower grade ependymal tumors) have been screened. NHERF1
as diffused in all grade I subependymomas, while its loss was
tected in anaplastic ependymomas, associated to differentiation
ss. So these results indicated that NHERF1 can be a reliable
agnostic marker for these tumors [89]. NHERF1 has been also
sociated to epithelial membrane antigen (EMA) expression in a
hort of ependymoma and non-ependymoma tumors, showing a
ajor sensitivity for grade I sub and myxopapillary ependymomas.
hile, EMA and NHERF1 positivity in non-ependymomas
lioblastoma multiforme and meningioma) contributed to the
wered specificity. Only EMA positivity was more sensitive in
ade III ependymomas. So, NHERF1 was considered a good
agnostic marker for grade I/II ependymomas, while a combined
nel of EMA and NHERF1 was suggested for grade III
endymomas [90]. In choroid plexus (CP) neoplasms an
munohistochemistry panel formed by NHERF1 and its associated
rin-radixin-moesin-merlin/ neurofibromin-2 (ERM-NF2) protein has
en analyzed. NHERF1 showed a high apical plasma membrane mark
grade I CP papilloma and cytoplasmic expression in grade III CP
rcinoma. Similarly to CRC, NHERF1 could be involved in a
pilloma-to-ependymoma morphology sequence. NF2 showed polar-
ed membranous staining in all CP tumors. Taken together, NHERF1
d NF2 expression showed highest sensitivity and specificity for CP
mors compared to commonly used biomarkers [91]. All these results
pport the real possibility of a diagnostic application of NHERF1, alone
in combination, in tumors of the CNS.
NHERF1 in Melanoma. Melanoma aggressiveness has been
sociated to increase of Phosphatase of regenerating liver-3 (PRL-3)
pression, together with an increase of Akt phosphorylation and a
crease of PTEN. NHERF1 has been found into the nucleus of stage
II, and III melanoma, but not in the nucleus of stage IV or lymph
de metastatic melanoma. The loss of nNHERF1 during cancer
ogression in melanoma reflects the same behavior observed in the
vanced breast cancer, where the loss of nNHERF1 has been linked
more aggressive phenotype [81]. Furthermore, a NHERF1/PTEN
-localization in stage I melanoma nucleus and a cytoplasmic shift in
mph node metastatic melanoma has been determined. As a result of
sue observation, the hypothesis of a central role of NHERF1/
EN during malignant melanoma progression has been explored in
ll lines. It has been demonstrated that PRL-3 regulates the
osphorylation of NHERF1 at Ser residue, promoting the
anslocation of NHERF1 and PTEN from the nucleus to the
toplasm during cancer progression. Knockdown of cNHERF1
pressed tumor growth, demonstrating a NHERF1 therapeutic
gnificance in melanoma too [92].
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HERF1 in Urogenital Tract Cancers
Ovarian Cancer (OC). In primary ovarian mucinous carcinomas
the intestinal type a preliminary study demonstrated NHERF1
pression in 73% of the cases in association with poor prognosis
3]. Mutational analysis in the NHERF1 gene of epithelial OCs has
owed the presence of new somatic mutations in 26% of analyzed
mples, and in silico related analysis indicated a possible effect during
e splicing process, affecting tumorigenesis [94]. NHERF1 and
zrin expression was analyzed in cyst adenofibromas, serous
rderline tumors, and serous OC. A high immunoreactivity was
served at the membrane of borderline tumors and papillary
ructures of cancers. In no-papillary tumors, apical NHERF1
pression at the limits of the luminal spaces was observed, while
embrane Ezrin, but no NHERF1 expression, was detected in solid
mor area. In OCs, the different behavior of these proteins, usually
ose linked each other, is due to high molecular complexity of these
ncers [95]. To underline the key role of NHERF1 pathway during
arian cancer progression, a recent study has associated NHERF1 to
rtical protrusion structures in OC cells. In fact, in an OC cell line,
toplasmic rapidly moved to the plasma membrane after lysopho-
hatidic acid (LPA) stimulation, and interacted with C-terminally
osphorylated ERM proteins (cpERM). NHERF1 depletion by
RNA down-regulated cpERM and inhibited chemotactic cell
igration in the direction of a LPA gradient. The authors highlighted
e high dynamism of cytosolic NHERF1 and its role as a regulator of
emotactic migration, which is crucial for OC progression [96].
Cervical Cancer (CC). In cervical cancer it has been demon-

rated that human papillomavirus type16 (HPV16) E6 binds
HERF1 with its PDZ-binding motif, inducing NHERF1 degra-
tion via the proteasome pathway. Further, it seems like E7 interacts
ith E6 to reinforce this activity, triggering NHERF1 phosphory-
tion by CDK1/2. As a consequence of NHERF1 degradation PI3K/
KT pathway activation has been reaffirmed too. NHERF-1 was
wn-regulated in different CC-derived cell lines with high levels of
6 and E7 genes/proteins. In accordance with in vitro evidences,
HERF1 down-regulation was observed in HPV16-positive cervical
tra-epithelial neoplasia grade III only, compared to premalignant
sions [97]. An independent study has demonstrated that NHERF1
pression was down-regulated in CC tissues, and this low levels were
lated with cell proliferation, cell cycle and with ERK signaling
tivation by EGFR, suggesting an involvement in EGFR signaling in
is tumor type. To verify this, it was produced a mutated NHERF1,
hich destroyed the interaction with EGFR, and this demonstrated
at its overexpression reduced NHERF1 inhibition on EGFR
gnaling. Furthermore, NHERF1 expression was associated with
or prognosis of a sub-set of CC patients, with continuous EGFR
tivation [98]. A recent work focused on the anti-metastatic effect of
HERF1 action in breast and CC cells. Overexpression of NHERF1
cervical cell line inhibited adhesion, wound-healing and invasion,
hile NHERF1 down-regulation supported them. Moreover, its
er-expression inhibited the MMP-2 activity, whereas its down-
gulation endorsed it, proposing NHERF1 participation to
MP-2-mediated cell metastasis suppression. In conclusion
HERF1 might be a potential precise therapeutic target or
ognostic marker for CC patients [99]. In human cisplatin-resistant
rvical cancer cells, NHERF1 overexpression repressed proliferation
d increased apoptosis, while NHERF1 down-regulation had
verse effects. In wild type cells its down-regulation increased
splatin resistance. In cisplatin-resistant cells these studies also
vealed an AKT and ERK signaling pathways inhibition. This work
monstrates for the first time that NHERF1 can be involved in
splatin-resistance of cervical cancer cells [100]. These results are
nsistent with our previously data published regarding gastric cancer
1].
Prostatic Cancer. In prostatic cancer an immunohistochemical

udy has revealed a different NHERF1 expression in relation with
rmal-to metastatic adenocarcinoma sequence, showing a combi-
tion of membranous/apical and cytoplasmic staining. A main
embranous/apical staining of NHERF1 was present in the benign and
e-neoplastic specimens, while a cytoplasmic staining was observed in
imary and metastatic tumors. So, NHERF1 is proving as a potential
ognostic marker for patients with prostate cancer too [101].
NHERF1 in Hematological Cancers. Leukemia, lymphomas and
yeloma are hematological malignancies originated in the bone
arrow and lymph nodes. The incidence of these tumors is high
ong elder people, and the prognosis and responsiveness show a
eat variability. NHERF1 engagement in these diseases has been
tle investigated, but considering recent publications it is possible to
pothesize its involvement in hematological cancer too.
In fact, NHERF1 has been found up-regulated in acute myeloid
ukemia (AML) cells treated with Histone Deacetylase Inhibitors
DACi), altering osteoblast-mediated protection of AML cells. The
rvival of AML stem cells seems guaranteed by bone marrow
icroenvironment that plays a protective role towards standard
emotherapeutics. So eradicating this protective environment is
ucial for more efficient drug therapies. In this study osteoblasts
eserved AML cells from apoptosis in a co-culture model of bone
arrow microenvironment, while HDACi treatment reverted this
otection, inducing up-regulation of NHERF1 and its interaction
ith Protein phosphatase-1 (PP1). The interaction between
HERF1-PP1facilitates PP-mediated TAZ dephosphorylation,
hich is involved in protection of leukemic cells [102].
NHERF1 has been found up-regulated in chronic myeloid
ukemia (CML) too. In fact, by proteomic assay, its up-regulation
as been observed in imatinib-resistant CML-T1/IR cellular
bclones, mimicking acquired drug resistance. Further, in these
sistant cells have been detected an altered cytosolic pH and reduced
lcium levels, suggesting that NHERF1 may be linked to these
terations and to fundamental signaling pathways such as Wnt
thway. These findings could indicate a new potential therapeutic
proach and an improvement of prognosis for imatinib- resistant
ML cases [103]. A recent study has reported a putative interaction
tween NHERF1 and multidrug resistance protein 4 (MRP4). In
dition, a redistribution of MRP4 from intracellular structures to the
asma membrane in leukemia cells after NHERF1 silencing has been
ported [104].
These first evidences draw a new prospective road for NHERF1, in
der to better understand hematological cancer mechanisms and so
tailor the therapeutical management in this field.
NHERF1 in Breast Cancer (BC). A possible NHERF1 involve-
ent in breast cancerogenesis has been reported for the first time by
emmer-Rachamimov and colleagues. They showed its overexpres-
on in tumor compared with the non-tumor counterparts of BC
mples.
They analyzed 18 infiltrating breast adenocarcinomas by immu-
histochemistry and showed a positive NHERF1 immunoreactivity
tumor cells compared to adjacent stroma. Both a membranous and
cytoplasmic staining was shown, with a specific membranous
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activity at persisted ductal-like structures. This was one of the first
idences of aberrant NHERF1 detection in BC, although in a small
hort [105].
To clarify NHERF1 role in BC progression, its expression has been
easured by western blot in human breast tumors compared to
ntiguous healthy tissue, highlighting NHERF1 overexpression in
mor tissues. In this case as well NHERF1 immunolocalization was
ited to the apical membrane region of cells in normal lobules,

hile in tumor lobules a diffuse cytoplasmic distribution could be
served. Furthermore, NHERF1 protein expression was significant-
related to increasing tumor cyto-histological dedifferentiation and
poor prognosis [106].
Subsequently, our group [107] has performed an immunohisto-
emical analysis of NHERF1 expression in a wider cohort of 215
mples including normal breast, ductal carcinoma in situ (DCIS),
vasive breast carcinoma (IBC), synchronous metastatic lymph node
d metachronous distant metastases. We found that cNHERF1
pression in DCIS, invasive and metastatic tissues was significantly
creased compared with the corresponding cytoplasmic expression
served in normal tissues, while the percentage of positive cells with
NHERF1 immunoreactivity in DCIS, IBC and metachronous
stant metastasis tissues was significantly decreased compared with
rmal tissues. An even greater increase in the amount of cNHERF1
cancerous epithelial cells was observed moving from DCIS to more
gressive IBC and metastases. Furthermore, levels of mNHERF1
ere higher in DCIS compared to both IBC and metachronous
stant metastases tumor tissues (Figure 5). So, we have demonstrated
significant change in the pattern of cellular NHERF1 distribution
om normal to in situ and invasive BC tissue, showing that
HERF1 staining accumulation could suggest an important role in

C development and tumor progression (Figure 6). This behavior has
en confirmed in other tumor types such as colorectal cancer [53,55]
d cholangiocarcinoma [75].
Given the central role of estrogens in breast physiology in
omoting the proliferation of both normal and neoplastic breast
ithelium [108], a possible interaction between these hormones and
HERF1 has been investigated. Estrogen receptor-positive (ER+)
C is the most common subtype to be diagnosed, and in vitro and
vivo data show that it is associated to a more favorable prognosis,
e to availability of anti-estrogenic endocrine therapy. However,
R+ BCs frequently acquire resistance to endocrine therapy, although
R continues to be expressed. First findings regarding a positive
gulation of NHERF1 by estrogens were illustrated in vitro by
diger [109]. They observed that stimulating MCF-7 cells (an ER+

man BC cell line) with estradiol, there is a 4-5 fold up-regulation of
HERF1 mRNA. To confirm these data were used MDA-MB-231
lls, an ER-negative (ER-) BC cell line, which normally shows low
sal levels of NHERF1. Stimulation of these cells with estradiol
dn’t show an increase in NHERF1 mRNA. When the same cells
ere treated with estradiol containing a stably integrated ER
pression construct, a 5- to 6-fold increase of NHERF mRNA,
mpared to untreated cells was observed.
Afterwards, Stemmer-Rachamimov and colleagues [105] con-
med these findings performing quantitative Western blot analysis.
hey found that levels of NHERF1 were higher in three ER+ BC cell
es, MCF-7, ZR-75-B, and T-47D, compared to normal mammary
es HBL-100 and MCF-12-F. Low levels of NHERF1 were
pressed only in estrogen receptor-negative breast cancer lines
DA-MB-231. Moreover, by immunohistochemistry performed on
filtrating BCs, a strong correlation was found between positive
munostaining for ER and high expression of NHERF1. In MCF-7
lls an increased expression of NHERF1 upon stimulation with
-β-estradiol (E2) has been observed. Interacting with PTEN,
HERF1 enhances its stability and retards its degradation via the
iquitin-proteasome system, causing an up-regulation of the
pression of this signaling molecule [35].
Then, NHERF1 immunostaining has been evaluated in two
horts of BC patients, the first comprising the whole tissue sections
49 cases and the second including 120 tissue microarrayed cases
10]. NHERF1 immunopositivity was present in 73,5% and 80%
the cases, respectively. In both cohorts, immunoreactivity was

gnificantly associated with tumor stage, lymph node invasion and
R positivity, and the staining could be observed in normal and
ncerous epithelial cells, but not on adjacent stromal cells. In cancer
lls could be observed an increase of cytoplasmic accumulation of the
otein and an increase of NHERF1 mRNA, whereas in normal cells
e staining was mainly apical and membranous. Also a correlation
alysis reported in Cardone’s study linked NHERF1 protein
pression levels with increasing ER levels in ER+ tumors [106].
An association between NHERF1 and ER was found also by Karn
d collaborators [111]. In their study, NHERF1 expression was first
amined in a set of 171 tumor samples by immunohistochemistry,
ding that NHERF1 expression was higher in the luminal B subtype
BCs compared to any other subtypes. These tumors are

aracterized by high proliferation and ER positivity, associated
ith a poor prognosis. The clinical relevance of NHERF1 was
bsequently assessed in a database of 3030 microarrays from
imitive BCs. In line with previous studies, indicating that NHERF1
a gene regulated by estrogens, higher levels of NHERF1 transcripts
ere found in ER+BCs, compared to ER−. Kaplan–Meier analyses of
ent free survival according to the expression of NHERF1 were
rformed separately in the ER+ and ER- subgroups of BCs, and a
ognostic value of NHERF1 overexpression was only observed
ong ER+ tumors, which showed a poorer survival. Furthermore,
HERF1 overexpression in ER+ tumors was correlated with a more
gressive phenotype. A recent work showed that NHERF1 is
sitively related to G protein-coupled receptor (GPER) downstream
gnaling in ER+ invasive BC specimens, since NHERF1 increased
PER protein stability. GPER signaling was higher in ER+ tumor
mpared to normal breast tissues, according to high levels of GPER
otein in clinical samples, in association with poor prognosis [112].
What makes the study of this protein interesting is that evidences
om our laboratory and from other studies indicate that subcellular
calization of this protein seems to have different biological
gnificance and role in BC, acting as a tumor suppressor when it is
calized at the apical level of the membrane, and as an oncogenic
otein when it silocalized in the cytoplasm or nucleus. An analysis
a cohort of 222 IBCs with long-term clinical follow-up showed a
ognostic significance between the expression of NHERF1 in the
fferent compartments and clinicopathological characteristics [81].
ytoplasmic NHERF1 was significantly associated with negative
gR tumors and with HER2 overexpression, while nNHERF1 was
sociated with small tumor size and positive ER tumors. In this
ork, the relationship between NHERF1 expression and BC
rvival has been investigated for the first time. Patients with
sitive nNHERF1 expression tended toward a higher DFS
mpared to patients with negative nuclear expression, whereas
ere was no difference in OS between the two groups.
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Figure 5. A. Representative images of NHERF1 immunoreactivity and localization in breast cancer. (a) In ductal carcinoma in situ comedo
type NHERF1 presents a cytoplasmic andmembrane immunoreactivity; (b) In morphologically normal tissue NHERF1 immunoreactivity is
present mostly as apical membranous. In both invasive breast carcinomas (c) and metachronous distant metastases (d), cytoplasmic
accumulation is present. (e) In synchronous metastatic lymph node tissues NHERF1 immunoreactivity is present only as cytoplasmic
accumulation. B. Cellular distribution of NHERF1 in breast tissues; NT: non tumor, CSI: carcinoma in situ, IBC: invasive breast carcinoma,
LN: synchronous metastatic lymph node; DM: metachronous distant metastases.
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Differences in DFS were also found when NHERF1 expression
as examined in association with ER expression. Indeed, Kaplan–
eier curves showed that patients with nNHERF1-/ER- immuno-
gure 6. NHERF1 representative switch during breast carcinogenesis
gnal is HEr2/neu. Bar = 16 μm. (Immunofluorescence images were a
enotype, having a large tumor size, high histological grade,
gR-negativity and high Ki67 index, had worse DFS compared with
tients with the nNHERF1+/ER+ immunophenotype. And
from normal epithelia to cancer: red signals is NHERF1, Green
lready included in Mangia A. et al., Histopathology 2009)
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terestingly, these patients presented more frequently distant
etastases. The loss of nNHERF1 expression is associated with
duced survival, and a link exists between nNHERF1 and ER status
a prognostic marker for the routine clinical management of breast
ncer.
In a recent study, the different role of the sublocalization of
HERF1 has been reported in a retrospective series of 308 invasive
Cs too. It has been found that nNHERF1 expression was associated
ith nBRCA1 expression, which is in line with our previous study in
hich low nBRCA1 and nNHERF1 expression was related to familial
ory. Furthermore, in the whole cohort there was a direct correlation
tween cNHERF1 and nPARP1, and the nNHERF1+/ nPARP1+
enotype showed a shorter 5-year OS. Interestingly, in the subgroup
triple negative breast cancers the association of cNHERF1 with
ARP1 was linked to a shorter survival. These data indicate a new
tential biomarker role of NHERF1 in combination with PARP1
d BRCA1 expression to stratify BC patients [113].
NHERF1 and HER2/neu. Among the different proteins that
teract with NHERF1, a relevant position is surely that of human
idermal growth factor receptor 2 (HER2/neu).
HER2 is a tyrosine kinase receptor, a member of the epidermal
owth factor (EGF) receptor family involved in cell proliferation and
rvival. Its overexpression is present in approximately 20–30% of
Cs, mainly because of an overamplification of its gene. HER2+ BCs
e associated with a more aggressive phenotype, with higher
currence rate and a lower survival, respect to HER2- cancers
14,115]. The interaction between NHERF1 and HER2/neu has
en analyzed by immunofluorescence [107]. In normal epithelial
lls, intense NHERF1 immunoreactivity was mainly found at the
ical membrane, whereas HER2/neu was found basolaterally and at
e intraepithelial junctions. This localization was maintained in
CIS not overexpressing the receptor, while a membranous
-localization with NHERF1 was evident in DCIS overexpressing
ER2/neu. Only in IBC and metachronous distant metastases a low
embrane staining of NHERF1 could be observed, colocalized with
ER2/neu only when the receptor was overexpressed.
In invasive tumor, the cell architecture is completely overturned and
lls are able to receive different extracellular signals from the tumor
icroenvironment. In this pathological state, NHERF1 loses its
clusively apical domain function, is overexpressed in the cytosol and
arts to coordinate intracellular pathways [107]. Further, a positive
rrelation betweenNHERF1 expression andHER2 status was observed
ER negative and positive tumors.70% of the ER+/ HER2+ and 80%
the ER -/ HER2+ samples were found in high NHERF1expressing
mors [111]. A similar finding has been observed by Jeong
al. Examining NHERF1 expression by immunofluorescence in 16
ER2+and 4 HER2- DCIS. Furthermore, in a wider cohort of 652
icroarrayed invasive BCs, they reported a correlation between
HERF1 expression and HER2+ status [116].
In a study performed on 187 microarrayed BCs from 94 familial
d 93 sporadic BCs patients we have found that in multivariate
alysis a “new-biomarker” signature, comprising HER2- status,
NHERF1- and nBRCA1+, significantly correlated with family
story of BC [117].
NHERF1 and Microenvironment. Over the last decade, the
ogress in tumor biology knowledge has been able to evaluate the
mors as a complex multicellular group, in close contact with its
icroenvironment. Many studies have reported the crucial role of
mor microenvironment in cancer progression, including different
llular and molecular players, such as extracellular matrix,
mor-associated fibroblast and macrophages, mast and immune
lls [80,118,119].
Tumor microenvironment changes, such as hypoxia, lymphocytes
filtration etc., play a key role in tumor development and progression
20]. Affecting gene expression and leading to EMT. The association
tween NHERF1 and Hypoxia inducible-factor α (HIFα) has been
served by correlation and confocal analysis in invasive BCs,
dicating a possible interaction between the metabolic microenvi-
nment and NHERF1. To further clarify this link, BC cell lines
CF-7 and MDA-MB-435 were subjected to hypoxia and serum
privation experiments. These two conditions not only induced a
arked up-regulation of NHERF1 expression in both cell lines, but
rticularly in MDA-MB-435 induced a change in the shape of cells,
at formed long leading-edge pseudopodia in which NHERF1
pression was strong at the tip [106]. At the tip of pseudopodia,
HERF1 colocalizes with NHE1, a protein whose disregulation is a
llmark of cells, undergoing tumorigenesis and metastasis [121].
The role of NHERF1, and in particular the specific role of its PDZ
mains in the regulation of the metastatic process, have been better
fined in a subsequent study [37]. MDA-MB-231 cells were
ansfected with wild-type NHERF1 or with NHERF1 mutated in
Z1 or PDZ2 domain, finding that PDZ domains differentially

gulates the expression of two phenotypic programs, thus conferring
specific metastatic organotropism to the cell.
In vitro, PDZ1 mutated cells exhibit a mesenchymal/invasive
enotype with restricted vasculogenic capacity. In vivo this favors
e formation of visceral metastases, whereas the PDZ2 mutated cells
vivo exhibit a marked osteotropism due to increased formation of
odosomes and stimulation of neoangiogenesis and of
teoclastogenesis.
During the study of possible implication of NHERF1 in cancer
olution, our group has also analyzed its role in relation to
icroenvironment modifications related to progression, aggressive-
ss, hypoxic response and invasion in a primary invasive cohort of
Cs, including a sub-group of grade 2 cancers. Traditional prognostic
ctors and a panel of biomarkers not used in routine diagnosis has
en analyzed [NHERF1, VEGFR1, HIF-1a, TWIST1 and
rivascular tumor invasion (PVI)] [122,58]. Our results demon-
rated that PVI and mNHERF1 categorized grade 2 tumors into two
stinct subgroups, exhibiting significantly different prognosis. The
I+/mNHERF1-expression phenotype was associated to an adverse
ognosis. This phenotype was also associated with poor prognosis
mors in the whole cohort of BCs, that also showed cNHERF1
pression co-localization and positively correlation to VEGFR1 [58].
metastatic colorectal cancer we also reported a closed link between
HERF1 and microenvironment biomarkers. In fact, a co-localiza-
n and a positive correlation between nNHERF1 and nuclear
IF-1α and between NHERF1-TWIST1 has been detected too
5].
NHERF1 and Inflammation. Pathological inflammation is a
llmark of numerous diseases and can maintain a cycle of damage/
aling that has been linked to many forms of cancer [123]. Many
ctors can trigger inflammatory response in tumors, counting
fection, tissue damage, activation of oncogenes, and loss of tumor
ppressors [124,125]. Tumor-associated inflammation is often low
grade and chronic and allows nascent tumors to escape
mune-surveillance [126] thus taking a pivotal role in cancer
owth: from initiation to metastasis development, up to therapy
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sponse [127]. The recruitment of inflammatory cells (neutrophils
d macrophages) and the production of cytokines and chemokines
e at the basis of this response [128]. The inflammatory cellular
mponent makes up a significant cellular percentage of tumor mass,
volving resident and infiltrating immune cells [129]. The
lationship between tumor cells and infiltrating immune cells is
namic and can have different effects, positive or negative, on tumor
velopment, feeding a continuous proliferation and cell renewal
scribed as “wounds that do not heal” by Dvorak [130]. Given these
posed activities on cancer progression, it is important to understand
e interaction between inflammatory constituents and tumors in
der to improve the therapeutic strategies, as well as to incentivize
d improve tailored medicine.
Recent studies have underlined the role of tumor-infiltrating
mphocytes (TILs) during carcinogenesis, progression and response
therapy in many solid tumors, including breast cancer [131–133].
ILs are a composite group of mononuclear immune cells that
filtrate tumor tissue, consisting of cytotoxic T cells and helper T
lls, B cells, macrophages, dendritic and natural killer cells, known
nce the ’70s. During the years TILs have been identified as
mphocytes moving from bloodstream to tumor site [134]. Their
volvement is not new in cancer, in fact since 1922 it has been
pothesized a certain contribution of infiltrating lymphocytes
lated to favorable outcome [135]. This was just a first observation
d analogous reports in other cancer types came in following years,
to the recent concept of onco-immunology and immunotherapy
addition to standard treatments in cancer management.
More than one hundred papers about the role of TILs in different
ncers have been published during the last years [136–155]. The
eory of the mediation of the immune system on antitumoral effects
traditional anticancer agents (cytotoxic, radiation and antibody-
sed therapy) has found answers in the new findings of recent
anslational research. Thus, TILs have acquired a clinical relevance
d a key role as they are prognostic or predictive of response to
andard cytotoxic or immuno-modulatory treatments. The presence
TILs has been associated to positive patient outcome in many
mors, although the prognostic significance will still remain
terconnected with the various TILs subpopulations, density and
cation and according to tumor type and stage [133,137,138,147].
In a recent immunohistochemical study, a cohort of advanced stage
non-small cell lung cancer patients showed high stromal CD8+

ILs, associated to a partial response to therapy and had a better
ogression-free-survival and overall survival [137].
Little is known about NHERF1 involvement during inflamma-
on. Some studies reported its down regulation in intestinal bowel
sease (IBD) patients and in mouse model of colitis [156–158]. In
flammatory diseases has been observed the formation of a
acromolecular signaling complex NHERF1-CXCR2-PLCβ2, with
PDZ-based interaction, which controls neutrophil infiltration
59,160]. Furthermore, Leslie and colleagues demonstrated that
HERF1 triggered macrophages activation and increased the
action of vessels to inflammation [161].
Our pioneeristic study [162] in a group of 55 BC patients
nfirmed a marked overexpression of NHERF1 protein by western
otting in both primary tumors and metastatic lymph nodes,
mpared to the non-tumor compartment. Immunostaining in
raffin-embedded tissue showed that NHERF1 expression was
ited to the apical membrane regions in the normal lobules,

hereas NHERF1 was also expressed in the cytoplasm of the tumor
lls and of the majority of the lymphocytes which were present in
moral and lymph-nodal stroma. Furthermore, we analyzed the
pression of NHERF1 in peripheral blood lymphocytes between
tients and healthy control group, and found a significantly higher
pression in patients. NHERF1 was significantly more expressed in
mor tissues and lymphocytes from grade 3 patients compared to
ade 1 and in the poor-prognosis group compared to the
od-prognosis one. These evidences underlined an hypothetical
volvement of NHERF1 in immunological events associated with
oplastic disease. This is the only study that measures NHERF1
vels in circulating blood lymphocytes and lays the basis of potential
e of NHERF1 as an early tumor biomarker in breast cancer.
At the present time, our group is conducting a study about a
ssible correlation between NHERF1 and inflammatory micro-
vironment in BC, and preliminary data are extremely
eartening and let us insert a new piece in the puzzle of the
HERF1 story.
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