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Evidences highlight the role of various CD4+ helper T cells (CD4+ Th) subpopulations in
orchestrating the immune responses against cancers. Epigenetics takes an important part
in the regulation of CD4+ Th polarization and plasticity. In this review, we described the
epigenetic factors that govern CD4+ T cells differentiation and recruitment in the tumor
microenvironment and their subsequent involvement in the antitumor immunity. Finally, we
discussed how to manipulate tumor reactive CD4+ Th responses by epigenetic drugs to
improve anticancer immunotherapy.
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INTRODUCTION

Distinct Roles of CD4+ Helper T Cells in Cancer
Tumor reactive CD4+ T cells are a heterogeneous subset that have different effector functions
depending on the type of cytokines they produce (1, 2).

T helper 1 (Th1): Among CD4+ subsets, Th1 cells produce IFN-g, IL-2, tumor necrosis factor a
(TNFa) and express the T-box transcription factor (T-bet). Th1 cells play a well-defined role in
antitumor protection by orchestrating cell-mediated immunity against cancer cells. Notably, these
cells show the capacity to enhance tumor specific CD8+ T-cell generation, function, memory and
survival (3–5). Additionally, the secretion of IFN-g by Th1 cells can also promote CXCL9 and
CXCL10 expression in the tumor microenvironment (TME) and therefore ensure the recruitment of
CXCR3 expressing CD8+ T cells at tumor site (6, 7). Moreover, the production of IFN-g by Th1 cells
may enhance MHC class I and II expression at the surface of tumor cells, thus increasing tumor-
derived peptide presentation. IFN- g can also influence the polarization of macrophages toward
proinflammatory M1 phenotype (8, 9). Emerging functions of Th1 cells also indicate their
involvement in tumor angiogenesis inhibition, promoting cancer cell senescence, highly sensitive
neoepitopes recognition, and protecting effector cytotoxic T lymphocytes (CTL) from exhaustion (4,
10). As a result, the presence of IFN-g producing Th1 cells within the tumor microenvironment is
associated with a good prognosis in several human cancers (11).
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T helper 2 (Th2): Th2 cells produce IL-4, IL-5 and IL-13 and
their differentiation is governed by the transcription factor
GATA3 (12). Ambivalent roles have been described for these
cells in the context of cancer. Indeed, their presence in the TME
can be either beneficial or detrimental for patient survival (1, 2).
In a mouse model wherein ovalbumin (OVA) is used as a specific
tumor antigen, it has been shown that OVA-specific Th2 cells
elicited a long-lasting antitumor response in mice. Indeed, IL-4
produced by memory anti-OVA Th2 cells directly stimulated
natural killer (NK) cells cytotoxic activity against tumor (13–15).
Moreover, the blockage of TGF-b signaling in CD4+ T cells of
mice promoted a Th2 cell-differentiation program and reduced
tumor growth. Indeed, IL4 produced by TGF-b receptor 2
(TGFBR2)-deficient CD4+ T cells in a mouse model of breast
cancer could reprogram the tumor vasculature and triggered
cancer cell hypoxia and death. These results support the
antitumor role of Th2 cells (16). However, in human cancers,
Th2 cells infiltration in the TME is commonly associated with
poor clinical outcome (17, 18).

T helper 17 (Th17): Th17 cells are characterized by the master
transcription factor retinoic acid receptor–related orphan receptor
gt (RORgt). Th17 cells produce IL-17, IL-21, and IL-22. Their
presence in the TME is either associated with a good or a poor
prognosis (17, 19). In colorectal cancer, hepatocellular carcinoma,
gastric and pancreatic cancer, Th17 cells polarization in TME was
associated with an unfavorable prognosis whereas its presence in
prostate, epithelial ovarian cancer or uterine cervical cancer was
associated with a better clinical outcome (20–24). The pro-tumoral
roles of Th17 cells may be attributed to IL-17 proangiogenic
functions. Indeed, IL-17 elicited VEGF production in colorectal
cancer (25). Moreover, IL-17 signaling in tumor cells and
tumor-associated stromal cells can lead to IL-6 production and
induce STAT3 activation. STAT3 acts as an oncogenic factor
by up-regulating pro-survival genes expression as well as
metalloproteinases expression, thus favoring tumor invasion and
metastases formation (26). IL-17 produced by Th17 cells may also
influence the TME by promoting the recruitment of myeloid-
derived suppressor cells (MDSCs) (27, 28).

Regulatory T cells (Treg): Treg cells express among others, the
master transcription factor forkhead box P3 (FOXP3) and the
high-affinity heterotrimeric IL-2 receptor (CD25). The presence
of Treg cells in the tumor microenvironment is generally
associated with poor clinical outcome in human cancers (11,
17, 19). These observations can be explained by their production
of immunosuppressive cytokines (IL-10, TGF-b, IL-35) in the
environment that can inhibit antitumor immunity (29–31). Treg
cells have other mechanisms of humoral immunosuppression.
For instance, Treg cells are highly dependent of IL-2 and can
reduce its availability for effector T cells via their constitutive
expression of CD25. Moreover, ATP can be converted into
adenosine by CD39 and CD73 expressed on Treg cells.
Adenosine is an immunomodulatory metabolite that can
provide immunosuppressive signals to effector T cells and
antigen-presenting cells (APC) via engagement of adenosine
A2A receptor (A2AR). The secretion of granzyme and perforin
by Treg cells can also damage effector T cells. In addition, Treg
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cells display immunosuppressive functions by a contact-
dependent mechani sm through the express ion of
immunosuppressive receptors such as LAG-3 (lymphocyte-
activation gene 3) or CTLA-4 (cytotoxic T-lymphocyte-
associated protein 4). CTLA-4 binds to CD80 and CD86 on
APC thus transmitting suppressive signals to these cells.
Moreover, the co-stimulatory signals induced upon the binding
of CD80 or CD86 to CD28 is prevented by CTLA-4, thus
restraining the activation of effector B and T lymphocytes.
Additionally, the interaction of LAG-3 with MHC class II on
APC can suppresses dendrit ic cel l maturation and
immunostimulatory capacity (32–35). However, other studies
in colorectal cancer associated Treg cells infiltration with a better
prognosis (36, 37).

T follicular helper (Tfh): Tfh cells express the transcription
factor B cell lymphoma 6 (BCL-6) and secrete CXCL13 and
IL-21. Tfh help is essential for B lymphocytes activation,
antibody production and memory formation. Tfh cells support
the development of adaptive antitumor humoral responses and
the formation of tertiary lymphoid structures (TLS) (38). Thus,
Tfh cells infiltration in the TME is associated with a good
prognosis in breast cancer and colorectal cancer (39, 40).
EPIGENETIC MODIFICATIONS IN T CELLS

Epigenetic modifications such as DNA methylation and post-
translational histone modifications can regulate gene expression
by modulating chromatin accessibility to transcription factors.
Epigenetics is a reversible process as there are enzymes catalyzing
the apposition of the post translational modifications such as
histone methyltransferases (HMT) and histone acetylases (HAT)
(epigenetic writers) and enzyme responsible for the demethylation
and deacetylation of histones (HDAC) which are referred to as
epigenetic eraser (Figure 1). Histone acetylation is associated with
a permissive chromatin state whereas histone deacetylation
generates a close chromatin state which is transcriptionally
inactive. Histone methylation can be either favorable or
unfavorable to transcription depending on the number and the
position of the methyl groups on the histone tail. Trimethylation
of the lysine 9 of histone 3 (H3K9me3) or H3K27me3 can be
recognized by the heterochromatin protein HP1 which is
responsible for chromatin silencing. On the contrary, H3K4me3
is positively correlated with gene transcription as it is recognized
by NURF (nucleosome remodeling factor). The NURF complex is
associated with a permissive chromatin and is enriched at
promoter transcription starting sites (41, 42). The combination
of post-translational histone modifications is called the histone
code and overall defines chromatin accessibility to transcription
factors (43) (Figure 1). DNA methylation on cytosines occurs
preferentially at CpG islands which are composed of a high GC
base density and located at promoter or distal cis-regulatory
elements, like enhancers. DNA methylation is catalyzed by DNA
methyltransferases (DNMT) and is associated with gene silencing
(44). At the post transcriptional level, noncoding RNA (ncRNA)
can target complementary mRNA epigenetic and impair mRNA
June 2021 | Volume 12 | Article 669992
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translation. Indeed, the double strand complex is then recognized
by the RNA-induced silencing complex (RISC) and can result in
the cleavage of the targeted mRNA or the inhibition of its
translation (45).

Epigenetics in CD4+ T Cells Differentiation
and Plasticity
Epigenetics Regulates CD4+ T Cells Differentiation
The cytokines present in the microenvironment during TCR
activation drive a cascade of signalization and activate
transcription factors, which in turn modulate epigenetic
enzymes leading to the CD4+ T cell polarization. Epigenetic
modifications trigger the chromatin accessibility to lineage
specific master transcription factors (T-bet, GATA3, RORgt,
FOXP3) responsible of CD4+ T cells commitment (Figure 2).
There is an increase of DNA demethylation and permissive
histone modifications at lineage specific genes loci as well as a
decrease of repressive histone marks which allow the expression
of specific transcription factors and effector cytokines (46, 47).
Indeed, the CD4+ T cell profile is dependent of the cytokines
produced in the environment by innate immune cells following
danger signals (48, 49).

Th1 cells differentiation is dependent of IFN-g and IL-12.
IFN-g signaling in the activated CD4+ T cells triggers the
activation of STAT1 signalization pathway and thus promotes
T-bet expression. T-bet further increases the IFN-g production
and IL-12 receptor expression in the differentiating cells. IL-12
signaling induces STAT4 activation which promotes IFN-g
production by an epigenetic mechanism. Indeed, STAT4
Frontiers in Immunology | www.frontiersin.org 3
bound to the Ifn-g promoter in Th1 cells and recruits a
chromatin remodeling complex called Brahma related gene 1
(BRG1), that remodels the nucleosomes and enhances the
transcription of IFN-g (Figure 2A) (50). Moreover, chromatin
immunoprecipitation (ChIP) assays revealed that the level of
permissive histone H4 acetylation marks at the Ifn-g promoter of
activated CD4+ T cells cultured under Th1 polarizing conditions
(IL-12 and anti-IL-4) were higher compared to Th2 cells or
undifferentiated Th cells. ChIP assays also indicated that
differentiation into Th1 cells was accompanied by a decrease of
HDAC-Sin3A recruitment at the Ifn-g locus. By contrast, in
undifferentiated CD4+ T cells, the level of HDAC-Sin3A was
enhanced at this locus, thus preventing the formation of stable H4
acetylation marks. The transduction of T-bet into undifferentiated
CD4+ T cells was sufficient to reduce the level of HDAC-Sin3A at
the Ifn-g locus and was associated with a gain of H4 acetylation
across this locus as well as IFN-g production. Taken together, these
results indicated that the loss of HDAC-Sin3A at the Ifn-g locus in
effector Th1 cells was actively regulated by T-bet thus allowing the
expression of IFN-g (51). T-bet not only induces Th1
differentiation, but also prevents the differentiation toward the
other subsets of CD4+ T cells by repressing their master
transcription factors (GATA3 and RORgt) (52, 53).

The inhibition of Th1 associated genes in Th2 cells is
mediated by epigenetics. In Th2 cells, the expression of IFN- g
is inhibited by the deposition of the repressive histone mark
H3K27me3 to the Ifn-g locus by EZH2 (54). Moreover, the
silencing of Th1 gene loci was reported to be associated with
an increase of the repressive histone modification H3K9me3 at
FIGURE 1 | Post translational histone modifications and their effects on transcription. Histone acetylation catalyzed by HAT is associated with an open chromatin
whereas HDAC erase this mark and are responsible for chromatin compaction. HMT add methyl groups on the lysines of histone H3 protein whereas HDM catalyze
the opposite reaction (eraser). The effect of histone methylation on transcription is variable. HP1 (heterochromatin protein 1) can recognize H3K9me3 or H3K27me3
and is responsible for chromatin silencing. NURF (nucleosome remodeling factor) recognizes the histone mark H3K4me3 and is associated with a chromatin
permissive to transcription. HAT, histone acetyltransferases; HDAC, Histone deacetylases; HMT, Histone methyltransferases; HDM, histone demethylases.
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these loci. The HMT SUV39H1 is responsible for H3K9
methylation. The deposition of H3K9me3 then recruits the
heterochromatin protein 1a (HP1a) and promotes transcriptional
silencing with the formation of heterochromatin at the promoter
of Th1 specific genes, thus allowing Th2 lineage stability (55).

Regarding the initiation of Th2 differentiation, IL-2 and IL-4
are essential for Th2 cells generation from naive CD4+ T cells.
IL-2 signals through STAT5 whereas IL-4 plays a role in
inducing STAT6 activation, which upregulates the expression
of the master regulator GATA3 (56). ChIP analysis of
Th2-primed cells revealed that STAT5A could bind the Il-4
gene but failed to do so in cells primed under Th1 conditions
or with anti-IL-2. Upon activation and differentiation of human
Th2 cells from naïve CD4+ T cells, the permissive marks H3K9
acetylation and H3K4me3 were increased at Il-4, Il-5 and Il-13
gene loci. This chromatin remodeling occurring at most of the
Th2 cytokine gene loci revealed the important part played by
epigenetics in Th2 cell differentiation (Figure 2B) (57).

Epigenetics also plays a key role in the differentiation of Th17
cells [for a review: Renaude et al. (58)]. TGF- b, IL-6, IL-21 and
IL-23 are required for Th17 differentiation from naive T cells.
Frontiers in Immunology | www.frontiersin.org 4
Briefly, TGF-b activates the Smad signaling pathway whereas
IL-6 induces STAT3 activation (59). STAT3 binding to the Il-17
promoter correlates with an increase of the permissive marks
H3K4me3 at the Il-17 locus (60) (Figure 2C). The deposition of
permissive or repressive histone marks at Th17 specific gene loci
regulates the chromatin accessibly to these genes and is therefore
essential for the expression of Th17 specific cytokines IL-17 and
IL-21 (61).

The comparison of the DNA methylation landscape between
conventional CD4+ T cells and Treg cells revealed that DNA of
Treg cells is globally hypomethylated. This observation
correlated with the expression of genes vital for Treg cell
function, such as Foxp3, Ctla4 and Il2ra (62, 63) (Figure 2D).
Moreover, conditional deletion of Dnmt1 in CD4+ T cells of mice
resulted in a decrease of the number and the immunosuppressive
function of peripheral Treg cells, leading to lethal autoimmunity
(64). Additionally, JMJD3, a histone H3K27 demethylase, was
found to skew CD4+ T cell differentiation in vivo. The specific
ablation of JMJD3 in the T cells of mice promoted Th2 and Th17
differentiation and inhibited Th1 and Treg cells polarization.
Mechanistically, ChIP assays revealed that JMJD3 KO T cells
A

D

B

C

FIGURE 2 | Epigenetic mechanisms that regulate CD4+ T cells differentiation. For each CD4+ T cell subset, cytokines initiating Th cells differentiation are in bold,
lineage specific transcription factors are framed in black and effector proteins are surrounded in blue. Epigenetic enzymes regulating CD4+ T cells differentiation are in
red squares. (A) IFN-g and IL-12 drive Th1 cells differentiation by inducing STAT1 and STAT4 activation. STAT1 recruits JMJD3 (H3K27me3 histone demethylases) at
the promoter of Tbx21. This promotes the loss of the repressive mark H3K27me3 and allows T-BET expression. STAT4 induces the recruitment of a chromatin
remodeling complex (BRG1) at the locus of Ifn-g which is responsible for a chromatin permissive to transcription. T-BET can then bind to the Ifn-g promoter and
induce its transcription. (B) In Th2 cells, IL-2 signals through STAT5 and triggers the recruitment of HAT and HMT responsible for the increase of the permissive
marks H3K9ac and H3K4me3 at Il-4, Il-5 and Il-13 gene loci. IL-4 plays a role in inducing STAT6 activation, which upregulates the expression of the master regulator
GATA3. GATA3 can then bind to the promoters of Il-4, Il-5 and Il-13 and induce the transcription of these effector cytokines. In Th2 cells, Th1 associated genes are
silenced by the HMT SUV39H1 which increases the repressive mark H3K9me3 at the loci of Tbx21 and Ifn-g and allows Th2 lineage stability. (C) During Th17
differentiation, IL-6 induces STAT3 activation and binding to the Il-17 promoter. STAT3 then recruits histone modification enzymes at the Il-17 locus, resulting in an
increase of the permissive marks H3K4me3 and chromatin accessibility. RORgt can thus bind to the Il-17 promoter and induce IL-17 expression. (D) Treg cells
differentiation from naïve CD4+ T cells requires TGF-b. The expression of the master transcription factor FOXP3 as well as the immune checkpoint CTLA-4 and the
IL-2RA (CD25) is dependent of DNA demethylation at the loci of these genes by DNMT1. Empty circles on DNA: unmethylated CpG island.
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were associated with a decrease of the permissive mark
H3K4me3 at the Foxp3 promoter as well as an increase of the
repressive mark H3K27me3 at the Ifn-g promoter (65).

Tfh cells differentiation is also regulated by an epigenetic
mechanism. Indeed, in a model of acute viral infection in mice,
an increased level of the histone mark H3K27me3 was observed
in Tfh cells compared to Th1 cells. The ablation of EZH2 (H3K27
HMT) in virus-specific CD4+ T cells resulted in an impaired
differentiation of Tfh cells. EZH2 was found to regulate the
chromatin accessibility of Tfh lineage associated genes such as
Bcl-6 and Il-21 (66, 67). These data support evidence for the
implication of epigenetics in the formation of CD4+ helper T
cells differentiation.

Epigenetic Regulation of CD4+ T Cells Plasticity
CD4+ T cells are characterized by plastic capacities and can
transdifferentiate into other subsets and this phenomenon is
mediated by epigenetics. First evidence of CD4+ T cell plasticity
was brought by the existence of cells expressing simultaneously
genes that were specific of other CD4+ T cell lineages. For
example, the co-expression of cytokines specific of Th17 and
Th2 cells, IL-17 and IL-4, was identified in human circulating
CD4+ T cells and revealed the potential plasticity of Th17/Th2
cells (68). Moreover, Th17 cells were found to convert into Th1
cells with the production of IFN-g. In some cases, IL-17
expression was maintained in these cells whereas Th1 arising
from Th17 cells could also totally extinguished IL-17 expression,
indicating a progressive process and a terminal differentiation
toward the Th1 phenotype. The conversion of Th17 cells into
Treg cells was also observed in mouse and human. These cells
expressed the lineage transcription factor FOXP3 as well as IL-17
and showed immunosuppressive capacities with the expression
of IL-10 (69, 70).

Among the CD4+ helper subsets, Th17 cells elicit the greatest
plastic capacities and can eventually convert into the other
subsets under specific conditions. This particularity can be
attributed to the fact that the expression of the cytokines and
transcription factors defining Th17 cell lineage is unstable.
Indeed, ChIP sequencing assays performed on the different
CD4+ T cell subsets have revealed the existence of a “poised”
chromatin state in Th17 cells. This was characterized by the
presence of both repressive and permissive histone marks at
other lineage specific loci and was associated with an absence of
DNA methylation. These results indicate that the expression of
other lineage specific genes is not strongly repressed in Th17 cells
(71, 72). Moreover, the expression of the Th1 cell-like phenotype
induced by the in vitro culture of Th17 cells with IL-12 was
correlated with a decrease of the permissive marks H3K4me and
histone acetylation at the Il-17 locus and an increase in these
marks at the Ifn-g locus These modifications resulted in an
increased production of IFN-g by these cells and a reduction of
IL-17 secretion (73). The implication of epigenetics in CD4+ T
cell plasticity was confirmed by Li et al., (65), as Jmjd3 deficiency
in mice restrains the plasticity of the conversion of Th2, Th17 or
Treg cells to Th1 cells (65).

The activity of epigenetic enzymes can also be modulated by
the metabolism and can therefore affect CD4+ T cell plasticity.
Frontiers in Immunology | www.frontiersin.org 5
As an example, the metabolite 2-hydroxyglutarate is an inhibitor
of ten-eleven translocation (TET) enzymes, which are implicated
in DNA demethylation. The reduction of 2-hydroxyglutarate
level in Th17 cells after aminooxy-acetic acid treatment led to the
diminution of Foxp3 promoter methylation, therefore stabilizing
FOXP3 expression and driving the Th17/Treg plasticity (74, 75).
Epigenetic enzymes activity is dependent of the availability of
metabolites like S-adenosylmethionine (SAM), a donor of the
methyl group needed for DNA and histone methyltransferases
activity and can therefore be affected by changes in their
availability. An excess of SAM in the microenvironment may
increase gene silencing by enhancing DNA methylation and
affect CD4+ T cell plasticity (76).

Epigenetics in CD4+ T Cells Memory
Epigenetics is also involved in the maturation process of CD4+ T
cells and the generation of the immune memory. Durek et al.,
(77), studied the epigenetic landscape of naive, central memory,
effector memory, and terminally differentiated CD4+ T cells from
the blood (77). They performed extensive epigenetic profiling:
DNA methylation analysis, chromatin accessibility studies and
ChIP sequencing for H3K4me1, H3K4me3, H3K9me3,
H3K27ac, H3K27me3, and H3K36me3 as well as sequencing of
coding and non-coding RNA of these cells. Their results showed
a global loss of DNA methylation upon transition from the naive
to the memory stages. Progressive changes in the transcriptomes
and in the DNA accessibility profiles suggested that the
differentiation of CD4+ T memory subsets support a linear
model. Moreover, the authors identified important factors that
drive or maintain the CD4+ memory phenotype. Among these
factors, they identified many non-coding RNAs (ncRNAs),
which were differentially expressed in naive and memory T
cells. The transcription factor FOXP1 might act as an
important regulator for the naive to memory transition as its
expression was higher in naive CD4+ T cells compared to the
other subsets of memory T cells. Foxp1 expression was repressed
by DNA methylation in memory T cells.

Involvement of Epigenetic in the Control of
Tumor Reactive CD4+ T Cells
It has been demonstrated that epigenetic modulation of CD4+ T
cells polarization at tumor site might influence cancer patients’
outcome. Since CD4+ T cells polarization is epigenetically
regulated, characterization of immune cells infiltration at
tumor site may be assessed by epigenetic analysis. Among Treg
cells, two subsets have been defined based on their
developmental origin. Thymus-derived natural Tregs (nTregs)
show a stable expression of FOXP3 associated with DNA
demethylation, whereas peripherally induced Tregs (iTregs)
cells do not express FOXP3 constitutively. In mouse tumor
models and primary human tumors, analysis of DNA
methylation patterns at the Foxp3 locus as well as functional
studies revealed that Treg cells infiltrating in the TME mainly
corresponded to nTreg and not iTreg cells (78). The functionality
of conventional helper T cells as well as Treg cells in the TME can
be modulated by epigenetics. Genome wide DNA methylation
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landscape of tumor infiltrating and blood CD4+ T cells from
glioblastoma patients revealed differentially methylation pattern.
The methylation changes were associated with transcriptomic
changes for 341 genes in CD4+ tumor infiltrating T cells
compared to blood. This study revealed that the TME may
induce epigenetic alterations in tumor infiltrating CD4+ T cells
(79). Depletion of tumor-associated macrophages (TAMs) in
pancreatic cancer could also reprogram the epigenetic profile of
tumor infiltrating CD8+ and CD4+ T cells. In a model of
pancreatic cancer in mice, TAMs were depleted using
trabectedin and the cytokine and epigenetic profile of T cells
were assessed. Tumor infiltrating CD4+ T cells displayed a
regulatory phenotype with high IL-10 expression and low IFN-g
production. On the contrary, in trabectedin-treated mice, the
permissive histone mark H3K4me3 was decreased and the
repressive mark H3K27me3 was increased at the Il-10 promoter
resulting in low IL-10 expression. This study highlighted the role
of TAMs in modulating the epigenetic profile of tumor infiltrating
CD4+ T cells towards a pro-tumoral phenotype (80). In
melanoma patients, EZH2 expression was increased in Treg
cells infiltrating the tumor compared to Treg cells from the
peripheral blood. Genetic deletion of Ezh2 in Treg cells from
tumor-bearing mice reduced FOXP3 expression and modulated
their functionality. Indeed, Ezh2-deficient tumor infiltrating Treg
cells showed an increased production of the pro-inflammatory
cytokines TNF-a, IFN-g, and IL-2 and a reduced expression of
IL-10. This observation was correlated with an enhanced
recruitment and function of CD8+ and CD4+ effector T cells in
the TME and led to the tumor elimination in mice (81).
Epigenetics is also involved in CD4+ T cells exhaustion in the
TME. The inhibitory receptor programmed cell death-1 (PD-1)
was found to be epigenetically regulated in tumor-reactive
lymphocytes. Indeed, upon T cell activation, the chromatin
organizer special AT-rich sequence-binding protein-1 (SATB-1)
inhibited PD-1 expression by recruiting a nucleosome remodeling
deacetylase (NuRD) complex to Pdcd1 regulatory regions.
Inhibition of STAB-1 in CD4+ and CD8+ T cells increased PD-
1 expression and resulted in the loss of their effector activity more
rapidly than wild-type lymphocytes. The transfer type -deficient
tumor-reactive CD4+ T cells in Lewis Lung Carcinoma-bearing
mice, resulted in a decreased survival rate. Therefore SATB-1
functions to prevent premature T cell exhaustion by regulating
Pdcd1 expression upon T cell activation (82). Moreover, in
colorectal cancer patients, other immune checkpoint inhibitors
have been found to be epigenetically regulated in CD4+ and CD8+

tumor infiltrating lymphocytes. The promoter regions of T-cell
immunoglobulin and mucin-domain containing-3 (Tim-3), Ctla-4,
Pdcd1, Programmed cell death-ligand 1 (Pd-l1), Tox and Tox2
were highly demethylated whereas the promoter of Lag-3 was
highly methylated. These results correlated with the
transcriptional upregulation of Tim-3, Pd-1, Pd-l1, Ctla-4, Tox
and Tox2 in CD4+ and CD8+ infiltrating colorectal cancer (83).

CD4+ T cells plasticity in the TME can be modulated by an
epigenetic mechanism. Indeed, tumor associated macrophages
(TAM) residing at tumor site can release exosomes containing
miRNA. Microarray analysis of these exosomes revealed the
Frontiers in Immunology | www.frontiersin.org 6
presence of miR-29a-3p and miR-21-5p. In vitro, the treatment
of CD4+ T cells by these miRNAs suppressed STAT3 and
induced Th17 toward Treg commitment. These miRNAs can
therefore lead to the development of Treg in the TME and thus
engender an immunosuppressive context that facilitates cancer
progression and metastasis (84). The plasticity of Th17 clones
generated from human tumor-infiltrating lymphocytes after in
vitro stimulation with OKT3 and irradiated allogeneic peripheral
blood mononuclear cells was also demonstrated. Following
expansion, the level of IL-17 production by these cells dropped
whereas the expression of TNF-a, IFN-g, IL-10 and TGF-b
increased. Real time PCR analysis revealed that T-bet and
Foxp3 expression gradually increased in Th17 clones with the
expansions. The level of DNA methylation at the Foxp3
promoter in expanded Th17 cells decreased significantly with
increasing stimulation and expansion cycles. These results
indicated that the expansion of Th17 clones from tumor
infiltrating lymphocytes promoted their conversion into mixed
phenotypes that expressed FOXP3 and produced IFN-g. These
phenotypic changes resulted from the epigenetic reprogramming
of lineage-specific genes (70). The expression of chemokines
responsible for the attraction of CD4+ T cells at the tumor site
can be modulated by epigenetics. Indeed, EZH2 (H3K27 HMT)
as well as DNMT1 were found to repress the expression of the
Th1-attracting chemokines CXCL9 and CXCL10 in primary
ovarian cancer model. Th1 cells express the chemokine
receptors CXCR3 and can thus be recruited by CXCL9 and
CXCL10 enriched environments (56). The increase of the
repressive mark H3K27me3 and DNA methylation at the
promoter of Cxcl9 and Cxcl10 inhibited their expression and
prevented Th1 cell infiltration in the TME. Inhibition of EZH2
and DNMT1 by chemical inhibitors restored the expression of
CXCL9 and CXCL10 and increased effector T cell tumor
infiltration (85).

Th1 cells recruitment in the TME can also be induced by the
expression of endogenous retroviruses (ERV) by tumor cells.
ERV originate from ancient retroviruses whose sequences are
now permanently integrated in the genome. Their expression is
normally repressed by DNA methylation. Increased ERV
expression by DNA methyltransferases treatment can trigger
the activation of viral defense pathways. Indeed, ERV can be
recognized by Toll-like receptors (TLR) on the surface of innate
immune cells and activate viral defense pathway. This induces
IFN-g production and triggers lymphocytes infiltration that may
further favor antitumoral responses (86, 87).
HOW MANIPULATION OF CD4+ T CELLS
BY EPIGENETIC THERAPIES CAN BE
USED AS A STRATEGY TO IMPROVE
ANTICANCER IMMUNOTHERAPY IN
SOLID TUMORS?

Evidence support the rational to stimulate CD4+ T cell responses
for anticancer immunotherapies (88–90). Considering the
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important role played by epigenetics in CD4+ T cells differentiation
and plasticity, strategies of epigenetic reprogramming gained
growing interest to promote appropriate antitumor CD4+ helper
T cells in the TME (Figure 3).

Adoptive transfer of tumor specific CD4+ lymphocytes has
proved its efficacy in the treatment of cancer (91–93). However, it
is uncertain whether CD4+ T cell polarization status, acquired
during in vitro stimulation, can sustain in the TME after T cell
infusion. Thus, an epigenetic treatment could be administered to
preserve CD4+ T cells polarization in the TME. It has been
shown that epigenetic modulators can improve the efficacy of
adoptive CD4+ T cell therapies by increasing MHC expression on
tumor cells (Figure 3A). Several HDAC inhibitors (HDACi)
such as chidamide, entinostat, vorinostat and CXD101 have been
found to upregulate MHC class II expression in various cancer
cell lines (94). Moreover, the expression of a constitutively active
STAT5 variant (CASTAT5) by CD4+ chimeric antigen receptor
(CAR) T cells targeting the B cell antigen CD19 could improve
the polyfunctionality, expansion and persistence of these cells in
the TME by an epigenetic mechanism. Indeed, CASTAT5-
transduced CD4+ T cells displayed a genome-wide transcriptional
and epigenetic remodeling. Assay for transposase-accessible
chromatin using sequencing (ATAC-seq) performed on
CASTAT5 CD4+ T cells identified an increased chromatin
accessibility at the gene loci of Il-4, Il-13, Il-9, and GzmB but not
Frontiers in Immunology | www.frontiersin.org 7
at the Ifn- g locus. These results were concordant with gene
transcription and protein expression profiles and indicated that
persistent STAT5 activation reprogrammed the epigenetic
landscape of CD4+ T cells to drive polyfunctionality. In B cell
lymphoma-bearing mice, the adoptive transfer of CD19 CAR T
cells resulted in only transient tumor regression whereas the
adoptive transfer of CASTAT5 CD19 CAR T cells was curative to
nearly all mice (95). In adoptive cell transfer, the induction of CD4+

T cells persistence at tumor site represents a critical issue (96). For
example, Fas-Fas ligand dependent activation-induced cell death
(AICD) can be prevented by HDACi. Indeed, in amousemodel, the
use of HDACi inhibits AICD of CD4+ T cells in the TME (97)
(Figure 3A). Recently, it has been demonstrated that a low dose
decitabine priming could enhance the persistence and the
antitumor activity of CD4+ CAR T cells. Indeed, the treatment of
CD4+ and CD8+ CAR T cells with the DNA methyltransferase
inhibitor decitabine could upregulate the expression of memory and
proliferation associated genes and downregulate the expression of T
cell exhaustion related genes: Lag-3 and Ctla-4. In vitro, after co-
culture with Raji tumor cells, the proliferation of CD4+ CAR T cells
treated with decitabine was enhanced as well as the expression of
IL-2, IFN-g, TNF-a, Perforin, Granzyme A and Granzyme B. Upon
activation, CD4+ CAR T cells treated with decitabine showed a
significative increase of the expression of the chemokines CXCL8,
CXCL10, CXCL1, CCL3 and CCL1. In vivo, decitabine pre-treated
FIGURE 3 | Epigenetic therapies potentiate the efficacy of anticancer immunotherapy. (A) Adoptive cell transfer. To improve the persistence of adoptively transferred
CD4+ CAR T cells, TCR-transgenic CD4+ T cells or CD4+ TIL in the TME, activation induced cell death (AICD) can be inhibited using HDAC inhibitors (bar-headed
line). AICD is mediated by Fas-Fas ligand interactions and triggers the activation of caspases that lead to apoptosis (solid arrows). HDAC inhibitors also enhance
MHC expression on tumor cells thus increasing the infiltration of adoptively transferred CD4+ T cells. (B) Anticancer vaccination: HDAC inhibitors favor Th1 cells
enrichment in the TME. HMT inhibitors promote the expression of CXCL9 and CXCL10 by tumor cells and enhance the recruitment of Th1 cells expressing CXCR3.
(C) Immune checkpoint inhibitors: the efficacy of anti-PD-1 and anti-CTLA-4 is enhanced by HDAC, HMT and BET inhibitors which favor a TME enriched in Th1 cells
and depleted in Treg cells. TME, Tumor microenvironment; TIL, Tumor infiltrating lymphocytes; CAR T cells, chimeric antigen receptor T cells; HDAC, Histone
deacetylase; HMT, histone methyltransferase; BET, bromodomain and extra-terminal domain family protein.
June 2021 | Volume 12 | Article 669992

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Renaude et al. Epigenetics in CD4+ T Cells Anticancer Immunotherapy
CD4+ and CD8+ CAR T cells targeting the CD19 antigen resulted in
complete tumor regression in mice and persisted longer than
untreated CAR T cells (98).

The CD4+ T cell help is critical for the success of anticancer
vaccines (99, 100). Th1 cells are essential for the induction of an
effective antitumor response after vaccination (4). Thus, the
administration of epigenetic therapies to modulate the CD4+ T
cells polarization in the context of anticancer vaccine can be
considered (Figure 3B). In preclinical models of triple-negative
breast cancer 4T1 and colon carcinoma MC38, Hicks et al. (101),
demonstrated that the addition of entinostat, a class I HDACi, to
vaccine significantly improved the tumor control. The entinostat
treatment reprogrammed the TME toward an inflamed
phenotype with an enhanced expression of proinflammatory
genes (IFN-g, TNF-a) and a decrease of regulatory T cells in
the TME (101) (Figure 3B). This study highlights the promising
use of epigenetic therapeutics to improve the response to
anticancer vaccines.

The immune checkpoint inhibitors (ICI) such as anti-CTLA-
4 antibody as well as anti-PD-1, have revolutionized the
treatment of several cancers but fail to control cancer
progression in a significant proportion of patients (102–104).
In addition, primary resistance to ICI has been observed in other
types of cancer, such as pancreatic cancer and glioblastoma
(105–107). The current challenge consists of using combined
therapy approaches to improve ICI efficacy (108). Recent
findings indicate that CD4+ helper T cells can influence the
response to immunotherapy in the success of ICI (109, 110). In
patients with bone metastases of castration-resistant prostate
cancer, increased Th17 instead of Th1 cells were found in bone
metastases after ICI therapy and this correlated with a reduced
efficacy of ICI compared to Th1 cells infiltration (111). Thus,
these observations support the rational to combine ICI with
epigenetic therapies that induce appropriate CD4+ helper T cells
polarization in the TME (Figure 3C). In a murine hepatocellular
carcinoma model, the administration of the HDACi belinostat
improved the response to CTLA-4 inhibition. The production of
IFN-g by tumor-reactive CD8+ T cells was enhanced and the
number of splenic Treg cells was decreased in mice treated with
both CTLA-4 and belinostat combination (112). Moreover, the
co-administration of the HDACi trichostatin A and anti-CTLA-
4 could enhance the infiltration of CD4+ T cells and was
associated with better antitumor effects (97) (Figure 3C). In a
mouse model of lung cancer, the use of JQ1, a bromodomain-
targeted BET inhibitor, could also enhance the response to anti-
PD-1 antibodies by reprogramming CD4+ T cells in the TME.
Indeed, JQ1 promoted an increase of Th1 cells at tumor site as
well as depletion of Treg cells and improved survival compared
to mice treated with ICI alone (113). Moreover, blocking EZH2
expression by the pharmacological inhibitor CPI-1205 in MB49
tumor-bearing mice was associated with a better survival when
combined with anti-CTLA-4. These results were correlated with
an increased infiltration of Th1 cells and cytotoxic effector T cells
in the TME as well as a depletion of Treg cells (114). In mouse
and human prostate cancer organoids models, inhibition of
EZH2 increased the expression of the Th1 attracting-
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chemokines CXCL9 and CXCL10 and derepressed endogenous
double-strand RNA (ds RNA) expression. Ds RNA expression
thus triggered “viral mimicry pathway” and the expression of
interferon-stimulated genes via the ds RNA sensor STING.
EZH2 inhibition in murine prostate cancer cell lines with
DZNep and EPZ also resulted in a drastic upregulation of Th1
cytokines TNF-a, IL-2 and IL-12. Overall, EZH2 inhibition
increased CD4+ and CD8+ tumor infiltration in mice and
potentiate prostate cancer response to anti-PD-1 therapy (115).
Additionally, the HDACi CG-745 enhanced the anti-cancer
effect of anti-PD-1 therapy in syngeneic tumor mouse models
by remodeling the immune microenvironment. Indeed, CG-745
increased the proliferation of helper T cells, cytotoxic T cells and
NK cells, while decreasing proliferation of regulatory T cells and
inhibiting myeloid-derived suppressor cells as well as M2
macrophage polarization (116). In the triple-negative 4T1
breast cancer mouse model, HDACi enhanced the in vivo
response to PD-1/CTLA-4 blockade. This effect was attributed
to the up-regulation of PD-L1 and HLA-DR on tumor cells as
well as the decrease of the recruitment of FOXP3+ CD4+ T cells
in the TME (117). By modulating CD4+ T cells polarization and
recruitment at tumor site, epigenetic therapies induce a favorable
immune context in the TME that improve the response to ICI
(Figure 3C). The role of HDACi as an immunomodulatory agent
has been extensively studied (118, 119). However, there is limited
knowledge concerning the effects of HDACi on T helper cells
differentiation in clinical settings (120, 121). Example of
epigenetic modulators currently approved or under clinical
trials are listed in Table 1.
DISCUSSION

CD4+ T cells mediate antitumor immune response and are
involved in the response to anticancer immunotherapies. We
have seen that epigenetics plays a key role in the regulation of
CD4+ T cells differentiation, plasticity and memory formation.
Moreover, we described how the TME could reprogram tumor
reactive CD4+ T cells epigenetic landscape and modulate their
functionality and recruitment at tumor site by regulating the
expression of immune inflammatory cytokines and attracting
chemokines. Epigenetics also control the expression of immune
checkpoints, thus regulating tumor reactive CD4+ T cells
exhaustion. Additionally, the conversion of Th17 cells to Treg
cells in the TME was found to be regulated by miRNAs. Since the
type of CD4+ T cell infiltrating the tumor can affect differently
the prognosis of patients and the response to immunotherapy,
epigenetic modulators can be used to induce appropriate CD4+

helper T cells polarization and recruitment in the TME. In this
review, we presented recent literature showing the growing interest
of combining epigenetic treatments with immunotherapy.
Epigenetic therapies can decrease the number of Treg cells in the
TME or their immunosuppressive capacities, therefore improving
the response to immune checkpoint blockades. Th1 cells
recruitment at tumor site can be enhanced by the epigenetically
induced re-expression of endogenous retroviruses or Th1-attracting
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chemokines (CXCL9 and CXCL10) by tumor cells. The persistence
and resistance to exhaustion of adoptively transferred CD4+ T cells
in the TME can be preserved by epigenetic treatments. The
combination of epigenetic therapies with anticancer vaccines can
also promote the expression of proinflammatory genes by CD4+ T
cells, thus enhancing the anticancer immune response. Therefore,
the combination of epigenetic treatment and immunotherapy
provides new insights in anticancer therapy. However, the role of
epigenetics on the antitumor specific immune responses remains
poorly characterized. This highlights the need to investigate the role
of epigenetics in CD4+ T cells differentiation and plasticity in the
TME. To bring answers to these issues, our team is currently
screening hundreds of drugs targeting epigenetic enzymes to
understand and modulate the polarization of expanded tumor
infiltrating lymphocytes.
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TABLE 1 | Epigenetic modulators that may influence CD4+ T cells anticancer immunity.

Epigenetic
Drug

Mechanism
of action

Route of
administration

Status Cancer type Adverse drug reaction (very common, all grades)

ZEN-3694 BETi ORAL Phase III Prostate cancer NCT02711956 (Phase I/II): decreased appetite, dysgeusia, fatigue, nausea,
thrombocytopenia, visual symptoms

Guadecitabine DNMTi SC Phase III Acute Myeloid
Leukemia

NCT02348489 (Phase I/II): anemia, febrile neutropenia, neutropenia,
pneumonia thrombocytopenia, sepsis

Azacitidine DNTMi IV/SC FDA/EMA
approved

Myelodysplastic
syndromes

arthralgia, anemia, anorexia, diarrhea, dizziness, epistaxis, febrile neutropenia,
headache, hypokaliemia, infection, insomnia, leucopenia, neutropenia, pyrexia,
thrombopenia, vomitingChronic

myelomonocytic
leukemia
Acute myeloid
leukemia

Azacitidine
(CC-486)

DNTMi ORAL FDA approved Acute myeloid
leukemia

abdominal pain, anorexia, arthralgia constipation, diarrhea, dizziness, fatigue
nausea, febrile neutropenia, infections, vomiting

Decitabine DNTMi IV FDA/EMA
approved

Acute myeloid
leukemia

anemia, diarrhea, epistaxis, febrile neutropenia, hepatic function abnormal,
hyperglycemia, headache, infections, leucopenia, nausea, neutropenia,
pyrexia, thrombocytopenia, vomiting

Decitabine
and
cedazuridine

DNTMi ORAL FDA approved Myelodysplastic
syndromes

arthralgia, constipation, diarrhea, dizziness, edema, fatigue, febrile
neutropenia, headache, infections, hemorrhage, mucositis, myalgia, nausea,
pyrexia

Tazemetostat EZH2i ORAL FDA approved Follicular
lymphoma

anemia, anorexia, constipation, diarrhea, fatigue, headache, infections,
lymphopenia, neutropenia, nausea, vomiting

Abexinostat HDACi ORAL Phase III Renal cell
carcinoma

NCT01543763 (Phase I): anorexia, diarrhea, fatigue, hypertension, nausea,
neutropenia, thrombocytopenia, vomiting

Belinostat HDACi IV FDA approved Peripheral T-cell
lymphoma

anemia, constipation, diarrhea, dyspnea, edema, fatigue, headache,
hypokalemia, increased blood lactate dehydrogenase, nausea, pyrexia,
peripheral pruritus, prolonged QT, vomiting,

Entinostat HDACi ORAL Phase III Breast cancer NCT01434303 (Phase I): anemia, diarrhea, fatigue, neutropenia,
thrombocytopenia

Panabinostat HDACi ORAL FDA/EMA
approved

Multiple
myeloma

anemia, diarrhea, dizziness, edema, fatigue, hypotension, hyponatremia,
hypokaliemia, hypophosphatemia, headache, infections, leucopenia,
neutropenia, nausea, thrombocytopenia, vomiting

Romidepsine HDACi IV FDA approved Cutaneous T-cell
lymphoma

anemia, anorexia, hypomagnesemia, infections, leucopenia, nausea,
neutropenia, pyrexia, thrombocytopenia, vomiting

Peripheral T-cell
lymphoma

Tucidinostat HDACi ORAL Approved outside
the United-State
and Europe

Breast cancer NCT02482753 (Phase III): anorexia, anemia, diarrhea, hyperglycemia,
hypokaliemia, hyperglycemia hypocalcemia, infections, leucopenia, nausea,
neutropenia, thrombocytopenia, vomiting

Peripheral T-cell
lymphoma

Vorinostat HDACi ORAL FDA approved Cutaneous T-cell
lymphoma

anemia, anorexia, constipation, dizziness, diarrhea, fatigue, nausea, peripheral
edema, thrombocytopenia, vomiting
Non-exhaustive list. BETi, Bromo and Extra Terminal domain inhibitor; DNMTi, DNA MethylTransferase inhibitor; EZH2i, Enhancer of zeste homolog 2 inhibitor; EMA, European Medicines
Agency; FDA, Food and Drug Administration; HDACi, Histone deacetylase inhibitors; IV, Intravenous; SC, Subcutaneous.
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