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The successful determination of reliable protein interaction networks (PINs) in several species in the
post-genomic era has hitherto facilitated the quest to understanding systems and structural properties of
such networks. It is envisaged that a clearer understanding of their intrinsic topological properties would
elucidate evolutionary and biological topography of organisms. This, in turn, may inform the
understanding of diseases’ aetiology. By analysing sub-networks that are induced in various layers identified
by zones defined as distance from central proteins, we show that zones of human PINs display self-similarity
patterns. What is observed at a global level is repeated at lower levels of inducement. Furthermore, it is
observed that these levels of strength point to refinement and specialisations in these layers. This may point
to the fact that various levels of representations in the self-similarity phenomenon offer a way of measuring
and distinguishing the importance of proteins in the network. To consolidate our findings, we have also
considered a gene co-expression network and a class of gene regulatory networks in the same framework. In
all cases, the phenomenon is significantly evident. In particular, the truly unbiased regulatory networks
show finer level of articulation of self-similarity.

R
ecently, self-repeating phenomena has been observed in remarkably many systems, both natural as well as
man made. What piques man’s interest in them is often their aesthetic value more than their organising
principles. In particular, long-range power-law correlations depicting self-similarities have been discovered

in a remarkably wide variety of systems1. There have been attempts to identify self-similarity phenomenon in
biological complex systems2,3 through some kind of re-normalisation. For instance, in biology the observation of
the self-similarity phenomenon has been observed in surface areas and vesicular distributions of tissues4,5.

In respect of self-similarity of the general complex systems to which biological networks belong, the work of
Song et al6 is seminal. They analysed a variety of real complex networks and found that these systems consist of
self-repeating patterns. This result was achieved by the application of a re-normalisation procedure that coarse-
grains the system into boxes containing nodes within a given neighbourhood size. They identified a power-law
relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-
similar exponent. In the precise terminology of graph theory, they found out that quotients of complex networks
defined by covering neighbourhoods of certain distances were also power-law. Others have used variations of the
method with some notable improvements7,8.

However, it is not surprising that coarse-grain self-similarity was weak in PINs. It has been shown that the
majority of nodes (over 90% in all cases that have been considered) lie within 3 distances away from the centre9. It
is therefore not surprising that any coarse-graining beyond 2 distances from the centre would completely destroy
the intrinsic power-law behaviour of the system. Coarse-graining requires that the network has a reasonable
diameter and nodes are reasonably spread around the centre.

We have, on the other hand, looked at power-law properties of networks from a different perspective; incom-
parable to the seminal work of Song et al. As has been shown elsewhere, PINs display a certain recognisable
structure9, which for brevity, we call the stingray structure with quills in this sequel. This structure has been both our
point of departure and our focus. We contend that PINs are self-repeating from the stingray structural point of view.

There has been an intense and deliberate effort to determine PINs of many organisms with notable successes.
The determination of these networks is to help uncover the generic organising principles of functional cellular
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networks10–19. This progress is an important step in our understand-
ing of the evolution and behaviour of such systems.

It is envisaged that an understanding of the organizing principles
at systems level of biological networks would elucidate many of the
perplexing questions including that of finding therapeutic tar-
gets20–22. Such effort is under way in many fronts. Whilst this has
been the general aim, much of the recent effort has focused on find-
ing functional dependencies amongst the so-called hubs and their
topological importance and positions in the network23,24.

There has been serious undertaking to understand both structural
and functional systems level of protein-protein interaction (PPI)
networks through graph visualisation and drawing. The most
important piece of information that is required in visualisation is
spatial distribution of the network. Yet, such information is calcul-
able if networks are treated as metric spaces. Recently it has been
shown that, treated as metric spaces, PINs of various organisms are
what we have coined, as alluded to, a stingray structure with quills.
That is, proteins with high degree coagulate in the centre of the
network whilst those in the periphery have low degree and in the
fringes we have nodes of single degrees9.

Further, in that sequel it was shown that the observed stingray
structure has significant biological implications. Amongst others, it

was observed that proteins involved in sensing pathways tend to be
more expressed in central zones and those in the periphery specialise
in routine metabolic pathways. Second, it was observed that some
zones are uniquely-enriched and represent a far more pronounced
specialisation. Third, it was shown that cancer pathways are signifi-
cantly over represented in zone 225.

In this article, we have analysed substructures that are defined by
zones from the centre. In other words, we have statistically visualised
the human PINs at both global as well as at subsystems level. What
has been revealed is as startling as is aesthetic. These substructures
display the same phenomenon that is played out on a global scale.
The core of human PINs are imposing self-similarity structures. The
systems structures and the ensuing organising principles of these
human PINs are repeated at macro as well as at lower levels. In other
words, if one would appreciate the beauty of the structure and con-
sidered it as a flower with many petals; these very petals would also
have petals, which would have more petals of the same kind.
Moreover, in most cases, central proteins of various levels from
human PINs are from same families, playing the same biological role
possibly at every level of consideration. This repetition in similarity
of centres is observed in gene regulatory networks, albeit with a finer
level of articulation26.

Table 1 | Metrics of induced subgraphs of HFPIN

PIN Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7 8 9
HFPIN 3 181706 13 MAPK14 374 4610 3464 578 104 14 2 1 1 Nodes

86 32 52 2 2 1 1 2 1 Ave degree
3 1 1 1 1 1 1 2 1 Min degree

531 430 393 14 6 2 2 2 1 Max degree
0 173 653 307 56 12 1 0 1 # quills

HFPIN1 373 4802 5 MAPK3 156 213 3 Nodes
111 69 14 Ave degree in the original network

34 18 6 Ave degree in the induced network
1 1 3 Min degree

144 80 9 Max degree
1 4 0 # quills

HFPIN11 155 1587 4 MAPK1 103 51 Nodes
118 94 Ave degree in the original network

22 14 Ave degree in the induced network
2 2 Min degree

75 38 Max degree
0 0 # quills

HFPIN111 103 866 4 MAPK11 64 37 1 Nodes
106 143 16 Ave degree in the original network

15 18 1 Ave degree in the induced network
2 1 1 Min degree

38 56 1 Max degree
0 2 1 # quills

HFPIN2 4318 5495 10 HRAS 158 1687 2170 262 15 2 Nodes
72 46 25 13 4 6 Ave degree in the original network
53 35 18 3 1 1 Ave degree in the induced network

1 1 1 1 1 1 Min degree
240 422 224 20 2 1 Max degree

1 47 493 104 11 2 # quills
HFPIN21 156 1178 7 NRAS 85 63 5 Nodes

85 60 48 Ave degree in the original network
19 9 1 Ave degree in the induced network

2 1 1 Min degree
84 34 3 Max degree

0 2 3 # quills
HFPIN211 85 575 3 KRAS 82 2 Nodes

85 51 Ave degree in the original network
12 3 Ave degree in the induced network

1 2 Min degree
52 4 Max degree

9 0 # quills
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When pathway and function enrichment analysis are applied to
various layers of the induced subgraphs, our results show that there is
reinforcement and refinement of these phenomena in various levels
of consideration. Moreover, it is clear that there is increased strength
in specialisation. Overall, therefore, this self-similarity phenomenon
offer a natural way to understanding the biological systems
mechanics of the human PINs.

As molecular networks may be biased, we also tested our method
and hypothesis on truly unbiased networks such as gene co-express-
ion network and transcriptional regulatory networks. Both cases
strongly support the case; and in the case of regulatory network, it
is even more pronounced than in PINs.

In other words, we propose that at the core of human PINs, pro-
teins assemble in the same manner of coagulation as systems struc-
tures at all levels defined by distance throughout a given network.
The key organizing features of the central zones of human PINs are
repeated at the level of induced subgraphs defined by distances from
the centre. Proteins interact in the same manner, varying only in
scale, and refinement of functionality. This recurrence may point
to another way of identifying important proteins that may have
utility as target drugs.

Results
The general structure of the human PINs. We modeled the human
functional protein interaction network (HFPIN)27, which consists of
9448 nodes and 181706 interactions and the highly curated and
currently largest available human signaling network (HSN)28,29,
which consists of 6305 nodes and 62937 interactions. We also
looked at the combination of both HFPIN and HSN and produced
what we have called the combined human network (CHN), which
consists of 10573 nodes and 210689 interactions. Also, a new human
protein interaction set based on three-dimensional information with
other functional tools has recently been predicted (NHPIS)30, which
consists of 7863 nodes and 23779 interactions. It was equally
subjugated to our method. We have also modelled truly unbiased
datasets: gene co-expression31 and regulatory networks26.

We used a formal method that finds the protein(s) that has the
smallest maximal distance to other proteins in the network. The
starting point is that in all the networks under consideration, the
centres were identified, and nodes were grouped (in zones) according
to the distances they are from these central proteins. With this clas-
sification, functional enrichment was performed and biological
hypotheses were drawn9,25.

Table 2 | Metrics of induced subgraphs of HSN

PIN Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6
HSN 6305 62937 11 MAPK1 432 3535 1940 202 38 4 Nodes

67 23 7 2 3 3 Ave degree
1 1 1 1 1 1 Min degree

451 377 89 11 9 5 Max degree
6 401 764 133 20 2 # quills

HSN1 418 4987 5 MAPK3 272 142 3 Nodes
78 50 5 Ave degree in the original network
28 13 1 Ave degree in the induced network

1 1 1 Min degree
141 79 2 Max degree

16 13 2 # quills
HSN11 254 3020 6 PIK3CA 99 145 9 Nodes

119 61 14 Ave degree in the original network
37 14 2 Ave degree in the induced network

2 1 1 Min degree
115 82 7 Max degree

0 4 5 # quills
HSN111 99 1362 3 PIK3R1 95 3 Nodes

113 199 Ave degree in the original network
26 21 Ave degree in the induced network

1 1 Min degree
87 31 Max degree

1 1 # quills
HSN2 2961 27479 9 AKT1 198 1558 1082 96 5 Nodes

51 38 10 4 3 Ave degree in the original network
32 26 6 2 1 Ave degree in the induced network

1 1 1 1 1 Min degree
228 187 60 9 1 Max degree

8 44 241 63 5 # quills
HSN21 169 728 7 AKT2 27 83 46 3 2 Nodes

81 61 47 24 27 Ave degree in the original network
17 8 6 2 1 Ave degree in the induced network

4 1 1 1 2 Min degree
38 35 26 3 2 Max degree

0 10 8 2 0 # quills
HSN211 25 84 4 PDPK1 15 7 2 Nodes

101 48 42 Ave degree in the original network
7 4 1 Ave degree in the induced network
2 1 1 Min degree

13 6 1 Max degree
0 1 2 # quills

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7628 | DOI: 10.1038/srep07628 3



Here, we follow the same approach in our consideration of sub-
graphs of the networks we consider. Before we present self-similarity
we are alluding to, let us first summarize the pertinent features of the
structure in all the biological networks that were considered. We will
argue that the same pattern is evident in induced subgraphs of these
networks, determined by distances from central nodes.

The essence of the structure is in the following manner. First, the
centres consist of single nodes, all heavily involved in signalling
pathway9. As for the HFPIN, the centre is MAPK14 and that of the
HSN the centre is MAPK1. The combined human network has
MAPK3 as the centre. Second, nodes in the central positions have
higher degrees than those in the periphery. Moreover, degrees dis-
tribution is power law. The third feature is that while the diameters
are generally large, the majority of proteins are located in the central
positions (zone 1 to zone 3). Fourthly, proteins in the periphery are of
low degree. They display the quill structure (node with degree 1) in
the fringes of the network. To aid in visualising these networks, we
have called these imposing structures stingray structures with quills.

The structures of the HFPIN, HSN, CHN and the NHPIS are
summarized in Tables 1 to 4.

Central zones of human PINs as induced subgraphs repeat the
structure that is observed by the whole network. The key feature

of self-similarity is the self-repeating patterns at various levels of
consideration. In our case, we reveal that all the networks we dealt
with splits into smaller parts that resemble the whole from a
structural point of view of graphs. We split the graphs into parts
that are defined by the zones from the centre, i.e., we look at the
graphs induced by nodes that are zone i from the centre, where i is 1,
2, and 3. We examine their structure as was done in the global graphs,
following closely what was done in our recent work9. We show that
the structures we observe have similar patterns. What is striking is
that centres of these substructures have similar functions and belong
to the same families.

When we now examine the repeating substructures of the giant
graphs, in all cases, the induced subgraphs of zones 1 and 2, there is a
single node for the centres, which are from the same family of the
centres of the human PINs. In the first zones, they are from MAPK
family, both in the HFPIN and the HSN. In zone 2, the centres of the
induced subgraphs of the HFPIN are from the RAS family; those of
HSN are from the general kinase family.

The next natural consideration was to look at zones formed from the
zones in the first instant to describe the self-similarity phenomenon.
We considered a subset of proteins that form a particular zone and
their interactions amongst themselves as a separate induced subgraph.
Again, the same phenomenon was observed with varying degree of

Table 3 | Metrics of induced subgraphs of CHN

PIN Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7 8 9
CHN 10573 210689 13 MAPK3 542 6011 3352 367 61 4 1 1 1 Nodes

95 34 49 2 2 1 1 1 1 Ave degree
1 1 1 1 1 1 1 1 1 Min degree

590 431 394 12 6 1 1 1 1 Max degree
1 339 831 212 40 4 1 1 1 # quills

CHN1 530 8978 5 MAPK1 370 154 5 Nodes
109 68 37 Ave degree in the original network

38 20 2 Ave degree in the induced network
1 1 1 Min degree

214 87 4 Max degree
7 7 2 # quills

CHN11 362 5811 4 MAPK14 166 195 Nodes
160 68 Ave degree in the original network

43 21 Ave degree in the induced network
5 1 Min degree

137 96 Max degree
0 3 # quills

CHN111 166 2336 3 MAPK8 93 69 3 Nodes
172 147 21 Ave degree in the original network

30 24 4 Ave degree in the induced network
4 3 3 Min degree

84 89 5 Max degree
0 0 0 # quills

CHN2 5503 72502 8 PRKACA 270 2490 2543 173 7 Nodes
71 51 21 5 3 Ave degree in the original network
53 38 13 2 1 Ave degree in the induced network

1 1 1 1 1 Min degree
307 420 135 36 1 Max degree

6 42 626 95 7 # quills
CHN21 235 2647 7 CSNK1E 80 58 68 14 4 Nodes

89 94 79 29 18 Ave degree in the original network
52 10 6 4 4 Ave degree in the induced network

2 1 1 1 3 Min degree
72 32 29 9 5 Max degree

0 2 12 4 0 # quills
CHN211 74 1954 4 CSNK1D 67 6 Nodes

93 81 Ave degree in the original network
57 2 Ave degree in the induced network

5 1 Min degree
67 6 Max degree

0 2 # quills
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connectivity and expressed level of manifestation of this organizing
principle, depending of the distance of the zone from the centre.

In all the induced subgraphs, we observed the same organizing
principles. Nodes with high degree coagulate in central positions and
those with low degree are in the periphery of the graphs. Of particular
importance, the degree distribution of proteins in these induced
subgraphs follow similar patterns (see supplementary figures S1 to
S7). The centre of the whole graph is MAPK14 for the HFPIN and
MAPK1 for the HSN. As for the HFPIN, at the centre of the induced
subgraph of nodes in the first zone is MAPK3. When one considers
the zone 1 nodes at MAPK3, the centre is MAPK1 of which its zone 1
subgraph has centre MAPK11 (table 1). In which case, we repeatedly

look at induced subgraphs of induced subgraphs. While the level of
expression may weaken as we consider the induced subgraphs of
these subgraphs, the centres at zones 1 all belong to the MAPK
family, a critical family of proteins in signalling. The same is observed
for the HSN (table 2).

It is not particularly surprising that, considering that the com-
bined human network has more data, the features of the self-sim-
ilarity is more pronounced (table 3).

This repeatedness is also observed in zones 2 of the human PINs.
Centres are from KRAS family for HFPIN and AKT for the HSN
respectively (tables 1 and 2). Both of these families are heavily impli-
cated in cancer pathways32,33.

Table 4 | Metrics of induced subgraphs of NHPIS

PIN Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7
NHPIS 7863 23779 14 SNW1 532 2231 3660 892 159 49 14 Nodes

14 11 3 2 2 2 1 Ave degree
1 1 1 1 1 1 1 Min degree

477 458 47 16 9 6 1 Max degree
25 374 1315 350 109 32 14 # quills

NHPIS1 441 911 7 CDC5L 305 102 26 1 Nodes
3 5 2 1 Ave degree
1 1 1 1 Min degree

57 51 3 1 Max degree
121 20 19 1 # quills

NHPIS11 142 164 9 SRRM2 35 17 32 7 1 Nodes
2 4 1 1 1 Ave degree
1 1 1 1 1 Min degree

15 14 4 2 1 Max degree
17 6 24 4 1 # quills

NHPIS111 12 13 3 TADA2A 7 1 Nodes
1 1 Ave degree
1 1 Min degree
2 1 Max degree
5 1 # quills

NHPIS2 1713 6052 9 ESR1 139 681 774 76 7 Nodes
14 10 3 1 1 Ave degree

1 1 1 1 1 Min degree
72 126 40 4 1 Max degree

4 52 222 51 7 # quills
NHPIS21 90 145 6 SP1 10 32 25 8 1 Nodes

6 4 2 1 1 Ave degree
2 1 1 1 1 Min degree

10 10 11 2 1 Max degree
0 10 10 5 1 # quills

Table 5 | Summary of increases in percentage of pathways as one moves into deeper levels of HFPIN1

Enriched pathways Zone 1 of HFPIN Zone 1 of HFPIN1 Zone 1 of HFPIN11 Zone 1 HFPIN111

Signal transduction 38.1% 52% 52% 42.1%
Immune system 31.3% 48% 55.3% 54.6%
MAPK signalling pathway 26.6% 35.8% 48.5% 54.6%
Pathways in cancer 22% 26.2% 31% 18.7%
TRAF6 Mediated Induction of proinflammatory cytokines 10.4% 20.5% 26.2% 28.1%

Table 6 | Summary of increases percentage of pathways as one moves into deeper levels of HFPIN2

Enriched pathways Zone 2 of HFPIN Zone 1 of HFPIN2 Zone 1 of HFPIN21 Zone 1 of HFPIN211

Signal transduction 51.2% 52% 53% 52.5%
Immune system 32.6% 48.1% 55.3% 45%
MAPK signalling pathway 14.1% 35.9% 48.5% 54.7%
Pathways in cancer 28.2% 26.3% 31.1% 45%

www.nature.com/scientificreports
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Biological ramifications of the self-similarity structure in the
HFPIN and similar networks. It has recently been observed that
there is some level of specialization by proteins in various zones of the
HFPIN25. Also, while some pathways cut across zones, of importance
is that sensing pathways are far more pronounced in central zones
than in periphery. Zones in the periphery tend to be involved in gene
expression and metabolic pathways more than those in the centre. In
addition, it was also observed that zone 2 bear the significant burnt of
pathways involved in cancers.

It is therefore natural that we understand how this phenomenon is
played out from the point of view of the self-repeating topology we

have alluded to in this article in biological terms. What is made clear is
that there seem to be some level of strengthening in terms of pathways.

Four issues are worthy noting. First, the fact that some zones have
uniquely-enriched pathways is a clear indication that in those zones,
there is a strong representation of proteins that are associated with
such pathways. Consider for instance the TRAF6 Mediated
Induction of Proin-flammatory cytokines pathway, which is
uniquely-enriched in zone 1 in the entirety of the network in the
HFPIN. In zone 1 of the induced subgraph of zone 1, as a percentage
of proteins involved in this pathway, there is an increase to 20.5%
from 10.4%. In the second layer, (zone 1 of zone 1 of zone 1), the

Table 7 | Cancer pathways’ zonal distribution in HFPIN

Type of cancer # of proteins Zone 1 (374) Zone 2 (4610) Zone 3 (3464) Zone 4 (578) Zone 5 (104)

Breast 330 11 (3.3%) 189 (57.2%) 121 (36.6%) 9 (2.7%) -
Cervical 711 26 (3.6%) 425 (59.7%) 230 (32.3%) 23 (3.2%) 7 (0.9%)
Endometrial 1515 57 (3.7%) 839 (55.3%) 514 (33.9%) 83 (5.4%) 20 (1.3%)
Fallopian 1292 49 (3.7%) 715 (55.3%) 446 (34.5%) 67 (5.1%) 14 (1%)
Glioblastoma 1046 38 (3.6%) 589 (56.3%) 368 (35.1%) 44 (4.2%) 6 (0.5%)
Glioma 1180 40 (3.3%) 621 (57.7%) 440 (37.2%) 63 (5.3%) 13 (1.1%)
Kidney 561 14 (2.4%) 331 (59%) 193 (34.4%) 23 (4%) -
Liver 715 29 (4%) 402 (56.2%) 247 (34.5%) 33 (4.6%) 4 (0.5%)
Lung 532 19 (3.5%) 314 (59%) 175 (32.8%) 22 (4.1%) 2 (0.3%)
Ovarian 775 26 (3.3%) 432 (55.7%) 279 (36%) 32 (4.1%) 6 (0.7%)
Pancreatic 717 30 (4.1%) 411 (57.3%) 244 (34%) 28 (3.9%) 4 (0.5%)
Pituitary 1126 37 (3.2%) 591 (52.4%) 421 (37.3%) 61 (5.4%) 15 (1.3%)
Rectal 1597 69 (4.3%) 861 (53.9%) 552 (34.5%) 90 (5.6%) 23 (1.4%)
Average 3.5% 56.5% 34.8% 4.4% 0.7%

Table 8 | Cancer pathways’ zonal distribution in HSN

Type of cancer # of proteins Zone 1 (432) Zone 2 (3535) Zone 3 (1940) Zone 4 (202) Zone 5 (38)

Breast 236 12 (5%) 151 (63.9%) 70 (29.6%) 2 (0.8%) 1 (0.4%)
Cervical 533 42 (7.8%) 323 (60.6%) 157 (29.4%) 9 (1.6%) 1 (0.1%)
Endometrial 1092 89 (8.1%) 647 (59.2%) 336 (30.7%) 17 (1.5%) 2 (0.1%)
Fallopian 941 72 (7.6%) 563 (59.8%) 287 (30.4%) 16 (1.7%) 2 (0.2%)
Glioblastoma 767 64 (8.3%) 471 (61.4%) 216 (28.1%) 13 (1.6%) 2 (0.2%)
Glioma 824 35 (8%) 278 (64%) 114 (62.2%) 5 (1.1%) 1 (0.2%)
Kidney 434 14 (2.4%) 331 (59%) 193 (34.4%) 23 (4%) -
Liver 537 45 (8.3%) 328 (61%) 155 (28.8%) 7 (1.3%) 1 (0.1%)
Lung 422 31 (7.3%) 260 (61.6%) 121 (28.6%) 8 (1.9%) 2 (0.4%)
Ovarian 557 39 (7%) 334 (59.9%) 174 (31.2%) 8 (1.4%) 1 (0.1%)
Pancreatic 536 46 (8.5%) 332 (61.9%) 148 (27.6%) 8 (1.4%) 1 (0.1%)
Pituitary 789 56 (7%) 458 (58%) 253 (32%) 19 (2.4%) 2 (0.2%)
Rectal 1162 95 (8.1%) 677 (58.2%) 365 (31.4%) 21 (1.8%) 3 (0.2%)
Average 7.5% 60.6% 29.6% 1.5% 0.2%

Table 9 | Cancer pathways’ zonal distribution in CHN

Type of cancer # of proteins Zone 1 (542) Zone 2 (6011) Zone 3 (3352) Zone 4 (367) Zone 5 (61)

Breast 350 24 (6.8%) 224 (64%) 95 (27.1%) 7 (2%) -
Cervical 760 43 (5.6%) 496 (65.2%) 203 (26.7%) 16 (2.1%) 2 (0.2%)
Endometrial 1644 91 (5.5%) 1007 (61.2%) 474 (28.8%) 61 (3.7%) 11 (0.6%)
Fallopian 1408 71 (5%) 869 (61.7%) 409 (29%) 51 (3.6%) 8 (0.5%)
Glioblastoma 1128 63 (5.5%) 719 (63.7%) 311 (27.5%) 30 (2.6%) 5 (0.4%)
Glioma 1270 67 (5.2%) 765 (60.2%) 380 (29.9%) 48 (3.7%) 10 (0.7%)
Kidney 593 44 (7.4%) 389 (65.5%) 150 (25.2%) 10 (1.6%) -
Liver 769 51 (6.6%) 475 (61.7%) 221 (28.9%) 21 (2.7%) 1 (0.1%)
Lung 571 39 (6.8%) 369 (64.6%) 153 (26.7%) 9 (1.5%) 1 (0.1%)
Ovarian 823 37 (4.4%) 524 (63.6%) 236 (28.6%) 23 (2.7%) 3 (0.3%)
Pancreatic 771 44 (5.7%) 483 (62.6%) 223 (28.9%) 21 (2.7%) -
Pituitary 1228 60 (4.8%) 738 (60%) 373 (30.3%) 47 (3.8%) 10 (0.8%)
Rectal 1753 96 (5.4%) 1061 (60.5%) 515 (29.3%) 70 (3.9%) 11 (0.6%)
Average 5.7% 62.7% 28.2% 2.8% 0.3%
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percentage incereases to 26.2%. In the next level, it increases to
28.1%. This points to the fact that as one moves into deeper levels,
one sees that there is a coagulation of proteins that are highly spe-
cialised in specific pathways (table 5).

Second, this phenomenon of strengthening is not restricted to
uniquely-enriched pathways. Consider the top 4 pathways in zone
1: signal transduction (38.1%), immune system (31.3%), MAPK
(26.6%), pathways in cancer (22%). In the third level of consideration
(zone 1 of zone 1 of zone 1), the order changes: immune system
(55.3%), signal transduction (52%), MAPK (48.5%), pathway in can-
cer (31%). By the time the next level is considered, the MAPK sig-
nalling pathway dominates, with 54.6% (table 5).

Third, some pathways are more highly represented in the peri-
phery of central zones. For instance, it is interesting to note that
signal transduction has an ebbing effect as one moves deeper into
central zones of central zones; it still leads in zone 2 of induced
subgraph of zone 1. In zone 2 of zone 1 of the induced subgraph,
the percentage of proteins involved in signal transduction is highest
with 52.5% of proteins involved in this pathway (table 6).

Finally, while it was noted that zones in periphery have a tendency
to diversify in metabolic functions, it is important to note that such
pathways are ubiquitous. However, there are more enriched in peri-
phery of zones of central zones. Consider for instance, gene express-
ion, metabolism and membrane trafficking. In the induced subgraph
of zone 1, the gene expression pathway is uniquely-enriched in zone 2,
whilst in the induced subgraph of zone 2, it is significant in zones 2. In
the induced subgraph of zone 3, it is the main theme of central zones.

These observations are equally evident in the HSN, CHN and
NHPIS (see supplementary tables S1 to S6).

In summary, therefore, we see that the self-repeating structure is
played out even from the biological point of view. Signalling path-
ways continue to be significant in central zones; routine metabolic
pathways are significant in the periphery of the network, at all levels
of consideration. However, the consideration of the self-repeating
structure renders specialisation even more prominent: there are cases
where pathways are highly distinguished or uniquely-enriched.
Using the self-similarity structure, it is possible to group proteins
in some order of importance, a theme we discuss below.

Cancer pathways’ zonal distribution in self-similarity terms. In
our recent work when we considered the distribution of proteins
that consistently expressed in 13 types of cancer25, it was shown
that most of these proteins are prominent in zone 2 of the HFPIN,
HSN and CHN (tables 7 to 9). Here, the same methods were applied
as we analysed each of the subgraphs from each zone. While on the
whole network, cancer proteins are in zone 2, the critical
compartment is zone 3 of zone 2 for the HFPIN (table 10) and
zone 2 of zone 2 for both HSN and CHN referred to in Tables 11
and 12.

Distinguishing proteins using the self-similarity edifice. It is
generally accepted that the degree of the node is a strong indicator
of the importance and/or essentiality of the protein in the
network23,24. As one looks at various layers of zones, central zones
of central zones tend to have higher degree in the entirety of the
network than the other zones. For instance, proteins from zone 1
of zone 1 in HFPIN have an average degree of 118 and that of zone 1
of zone 2 is 85 (table 1).

Table 10 | Cancer pathway distribution in induced zone 2 of HFPIN in self-similarity terms

Type of cancer # of proteins Zone 1 (158) Zone 2 (1687) Zone 3 (2170) Zone 4 (262) Zone 5 (15)

Breast 182 2 (1%) 71 (39%) 98 (53.8%) 11 (6%) -
Cervix 407 13 (3.1%) 147 (36.1%) 224 (55%) 20 (4.9%) 3 (0.7%)
Endometrium 790 28 (3.5%) 304 (38.4%) 407 (51.5%) 45 (5.8%) 5 (0.6%)
Fallopian 673 17 (2.5%) 241 (35.8%) 374 (55.5%) 37 (5.4%) 4 (0.5%)
Glioblastoma 563 19 (3.3%) 220 (39%) 290 (51.5%) 32 (5.6%) 2 (0.3%)
Glioma 587 22 (3.7%) 217 (36.9%) 316 (53.8%) 30 (5.1%) 2 (0.3%)
Kidney 314 10 (3.1%) 130 (41.4%) 156 (49.6%) 14 (4.4%) 4 (1.2%)
Liver 381 13 (3.4%) 141 (37%) 207 (54.3%) 17 (4.4%) 3 (0.7%)
Lung 299 5 (1.6%) 126 (42.1%) 148 (49.4%) 18 (6%) 2 (0.6%)
Ovarian 411 9 (2.1%) 151 (36.7%) 230 (55.9%) 19 (4.6%) 2 (0.4%)
Pancreas 300 9 (3%) 143 (47.6%) 126 (42%) 19 (6.3%) 3 (1%)
Pituitary 569 19 (3.3%) 220 (38.6%) 301 (52.8%) 27 (4.7%) 2 (0.3%)
Rectal 811 26 (3.2%) 305 (37.6%) 431 (53.1%) 46 (5.6%) 3 (0.3%)
Average 2.8% 38.9% 52.1% 5.2% 0.5%

Table 11 | Cancer pathway distribution in induced zone 2 of HSN in self-similarity terms

Type of cancer # of proteins Zone 1 (198) Zone 2 (1558) Zone 3 (1082) Zone 4 (96) Zone 5 (5)

Breast 136 7 (5.1%) 89 (65.4%) 33 (24.2%) 7 (5.1%) -
Cervical 285 17 (5.9%) 189 (66.3%) 72 (25.2%) 7 (2.4%) -
Endometrial 562 44 (7.8%) 325 (57.8%) 176 (31.3%) 17 (3%) -
Fallopian 489 37 (7.5%) 295 (60.3%) 143 (29.2%) 14 (2.8%) -
Glioblastoma 409 32 (7.8%) 252 (61.6%) 113 (27.6%) 12 (2.9%) -
Glioma 422 33 (7.8%) 259 (61.3%) 120 (28.4%) 10 (2.3%) -
Kidney 248 19 (7.6%) 156 (62.9%) 61 (24.5%) 12 (4.8%) -
Liver 281 21 (7.4%) 175 (62.2%) 76 (27%) 9 (3.2%) -
Lung 229 15 (5%) 143 (62.4%) 63 (27.5%) 8 (3.4%) -
Ovarian 290 16 (5.1%) 190 (65.5%) 74 (25.5%) 10 (4.3%) -
Pancreatic 285 19 (6.6%) 189 (66.3%) 71 (24.9%) 6 (2.1%) -
Pituitary 393 34 (8.6%) 242 (61.5%) 107 (27.2%) 10 (2.5%) -
Rectal 581 47 (8%) 340 (58.5%) 177 (30.4%) 17 (2.9%) -
Average 6.3% 62.4% 27.1% 3.2% -
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It has also been shown that, in general, both sensing pathways and
proteins implicated in diseases tend to be pronounced in central
positions25. While there is some disagreements about what is more
important between sensing pathways and metabolic ones, we con-
tend that sensing pathways are more important as they are likely to
elicit a metabolic response to facilitate homeostasis.

In view of the foregoing, we propose that proteins in zone 1 have a
higher weighting than those in zone 2 and so on. So, for instance,

nodes in zone 3 of zone 1 would have more weight than those in zone
1 of zone 2.

Self-similarity in other biological networks. Both gene co-
expression and regulatory networks show stingray structures.
When gene co-expression network is subjugated to sub-structure
analysis, the majority of the induced subgraphs have single centres.
However, as we delve further, we do not obtain single centres. Also,

Table 12 | Cancer pathway distribution in induced zone 2 of CHN in self-similarity terms

Type of cancer # of proteins Zone 1 (270) Zone 2 (2490) Zone 3 (2543) Zone 4 (173) Zone 5 (7)

Breast 212 7 (3.1%) 97 (45.7%) 104 (49%) 4 (1.8%) -
Cervical 470 18 (3.8%) 257 (54.6%) 184 (39.1%) 11 (2.3%) -
Endometrial 939 35 (3.7%) 516 (54.9%) 362 (38.5%) 26 (2.7%) -
Fallopian 810 33 (4%) 448 (55.3%) 306 (37.7%) 23 (2.8%) -
Glioblastoma 676 30 (4.4%) 361 (53.4%) 267 (39.4%) 18 (2.6%) -
Glioma 721 35 (2.8%) 383 (53.1%) 280 (38.8%) 23 (3.1%) -
Kidney 371 15 (4%) 172 (46.3%) 173 (46.6%) 11 (2.9%) -
Liver 451 17 (3.7%) 237 (52.5%) 184 (40.7%) 13 (2.8%) -
Lung 351 15 (4.2%) 169 (48.1%) 158 (45%) 9 (2.5%) -
Ovarian 495 19 (3.8%) 276 (55.7%) 183 (36.9%) 17 (3.4%) -
Pancreatic 453 21 (4.6%) 240 (52.9%) 180 (39.7%) 12 (2.6%) -
Pituitary 693 27 (3.8%) 372 (53.6%) 274 (39.5%) 20 (2.8%) -
Rectal 991 43 (4.3%) 526 (53%) 391 (39.4%) 30 (3%) 1 (0.1%)
Average 4% 52.2% 40.7% 2.7% 0.007%

Table 13 | Metrics of induced subgraphs of Co-expression network

Network Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7 8 9
Co-exp 7171 254260 16 TFRC 575 2061 2621 789 205 45 6 8 6 Nodes

367 105 27 6 6 4 5 6 9 Ave degree
2 2 1 2 2 2 2 2 2 Min degree

1228 654 324 46 32 20 8 12 14 Max degree
0 0 1 0 0 0 0 0 0 # quills

Co-exp1 573 92575 4 GP1BB 527 41 4 Nodes
345 50 10 Ave degree

6 2 4 Min degree
948 222 14 Max degree

0 0 0 # quills
Co-exp11 527 89504 3 SCNN1A 464 62 Nodes

367 126 Ave degree
26 4 Min degree

922 354 Max degree
0 0 # quills

Co-exp111 464 80869 3 GNAS, HAB1 454 8 Nodes
348 203 Ave degree

24 96 Min degree
847 390 Max degree

0 0 # quills
Co-exp2 1790 79494 10 PRR11 314 634 550 137 27 2 Nodes

271 79 34 18 3 2 Ave degree
28 2 2 2 2 2 Min degree

470 372 270 98 10 2 Max degree
0 0 0 0 0 0 # quills

Co-exp21 314 37268 5 FEN1 162 117 34 Nodes
294 204 82 Ave degree
120 32 24 Min degree
333 292 156 Max degree

0 0 0 # quills
Co-exp211 162 23123 3 32 GENES 129 1 Nodes

279 2 Ave degree
118 2 Min degree
319 2 Max degree

0 0 # quills
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that centres are from the same family cannot fully be established
(table 13).

However, the gene regulatory networks we looked at, despite that
the networks have small orders, show a much more pronounced
articulation of the phenomenon (see supplementary tables S7 to
S10).

Methods
Evaluation of biological networks as metric spaces. We considered human PINs
(HFPIN, HSN, NHPIS) and gene co-expression and regulatory networks as metric
spaces by defining the usual graph theoretic distance between nodes of a graph. Using
a python wrapper around the C11 BOOST graph library (http://www.boost.org/),
we used the Dijkstra algorithm to compute the shortest distances between all pairs of
nodes and then identifyied the node or all nodes whose greatest distance to other
nodes is/are smallest. This is the network center(s). From here, nodes were classified
according to their distances from the centre and divided into zones based on distance
from the topological centre(s). From each distance class, we calculated their degree
distributions and also considered their connectivity of the graphs induced for each
zone.

Pathway and function enrichment analysis. In order to determine whether zones of
the human PINs we considered have biological significance, we divided proteins into
subsets based on their distance from the true topological centre. Protein sets
representing each zone were then subjected to a pathway over-representation analysis
in order to determine whether the zones were specialised for specific functions. The
Comparative Toxigenomics Databases Gene Set Enricher web service (http://ctdbase.
org/tools/enricher.go and Gene Ontology enrichment (http://geneontology.org/
page/go-enrichment-analysis) was used to perform the enrichment analysis and a
corrected P-value of 0.01 was chosen as a statistical significance cutoff. Lastly, when
such enrichment was observed, we calculated the proportion of proteins involved in
each enriched pathway as a way to assess whether any zone displayed functional
specialization.

Cancer gene expression data sources. We considered gene expression absence/
presence calls from the following cancers types: breast, lung, kidney, pancreas, liver,
cervix, ovary, glioblastoma, pituitary, glioma, fallopian, endometrium and rectum,
which was downloaded from Gene Expression Barcode database (http://barcode.luhs.
org/index.php?page5genesexp). Genes expressed in at least 99% of samples of a
cancer of interest based on the Human HGU133 platform were downloaded. Gene
expression was used as a proxy for protein expression and was mapped onto the PINs
of interest in order to identify the zones in which gene product is located in.

Testing the difference between proportions. We performed a z-test for the
difference between two population proportions p1 and p2. We identified the null and
alternative hypotheses and we specified the level of significance to be P , 0.01. After
that we determined the critical value(s) from the statistic table. Finally we found the
standardized test statistic as shown below.

Statistical significance of the proportional analysis of pathway representation of
zones. To test differences between proportions among zones, we need a statistical
comparison of observed differences. A two-sample z-test for the differences between
proportions for the top statistically enriched REACTOME pathways among zones
was conducted. We defined the null hypothesis H0 to be: classification proportions of
zones in the periphery in human PINs have as high proportion significance as zones
closest to the centre, i.e the accuracy of the sensing functions in zones closest to the
centre and the accuracy of metabolic functions in zones in the periphery. If the P ,

0.01, we rejected H0 and concluded that the proportions support our claim that zones
closest to the centre have high proportion significance than the zones in the periphery.
In the other words, we have enough evidence at the 1% level to conclude that zones
closest to the centre have high proportion significance than the zones in the periphery.
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