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Abstract: Polymers made from natural biomass are gaining interest due to the rising environmental
concerns and depletion of petrochemical resources. Lignin isolated from lignocellulosic biomass is the
second most abundant natural polymer next to cellulose. The paper pulp process produces industrial
lignin as a byproduct that is mostly used for energy and has less significant utility in materials
applications. High abundance, rich chemical functionalities, CO2 neutrality, reinforcing properties,
antioxidant and UV blocking abilities, as well as environmental friendliness, make lignin an interesting
substrate for materials and chemical development. However, poor processability, low reactivity,
and intrinsic structural heterogeneity limit lignins′ polymeric applications in high-performance
advanced materials. With the advent of controlled polymerization methods such as ATRP, RAFT,
and ADMET, there has been a great interest in academia and industry to make value-added
polymeric materials from lignin. This review focuses on recent investigations that utilize controlled
polymerization methods to generate novel lignin-based polymeric materials. Polymers developed
from lignin-based monomers, various polymer grafting technologies, copolymer properties, and their
applications are discussed.
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1. Introduction

Lignin is a heterogenous phenylpropanoid macromolecule with a three-dimensionally branched
architecture composed of random crosslinks of monomeric units called monolignols. This random and
complex architecture of lignin, comprising of a matrix of phenolic and aliphatic substances awards it
to become one of the most recalcitrant biopolymers, an ideal characteristic for structural support for
many species and a defensive barrier against co-evolving pathogens and herbivores [1]. In addition,
lignin acts as a permanent binding agent between cells, energy storage, an antioxidant, a UV blocker,
and a hydrophobic agent in plants. Lignification is a major sink for carbon in plants and fixes a large
amount of atmospheric carbon. Upon the death of plants, lignin undergoes natural biodegradation
by soil microorganisms resulting in the formation of soil organic matter. Therefore, lignin formation
has a significant contribution to the physiology of vascular plants, the carbon cycle and the ecological
balance of the Earth.

The limitations of non-renewable petroleum-based chemicals and grave concerns regarding
environmental pollution are urging many citizens and nations for the utilization of renewable and
environment-friendly feedstocks to replace current petroleum-based materials [2]. Lignin has gained
much attention as a valuable raw natural resource for energy, chemicals and materials space. Lignin
is the second most abundant organic substance in the world and has been estimated to represent
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30% of the total biomass produced in the biosphere. It is estimated that the total lignin present in
the biosphere exceeds 300 billion tons and 20 billion tons of lignin is produced annually through
biosynthesis [3,4]. In addition, lignin boasts the qualities of a non-food biomass feedstock and
an environmentally friendly biodegradable material. In plant cells, biological molecules including
cellulose, hemicellulose, and lignin are bound tightly together forming rigid cell wall structures and
comprise the lignocellulose biomass that must be broken down to isolate lignin. Millions of tons of
lignin are produced by the paper pulping industry every year and are mostly (>95%) treated as waste
or used in low-value applications such as fuels. Commercially used lignin is typically produced as
lignosulfonates or kraft lignins. The advances of biorefineries that convert cellulosic biomass into liquid
transportation fuels will eventually create a surplus of industrial lignin [5]. Chemical corporations
such as Ingevity Corporation has been producing high-quality kraft lignin, i.e., Indulin AT, for many
decades. In addition, the Domtar corporation in North Carolina and Stora Enso′s Sunila mill in Finland
recently started producing LignoBoost™ kraft lignin. Borregaard and Rayonier started a new venture,
Lignotech Florida, which produces lignosulfonates. With the increased capacity to produce lignins,
the prospects of specialty chemicals originating from industrial lignin is substantially increasing.
Lignin-based materials and chemicals represent potential value-added products as (1) macromolecule
additives or polymer blends; (2) fragmented aromatic compounds such as benzene, toluene, xylenes;
(3) carbon materials [4]. About 2% of all lignin generated in paper production is isolated, modified
and sold in the chemicals market. Currently, lignin is utilized in applications including dispersant for
agricultural chemicals, oil well drilling, dyestuffs, carbon black, cement, gypsum, etc., emulsifiers, lead
storage batteries, phenolic resins, binders and pelleting aids, bricks, ceramics, dust control, asphalt,
water treatment, heavy metal sequestrant, vanillin production, etc. The global lignin market was
valued at approximately USD 775 million in 2014 and is expected to go beyond USD 906 million in
2025 [6,7]. New commercialization opportunities of up to $242 billion are emerging [8,9].

The absence of a unique and a well-defined structure with certain characteristic properties and
functionalities make it challenging to produce value-added lignin products with consistent qualities.
Poor processability, low reactivity, brittleness, and intrinsic structural heterogeneity limit lignins′

polymeric applications in high-performance advanced materials. Therefore, aimed at value-added
advanced applications, the structure and properties of lignin, and avenues to fine-tune its properties
need to be further investigated. Lignin-based polymeric materials can be developed by blending lignin
with commercial off the shelf polymers. Benefits such as improved thermal and mechanical properties
for such blends have been reported. However, the immiscibility of lignin with most polymers limits such
materials development [10]. Lignin graft polymers are one avenue to improve the compatibility of lignin
with matrix polymers. In addition, lignin can be utilized as a stiff, macromolecular backbone to prepare
sustainable thermoplastic elastomers and mechanically robust materials [11]. The interest in developing
lignin graft polymers has generated many recent publications. Lignin-derived monomers can also be
used to construct well-defined polymers with tailor-made properties. This review attempts to gather
recent developments in lignin polymer chemistry with a focus on controlled polymerization methods.

2. Lignin Structure and Composition

Lignocellulosic biomass contains cellulose fibers that are locked into the cell wall structures in
a matrix composed of lignin and hemicellulose (Figure 1). Lignin content and structure in plants
vary, depending on the species type, geographic location, tissue of the plant, and numerous other
factors. The complex three-dimensional structure of lignin is an outcome of the polymerization of three
phenylpropane units that originate from three aromatic alcohols: p-coumaryl alcohol, coniferyl alcohol,
and sinapyl alcohol (Figure 2).
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Figure 1. Schematic representation of the lignin location and structure in plants. Part of the image was 
kindly provided by scistyle.com and Jeremy C. Smith et al. UT/Oak Ridge National Laboratory Center 
for Molecular Biophysics. 

Typically, softwoods have higher lignin content than hardwoods, where the former has a 
fraction of 25–35% and the latter 15–25%. In contrast, grasses contain about 10% of lignin and even 
lower content of 3% in annual plants. Monolignol structural units of hydroxycinnamyl alcohols, i.e., 
p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, undergo enzymatic radical coupling 
polymerization to produce lignin. It has been identified that peroxidase-mediated dehydrogenation 
of monolignol units results in a heterogeneous structure of lignin by the formation of C–C bonds and 
aryl ether linkages. These hydroxycinnamyl alcohols are commonly referred to as p-hydroxyphenyl 
(H), guaiacyl (G) and syringyl (S) units within the lignin structure (Figure 2). Plants contain varying 
amount of these monolignol units. Softwood lignins have an abundance of G units, and hardwood 
has both G and S units with a more complex structure. Non-woody species such as grasses contain a 
substantial amount of H units. 
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A schematic representation of the softwood lignin structure showing common linkages is 
illustrated in Figure 3. It can be noted that lignin macromolecules contain complex covalent linkages 
with various types of C–O bonds and C–C bonds. The chemical and physical properties greatly 
depend on lignin inter- and intramolecular interactions and its solution conformation. Lignin has a 

Figure 1. Schematic representation of the lignin location and structure in plants. Part of the image was
kindly provided by scistyle.com and Jeremy C. Smith et al. UT/Oak Ridge National Laboratory Center
for Molecular Biophysics.

Typically, softwoods have higher lignin content than hardwoods, where the former has a fraction
of 25–35% and the latter 15–25%. In contrast, grasses contain about 10% of lignin and even lower content
of 3% in annual plants. Monolignol structural units of hydroxycinnamyl alcohols, i.e., p-coumaryl
alcohol, coniferyl alcohol, and sinapyl alcohol, undergo enzymatic radical coupling polymerization
to produce lignin. It has been identified that peroxidase-mediated dehydrogenation of monolignol
units results in a heterogeneous structure of lignin by the formation of C–C bonds and aryl ether
linkages. These hydroxycinnamyl alcohols are commonly referred to as p-hydroxyphenyl (H), guaiacyl
(G) and syringyl (S) units within the lignin structure (Figure 2). Plants contain varying amount of these
monolignol units. Softwood lignins have an abundance of G units, and hardwood has both G and S
units with a more complex structure. Non-woody species such as grasses contain a substantial amount
of H units.
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Figure 2. Monolignol building blocks and the resulting aromatic units present in lignin.

A schematic representation of the softwood lignin structure showing common linkages is illustrated
in Figure 3. It can be noted that lignin macromolecules contain complex covalent linkages with various
types of C–O bonds and C–C bonds. The chemical and physical properties greatly depend on lignin
inter- and intramolecular interactions and its solution conformation. Lignin has a glassy and hard
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structure at room temperature and softens above its glass transition temperature (Tg). Further heating
(>250 ◦C) results in decomposition producing charcoal, tar and small molecular fragments.
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Figure 3. A schematic representation of softwood lignin structure. Reproduced with permission [12].

According to molecular dynamics simulation investigations, Smith et al. report that lignin in
water adopts a collapsed conformation (Figure 4) [13]. The structure transition from a mobile, extended
to a glassy, compact state with decreasing temperatures [14].
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Figure 4. Representative structures of the atomistic molecular dynamics simulations of lignin in
aqueous solution at degrees of polymerization between 6 and 41 at two temperatures. Reproduced
with permission [13].

3. Extraction of Lignin

Industrially, lignin is dismantled from cellulosic fibers by chemical treatment processes, which
break down lignin-carbohydrate complexes. During this process, partial depolymerization of the
complex lignin macromolecules occurs, resulting in smaller fractions that facilitate its solubilization.
Due to the presence of various reactive sites, re-polymerization (condensation) also occurs within the
matrix, forming stronger C–C bonds, and leading to alteration of the native lignin structure. Owing to
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feedstock variability and extraction methods cause the isolated lignin to have diverse structures and
a range of physical properties. Paper pulping industry and biorefineries currently contribute to the
commercial production of technical lignins. About 50 million metric tons of lignin is produced by the
pulp and paper industry and most of it is combusted as a fuel for the generation of energy used to
operate the paper mills. Only about 2% of that volume comes into the chemicals market. There are
several excellent reviews that summarize lignin extraction methods [12,15–19]. Therefore, this review
only briefly mentions some prominent methods and recent developments. Table 1 summarizes major
lignin extractions methods.

Table 1. Major extraction methods to obtain lignin or lignosulfonates. Adapted with permission [4,18,20].

Extraction Method Extraction Conditions Lignin Properties Remarks

Kraft Pulping Process

Wood chips are digested
in aqueous NaOH and
Na2S at 150–170 ◦C for 2
h. This breaks down
lignin and solubilizes it.
After the cellulose fibers
are recovered, lignin is
precipitated by lowering
the pH of the soap-free
black liquor.

Soluble in alkali media
and some organic
solvents (DMSO, DMF,
pyridine) Molecular
weight 1000–15,000
g/mol, Đ 2.5–3.5, sulfur
1–3%, ash 0.5–3%, Tg
140–160 ◦C.

The globally dominant method for
isolating lignin from paper pulping
waste. It is estimated that more than 20
million tons of kraft lignin are produced
in the United States [21]. Mostly
sugar-free lignin with some condensed
and –SH group attached structures are
obtained by this process. All types of
wood and non-wood species like
bamboo can be used as the substrate for
kraft pulping process. Reactive sites are
present for sulfonation or other
chemistries. However, large volumes of
kraft lignin are used as boiler fuel in
paper mills. Westvaco (now Ingevity
Corporation) developed the initial
patented kraft lignin recovery process
[22]. More recently, Lignoboost [23] and
LingoForce [24] processes are developed
that enable integrated lignin isolation.

Sulfite Process

140–170 ◦C, H2O, metal
sulfites (e.g., Na2SO3,
NaHSO3, (NH4)2SO3,
MgSO3, CaSO3) and
sulfur dioxide, 1–5 h

Soluble in water,
molecular weight
1000–50,000 g/mol, Đ 6–8,
sulfur 4–8%, ash 4–8%,
Tg ~ 130 ◦C.

Lignosulfonates are obtained with
highly condensed structures and –SO3
groups. An estimated 1.5 million tons of
sulfite lignin is annually produced.
Higher in sugar content and impurities.
Mostly used as a cement additive. Less
control is available over the location of
sulfonate groups or the degree of
sulfonation.

Soda Lignin
120–170 ◦C, H2O, NaOH,
anthraquinone as a
catalyst

Soluble in alkali media,
molecular weight
1000–3000 g/mol, Đ
2.5–3.5, sulfur-free, ash
0.7–2.3%, Tg ~ 140 ◦C.

Soda lignin is sulfur free and has less
condensed structures. An estimated

Organosolv Lignin

Organic solvents such as
alcohol or alcohol/water
mixtures, formic acid,
and acetic acid. Treated
at 170–190 ◦C.

Soluble in alkali media,
molecular weight
500–5000 g/mol, Đ
1.5–2.5, sulfur-free, ash
1.7%, Tg ~ 100 ◦C.

Organosolv lignin is obtained
sulfur-free with relatively high purity.
This is a mild process that results in less
structural modifications.

3.1. Ionic Liquids for Lignin Extraction

Ionic liquids (ILs) are salts that are in the liquid state at ambient temperatures (<100 ◦C). ILs have
gained much attention in recent literature as good solvents for cellulose and lignin processing [25].
ILs have superior dissolution capabilities, thermal stability, low volatility, and low flammability which
makes them great candidates for lignin extraction. However, the expensive nature of ILs makes
them challenging to use in industry, and complete removal of ILs from recovered lignin remains a
challenge. 1-Ethyl-3-methylimidazolium acetate ((Emim)(OAc)) and 1-butyl-3-methylimidazolium
chloride ([Bmim]Cl) are two of the frequently used ILs for biomass dissolution [26] Owing to the strong
hydrogen-bonding basicity of certain ions, ILs can easily dissolve biomass including lignin structures.
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Dissolution followed by the usage of selective anti-solvents such as water, acetone, acetonitrile, etc.,
or combinations thereof can precipitate and isolate biomass components.

3.2. Lignin-First Method and Biorefinery Concepts

During the paper pulping process, where lignin is considered a waste material, lignin is prone to
irreversible degradation and rearrangement, resulting in recalcitrant condensed aromatic structures
with poor functionality for materials development. To circumvent this issue, and treating lignin
valorization as a priority, a novel biorefinery approach called the “lignin-first” method has gained much
interest in the scientific community [27]. In this approach, two strategies are actively involved
to prevent unnecessary lignin degradation and condensation during the fractionation process:
(i) tandem depolymerization–stabilization of native lignin, and (ii) active preservation of β-O-4
bonds. Lignocellulosic biorefineries use pretreatments such as dilute acids or hydrothermal methods to
enable enzymes at later stages to efficiently break down cellulose and other polysaccharides. Enzymatic
hydrolysis affords lignin-rich streams.

4. Chemical Modifications of Lignin

Lignin downstream modifications and applications obviously require proper chemical handles.
Natural lignin has aromatic sites, alcohols, methoxyl, carboxyl, and carbonyl functionalities. However,
the limited reactivities and subpar physical properties encourage chemists to install novel functional
groups on lignin. In this section, current advances in chemical modifications of lignin macromolecules
to introduce useful functionalities via small molecule-based transformations are discussed. Several
reviews have concisely discussed such transformations [20,28]. Figure 5 summarizes several strategies
that introduce new chemical reactive sites or functionalities on lignin macromolecules. Traditionally,
lignin hydroxyl groups and aromatic units are heavily used for chemical functionalization. The presence
of aromatic and aliphatic hydroxyl groups facilitates chemical reactions such as esterification, alkylation
or etherification, hydroxypropylation with epoxides, urethanization via isocyanate or non-isocyanate
routes. Recently, Sauthier et al. reported kraft lignin functionalization with octadienyl ether linkages
through the palladium-catalyzed telomerization of 1,3-butadiene [29]. Lignin phenolation is of
interest due to the ability to increase reactive sites for aromatic substitution reactions. Chemical
reactions on the aromatic units include sulfomethylation, hydroalkylation, amination, and nitration.
Azo coupling reactions were reportedly used to modify lignin properties [30,31]. Kent et al. reported the
efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction [32].
Understanding such chemistry will be beneficial to designing modified lignins with desirable properties,
as well as new grafting chemistries for polymeric modifications.
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5. Lignin-Derived Polymers

5.1. Overview

Lignin has tremendous potential as a raw material for future material development. Large-scale
use of biomass-derived polymers and chemicals are essential for sustainable development and
environmental preservation. Current lignin applications in low-end markets such as fuels or cement
additives will be saturated with the generation of an excessive amount of lignin streams from
biorefineries in addition to paper pulp manufacturing facilities. The unique chemical functionalities and
physical properties of lignin make it a potential candidate to develop new polymeric materials. Lignin
derivatization using polymer chemistry has become a valuable path to improve its thermo-mechanical
properties, as well as chemical functionalization to achieve specialty uses. Lignin valorization
via polymeric transformations can be represented into several categories as illustrated in Figure 6.
Lignin-derived polymers obtained from monomers to polymer strategy and lignin graft polymers are
given focus in this review and commercially used lignin products such as dispersants and high carbon
materials are not discussed in detail.
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The controlled polymerization methods enable control of polymer compositions, architectures,
and functionalities, allowing the development of novel materials with tailored physical and chemical
properties. Atom transfer radical polymerization (ATRP) [33], nitroxide mediated polymerization
(NMP) [34], reversible addition fragmentation chain transfer (RAFT) [35], ring-opening polymerization
(ROP), ring-opening metathesis polymerization (ROMP) [36] and acyclic diene metathesis (ADMET) [37]
polymerization are representative examples of such versatile methods to produce well-defined polymers
with controlled molecular weight, narrow molecular weight distribution and site-specific functionality.
In addition, they allow the generation of high grafting densities on graft polymers and control over
end-groups. While there are many reports that investigate the utilization of such methods to make
lignin-based biopolymers, it should be noted that there is certainly room for further exploration.

5.2. Strategies on Lignin-Based Polymer Synthesis

There are two major routes for the generation of lignin-based polymers (Figure 7). Producing
well-defined polymers with greater control of polymer architecture and tunable properties is realized
by a bottom-up method where functional monomers are developed from phenolic lignin model
compounds (LMC). The other route is to graft polymers using lignin biopolymer as a core unit.
Industrially, the latter method is more practical for producing commodity materials with current
technologies in a cost-effective way.
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5.3. From Lignin Model Compounds (LMC) to Novel Biobased Polymers

Aromatic compounds fall into a class of essential platform chemicals utilized to manufacture
commodity and advanced materials. Rigidity, thermal stability, chemical resistance, hydrophobicity and
fire resistance are some of the important properties exerted by aromatic compounds when incorporated
into polymers. For instance, poly(ethylene terephthalate) or PET is one of those as it has good
thermomechanical and barrier properties. Replacing petrochemically derived aromatic monomers can
be achieved by using lignin as a source of aromatic constituents. Lignin depolymerization, the process to
obtain low-molecular-weight compounds from lignin is a widely explored field [17,38]. Phenolic LMCs
such as vanillin, guaiacols, catechols, and cresols afforded by lignin depolymerization supports the
prospect of polymerizable LMCs. For example, vanillin is reported to be commercially manufactured
from lignin via an oxidation method on a scale of at least 17,000 ton/year [39]. Hence, vanillin has gain
significant interest as a monomer precursor for polymer synthesis [40]. Several excellent review articles
on lignin-derived aromatic monomer design and lignin polymers are available [41,42]. Compounds
such as ferulic acid, vanillin, divanillin, hydroxybenzaldehyde, syringaldehyde and guaiacol are found
to be useful starting chemicals towards novel biobased polymers approach (Figure 8).
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Polymerization routes, including polycondensation, ADMET, thiol-ene, and radical methods have
generated a copious number of lignin-based polymeric materials with a wide window of properties.
In this section, ADMET and radical polymerization routes including FRP and RAFT that use monomers
derived from lignin or lignin model compounds will be highlighted.

5.3.1. Radical Polymerization Routes (FRP and RAFT)

Natural phenolic compounds such as catechol, eugenol and others represent antimicrobial
phytochemicals with useful chemical functionalities for further developments. In 2011, Liu and Roger et al.
designed a new generation of antimicrobial polymers based on a natural biocide molecule guaiacol
(2-methoxyphenol), obtained from beechwood guaiac resin or wood creosote [43]. Although
conventional free radical polymerization (FRP) was used in this work, it is worth highlighting
the early developments of the LMC to polymer concept. They used Friedel-Crafts reaction between
guaiacol and N-hydroxymethyl acrylamide or via three-step synthesis from vanillin to incorporate an
acrylamide into the guaiacol architecture (Figure 9). FRPs were carried out using AIBN as the initiator,
resulting in polymers with molecular weight (Mn) in the range of 3000–11,000 g/mol and dispersity (Ð)
of 1.3–1.8.
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Epps and coworkers have carried out extensive work on lignin polymers. In their early investigations,
they reported an approach for the synthesis of renewable homopolymers and block copolymers using
vanillin, a lignin model compound [44]. They utilized RAFT polymerization to produce well-defined
polymers from methacrylate functionalized vanillin (Figure 10). The vanillin-based homopolymers
exhibited high glass transition temperatures (120 ◦C) and thermal degradation temperatures (≥300 ◦C).
In addition, a vanillin-based homopolymer was chain-extended with lauryl methacrylate to produce
block copolymers that generated nanostructured materials.
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In another study, by Epps et al., bio-oil methacrylate monomers from minimally processed bio-oils,
such as pyrolyzed Kraft lignin and vegetable oils, were polymerized to investigate the consequences
of structural diversity on the kinetics of RAFT polymerization [45]. This study uncovered two key
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strategies that improve the viability of bio-based polymers, which minimize the separation costs by
polymerizing bio-oil mixtures and prevent batch-to-batch inconsistencies in polymer properties.

The same group reported the synthesis of softwood lignin-based methacrylate monomers,
polymerized them via RAFT polymerization and studied thermal and viscoelastic properties [46].
The resultant softwood lignin-based methacrylate polymers possessed excellent glass transition
temperatures, thermal stabilities greater than 100 ◦C above the glass transition temperature, and
intermediate shear flow resistances, in comparison to polystyrene and poly(methyl methacrylate).

An investigation into the synthesis of syringyl methacrylate from syringol and its RAFT
polymerization was reported [47]. The syringol is a copious component of depolymerized
hardwood and graminaceous lignin which makes syringyl methacrylate an excellent monomer
to develop biomass-derived polymers. Homopolymers and heteropolymers synthesized from syringyl
methacrylate showed good thermal stabilities with broadly tunable and highly controllable glass
transition temperatures ranging from 114 to 205 ◦C. Also, these polymers showed zero-shear viscosities
ranging from ∼0.2 to ∼17,000 kPas at 220 ◦C, demonstrating a wide range of thermomechanical
properties that indicate syringyl methacrylate could be a powerful add-in monomer for adjusting
materials properties.

Epps et al. reported the effect of para and ortho functional groups on the material properties such
as surface energies, solvent compatibilities and friction coefficients of lignin inspired polymer films
for coating applications [48]. A series of polymers were generated from methacrylate-functionalized
lignin pyrolysis products via RAFT polymerization. The polymer compatibilities with organic solvents
increased with increasing aliphatic content in the para position and decreased with the introduction of
methoxy groups ortho to the polymer backbone. Also, it was shown that changes in polar moieties,
such as aldehydes and methoxies, have greater effects on solubility, surface energy, and friction than
changes in the aliphatic groups in the resultant polymers.

High-performance pressure-sensitive adhesives (PSA) developed from lignocellulose biomass were
reported by Wang, Epps, and coworkers [49]. In this study, 4-propylsyringol and 4-propylguaiacol were
extracted in high purity and yield from depolymerized poplar wood. These aromatic compounds were
functionalized with either acrylate or methacrylate groups and polymerized via RAFT polymerization
as shown in Figure 11. Resultant polymers displayed excellent adhesion properties such as up to
4 N cm−1 180◦ peel forces and 2.5 N cm−1 tack forces without any tackifier or plasticizer.
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A recent study by Maeda et al. reported Kabachnik-Fields three-component reaction (KF-3CR),
a type of multi-component reaction (MCR), between amines, phosphites, and lignin-derived polymers
featuring vanillin and syringaldehyde [50]. The vanillin and syringaldehyde contain aldehyde groups
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in their molecular structures which are the most important functional group in MCRs. In this
study, polymethacrylates derived from vanillin and syringaldehyde were successfully subjected to
KF-PMR (Figure 12). It demonstrated the successful integration of lignin derived chemicals and
the MCR-based polymer modification reaction, leading to various functional polymers by taking
advantage of the MCRs.
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Ferulic acid having the α,β-unsaturated carboxylic acid and phenol functional groups offers a 
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5.3.2. Acyclic Diene Metathesis (ADMET) Polymerization

Olefin metathesis, including ADMET and ROMP, has become an efficient tool for polymer chemists
to produce well-defined polymers [37]. Firdaus and Meier have developed diene monomers from
vanillin and fatty acids that were polymerized via ADMET, thiol-ene, and polycondensation type
polymerization routes (Figure 13) [51]. ADMET polymerizations led to high molecular weights up to
50,000 g/mol yielding materials with thermoplastic properties. Melting points were in the range of 16
to 78 ◦C and Tg’s in the range from −37 to −14 ◦C.
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Ferulic acid having theα,β-unsaturated carboxylic acid and phenol functional groups offers a wide
range of chemical transformations. Barbara, Allais, and coworkers utilized ferulic acid, bio-sourced
diols (isosorbide and butanediol) and bromoalkenes for the synthesis of a new class of biobased
polyfunctional molecules (Figure 14) [52]. These novel monomers were polymerized via ADMET
polymerization using Hoveyda-Grubbs II catalyst. These new poly(ester-alkenamer)s showed excellent
thermal stabilities (283–370 ◦C) and tunable Tg’s. The same group reported the ADMET polymerization
involving sinapic acid derivatives (i.e., syringaresinol, syringaldehyde) as diene substrates [53].
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Llevot and Cramail et al. reported polyesters, polyethers and conjugated polymers based on
divanillin derived monomer (Figure 15) [54]. Starting from 2-methoxy-4-methylphenol, methyl
vanillate, vanillin, and eugenol as the substrates, enzymatic dimerization, transesterification, Wittig
reaction or allylation led to α,ω-diene monomers. Employing the Hoveyda Grubbs 2nd generation
catalyst, the authors were able to generate polymers with molar mass as high as 40,000 g/mol. Polarclean
solvent was used as a sustainable, high boiling point and compatible solvent for the polymerization
reactions. Due to the rigid backbone, the thermomechanical properties remained high for the conjugated
polymers. For example, the Tg was observed at around 160 ◦C by DSC and 5 wt % loss temperature
occurred at 380 ◦C. Only trans configuration of the vinylene bonds was observed.
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Vlaminck, Du Prez and coworkers synthesized a library of 26 α,ω-dienes with lignin inspired
structural motifs via Williamson ether synthesis from aromatic diols (Figure 16) [55]. The butenyl
and pentenyl monomers resulted in molecular weights between 2500 and 6700 g/mol while allylic
monomers showed lower Mn. The polymers had Tg’s ranging from−44 to 18 ◦C; values could be further
increased to 110 ◦C by efficient post-modification with 1,2,4-triazolinedione (TAD) click chemistry.
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5.4. Lignin Graft Copolymers

5.4.1. “Grafting Through” Method

Graft copolymerization provides avenues to combine advantages of physical and chemical
properties of both natural lignin and synthetic polymers [56]. Graft copolymers generally consist of a
linear backbone of one composition and randomly distributed side chains of a different composition
connected to the backbone via covalent bonds. Generally, well-defined graft copolymers can be
prepared via (a) a “grafting through” process or (b) a “grafting from” controlled polymerization process
or (c) a “grafting to” process such as “click chemistry” (Figure 17) [57].
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The “grafting through” approach consists of copolymerization of suitably functionalized lignin
with another comonomer(s). The most commonly utilized approach for lignin-based polymer
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development is the “grafting from” method, in which new polymer chains are directly grown from the
initiating sites attached to lignin. This procedure offers a major advantage of high grafting density
due to convenient access to monomers to growing polymer chains. A premade polymer with end
functionalization is covalently bound to the reactive functional groups of lignin in the “grafting to”
method. Although the “grafting to” method offers an advantage to use many types of off the shelf
polymers to be attached to lignin, it suffers from low grafting densities resulting from the steric
hindrance toward the polymer-polymer reaction.

The grafting of lignin with designer polymers of synthetic or natural sources offers the potential
of developing a new class of engineering plastics. At the advent of controlled polymerization
techniques, a great interest in advancing lignin-based polymers has arisen. A variety of polymerization
techniques have been employed to prepare lignin graft polymers. These methods can be classified
into the following groups: (a) free radical polymerization, (b) controlled radical polymerization,
(c) ring-opening polymerization, and (d) ring-opening metathesis polymerization. These methods will
be discussed in the following sections.

5.4.2. “Grafting From” Method

Termed as macroinitiators, reactive macromolecules enable a “grafting from” method for polymer
synthesis (Figure 18). The rich chemistry of lignin affords initiating site or synthons for initiator
attachment applicable to several controlled polymerization methods. While the hydroxy functional
groups in lignin work as initiation sites in ROP, a variety of post-polymerization reactions can be
employed to covalently attach initiating units on lignin for ATRP, RAFT and ROMP reactions.
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5.4.3. Free Radical Graft Polymers

Traditionally, grafting of polymers on to lignin involves the radical polymerization initiated
by free radical reactions (chemical or radiation) of an appropriate monomer. The literature on this
topic can be found as early as 1968 by Koshijima and Muraki. They used gamma ray irradiation to
graft styrene onto hydrochloric acid lignin [58]. Since then, many other reports have appeared using
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monomers such as styrene, acrylic acid, acrylamides, and vinyl ethers to graft onto lignin via free
radical methods. It should be noted that lignin has free radical-scavenging properties as well [59].

The enzyme laccase in the presence of organic peroxides initiated free-radical copolymerization of
acrylamide and lignin as observed by Mai et al. [60]. Particularly, dioxane peroxide, tetrahydrofuran
peroxide, and t-butylhydroperoxide appeared to be effective in this regard, while H2O2 showed no
such effect. The proposed mechanism of this chemoenzymatically induced graft copolymerization
involves the polymerization initiation by peroxy radicals or reduced alkoxy radicals simultaneously
with phenoxy radical production. Mai et al. suggested that the poor reactivity of the phenoxy
radicals generated by laccase catalysis is not sufficient to start the side chain polymerization. Instead,
the covalent bond forming grafting may occur via a termination reaction of the homopolymers initiated
by peroxy radicals. The active polymer chain end radical may combine with a phenoxy radical of the
lignin backbone [61].

In the recent literature, redox initiation systems are widely used in aqueous graft copolymerization
of lignin. For example, CaCl2/H2O2 and K2S2O8 can be given. Ye, Zhang, and coworkers conducted
an investigation to explore the mechanism of acrylic acid graft copolymerization on hardwood
lignosulfonates (HLS) and softwood lignosulfonates (SLS) [62]. It was evident that the Ph–OH
decreased after treatment of K2S2O8, and further after the grafting reaction. Based on this observation,
they suggested that Ph–OH acts as a grafting site as well as having negative effects from initiators
such as oxidation or radical coupling. The polymerization of acrylic acid was accelerated by the
presence of both HLS and SLS compared to acrylic acid homopolymerization. In addition, HLS had
a significantly higher contribution compared to SLS. The quinoid radicals in syringly units formed
by the self-conjugation of phenoxy radicals may not terminate with active polymer chains due to the
steric hindrance caused by the two methoxyl groups. Such radical termination may be more prevalent
in the presence of SLS which contain a higher amount of guaiacyl units (Reaction 4 and 5, Figure 19).Polymers 2019, 11, x FOR PEER REVIEW 10 of 46 
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Based on these observations, they proposed a possible grafting mechanism of lignin with vinyl
monomers (Figure 19). In this mechanism, grafting of the monomers could be resulted by the radical
termination between quinonoid structures and growing homopolymer chains, as well as chain initiation
by phenoxy radicals. In addition, Ph–OH group may not only participate in the grafting reaction
but also with the radical coupling reaction between benzyl and phenoxy radicals as suggested by the
dropping content of it after the treatment of initiator.

The use of free radical graft polymerization on lignin novel materials has been carried out in
various applications, such as in composites [63], cationic flocculants [64,65], binder in lithium-ion
batteries [66], heavy metal ion biosorption [67], anticancer [68], UV-absorbent films [69], and corrosion
inhibition [70].

5.4.4. ATRP

ATRP is a popular method to produce graft copolymers, as it is one of the most robust controlled
radical polymerization (CRP) methods available. ATRP provides well-defined (co)polymers with
predetermined molecular weight, narrow molecular weight distribution, controlled functionalities,
topologies, compositions, and a high degree of chain end functionality [71]. Table 2 summarizes the
recent efforts in using ATRP to produce lignin graft copolymers.

Table 2. Summary of recent literature on ATRP modifications of lignin.

Lignin Source Monomers
(Representative)

Catalyst system and
Conditions Application Ref.

Kraft lignin from
Westvaco Corp
(Ingevity Corp)
(Charleston, SC)
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Table 2. Cont.

Lignin Source Monomers
(Representative)

Catalyst system and
Conditions Application Ref.

Kraft lignin (alkali),
Sigma-Aldrich
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Figure 20. Preparation of lignin–g–polyNIPAM copolymers. Reproduced with permission [72].

The resulting molecular mass of the lignin–g–polyNIPAM copolymers was as high as 215,300 g/mol
when a moderately high number of initiator sites were available. In the case of the fully substituted
macroinitiator, the resulting graft copolymer quickly precipitated out of the solution limiting the
polymerization process. These thermoresponsive lignin-based copolymers exhibited a thermally
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activated phase transition above ∼32 ◦C, similar to low critical solution temperature (LCST) of
polyNIPAM. The thermal decomposition temperature of the lignin–g–polyNIPAM copolymers
significantly increased with increasing chain lengths.

In a continuation of their work, Kalda et al. immobilized PNIPAM polymer brushes onto the
surface of electrospun lignin nanofiber mats by surface-initiated ATRP (SI-ATRP) under aqueous
conditions [75]. Softwood Kraft lignin was used to make blends with PEO at concentrations 30 and
0.2 wt % for electrospinning. Chemical crosslinking via oxidative thermostabilization at 250 ◦C was
carried out to improve mechanical performance. Lignin nanofiber mats were treated with different
molar ratios of acetyl chloride: 2-chloropropionyl chloride to generate ATRP initiator sites. Aqueous
SI-ATRP of NIPAM was carried out using CuCl/HMTETA at room temperature. The lignin graft
PNIPAM brushes exhibited ionic responsive characteristics, expanding in water and contracting in a
0.5 M Na2SO4 aqueous solution.

Tang et al. developed several lignin-based biopolymers using a variety of methods. They synthesized
rosin polymer–grafted lignin composites via “grafting from” ATRP with the aid of 2-bromoisobutyryl
ester-modified lignin as macroinitiators (Figure 21) [73]. The 2-bromoisobutyryl initiating sites were
attached to lignin through a simple esterification reaction resulting in lignin ATRP macroinitiators.
Three rosin-derived vinyl monomers were sourced for grafting polymers from the lignin macroinitiators.
The Tg’s of rosin polymer-grafted lignin composites ranged from ~20 to 100 ◦C while the contact angle
measurements indicated a high hydrophobicity level of the novel materials.
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In a more recent work, Tang et al. developed lignin–graft–poly(methyl methacrylate–co–butyl
acrylate) copolymers via “grafting from” ATRP [74]. These biobased polymers were evaluated as
sustainable thermoplastic elastomers. The copolymers exhibited tunable glass transition temperatures
and higher thermal stability than unmodified technical lignin. Potential UV-absorbent TPE materials
applications of lignins are proposed in this investigation.

Washburn et al. demonstrated the potential of ATRP as the basis for the “one component”
composite approach towards more sustainable lignin materials [76]. They made ATRP macroinitiators
using ethyl 2-bromoisobutyrate and polymerized styrene or methyl methacrylate using CuCl /BPY in
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DMF. Mass fraction of lignin varied between 4.5% up to 22.1% and the average degree of polymerization
ranged between 323 and 449. The graft copolymers dissolved readily in pyridine or DMF. TEM images
revealed a uniform dispersion of lignin particles in PMMA matrix. They observed an increase of
Tg as compared to the homopolymer systems indicating the restriction of grafter polymer chains,
particularly pronounced in lignin–g–PMMA samples. In addition, higher lignin content resulted in
higher moduli suggesting the dependency of composite properties on the intrinsic lignin properties.
Compared to binary lignin/polymer blends, polymer-grafted lignin exhibited significantly enhanced
fracture toughness, for example, lignin–g–PMMA systems had more than 10 times greater toughness.
This approach provides a great solution for the poor interfacial binding between filler particles and the
matrix of lignin/polymer blends. In more recent work, the same group investigated the properties of
PMMA-tethered kraft-lignin particles dispersed in a PMMA matrix [77]. A minute filler content of 1%
dramatically enhanced the mechanical properties; a 3-fold increase in yield stress, a 4-fold increase in
tensile strength, and a 7-fold increase in toughness.

A series of lignin-based thermogelling graft copolymers were developed by Li and coworkers [78].
These materials consisted of a lignin core and multiple arms of graft polymer chains, where each graft
consists of a block of poly(N-isopropylacrylamide) (PNIPAAm) and a block of brush-like random
copolymer of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) (Figure 22). According to
the design criteria, lignin core is hydrophobic, the PEG segments are hydrophilic, and PPG/NIPAAM
segments are temperature-responsive.
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Different degrees of substituted 2-bromoisobutyryl bromide (BiBB) functionalized lignins served as
the macroinitiators. A two-step ATRP reaction protocol was followed to produce the graft copolymers.
First, NIPAM monomer was polymerized using Cu(I)Br/HMTETA system in 1,4-dioxane at 60 ◦C for
3 h. The polymer was isolated and used as the macroinitiator for the second step where a mixture
of PEGMEMA and PPGMA was polymerized using the same catalyst system at 70 ◦C for 24 h.
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These lignin graft copolymers were water-soluble at room temperature and could form aggregations at
elevated temperatures turning from sol at ~32–34 ◦C to hydrogel at a higher temperature. The G′ of
the hydrogels could be tuned in the range of 2700–13,900 Pa by altering the grafting density by the
proper use of lignin-based macroinitiators.

Stimulus-responsive lignin graft copolymers that respond to CO2/N2 have been developed by
Zhu et al. [82]. The objective of their work was to modify alkali lignin by grafting CO2-responsive
2-(diethylamino)ethyl methacrylate (DEAEMA) and demonstrate CO2/N2 switchable dispersion/

precipitation of the modified lignin materials in aqueous media. Fully or partially BiBB functionalized
lignin was used as the macroinitiator along with CuBr/PMDTA in DMF at 70 ◦C for the ATRP
polymerization of DEAEMA with targeted chain lengths of 1 to 10 DEAEMA repeat units. It was
observed that the initiator efficiency of the fully substituted lignin-Br was a little higher than that of
the partially substituted lignin-Br.

Lignin–g–DEAEMA samples with longer DEAEMA chain lengths took a longer time for flocculation
and precipitation whereas shorter one precipitated instantaneously. Homogenizing decane in water with
the added lignin samples produced stable Pickering emulsions from N2 treated flocculated/precipitated
dispersed particles and bubbling CO2 could demulsify the emulsion.

Kai, Loh, and co-workers developed lignin supramolecular hydrogels with mechanically
responsive and self-healing properties. A series of poly(ethylene glycol) methyl ether methacrylate
(PEGMA)-grafted lignin hyperbranched copolymers were synthesized via ATRP [79]. The graft
copolymers were prepared in a range of molecular weights from 38.7 to 65.0 kDa, where the lignin
content ranged from 7.7 to 12.9 wt %. Lignin-Br macroinitiators were prepared using BiBB and the
ATRP of PEGMA was conducted using CuBr and HMTETA in acetone at room temperature. In the
presence of α-cyclodextrin(α-CD) the aqueous solutions of the graft copolymers were found to form
supramolecular hydrogels with a very low critical gelation concentration of 1 wt % copolymers
(Figure 23). These hydrogel systems showed mechanically responsive rheological properties and
excellent self-healing capabilities where they turned into sol under 10% strain and recovered rapidly
(5 s) to the solid state under 0.01% strain. All the lignin–g–PEGMA copolymers exhibited excellent
cell viability evident from MTT assays using HDF cells. Potentially biodegradable and biocompatible
lignin–g–PEGMA graft copolymers may have applications in biomedical and personal care fields.

Matyjaszewski et al. developed AGET ATRP (Activators Generated by Electron Transfer) initiation
systems that allow the controlled polymerization without the direct involvement of organic radicals or
formation of molecules that can act as initiators [83]. A reducing agent is used for the activation of an
oxidatively stable catalyst complex. A truly scalable miniemulsion polymerization can be conducted
using AGET ATRP demonstrating its industrial applicability [84]. A novel Fe(III)-catalyzed AGET
ATRP was used by Wang and co-workers to carry out the graft copolymerization of lignin with
styrene and methyl methacrylate [80]. They used FeCl3·6H2O as the catalyst, triphenyl phosphine
(PPh3) as the ligand and ascorbic acid as the reducing agent. A proposed mechanism is illustrated
in Figure 24. Environmentally friendly and low-cost iron catalyst seems attractive for lignin-based
polymer synthesis.

Zhang, Li, and coworkers modified kraft lignin by grafting from 2-(dimethylamino)ethyl
methacrylate (DMAEMA) starting from the lignin-based macroinitiators esterified with esterification
with BiBB [81]. These graft copolymers having hydrophilic and cationic polymer chains were able to
bind to pDNA and form polyplex nanoparticles with size ranging from 100 to 200 nm at N/P ratios of 5
or higher. Luciferase assay indicated that graft copolymers with very short arm lengths (average DP 5.5)
show in vitro transfection efficiency comparable to or higher than branched PEI. The cytotoxicity of
lignin–g–PDMAEMA copolymers increased with increasing PDMAEMA arm length.
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RAFT Polymerization

RAFT polymerization is a reversible-deactivation radical polymerization method that uses a chain
transfer agent (RAFT agent, CTA). Lignin polymeric advancements in using RAFT polymerization
route for the “graft from” polymers are summarized in Table 3.

Table 3. Summary of recent literature on RAFT grafting from modifications on lignin.

Lignin Source Monomers
(Representative) RAFT CTA and Conditions Application Ref.

Kraft lignin (alkali),
Tokyo Chemical
Industry, Co.
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Washburn et al. prepared lignin-based surfactants using polyacrylamide and poly(acrylic acid) 
that were “graft from” lignin macroinitiators via the RAFT polymerization method [85]. In the 
synthesis route, potassium xanthate was reacted with 2-bromopropionic acid to produce xanthate 
carboxylic acid, which was subsequently esterified with lignin. The RAFT polymerization was carried 
out in DMF at 70 °C with acrylamide or acrylic acid monomers and AIBN as the radical initiator. To 
analyze the graft copolymer, it was cleaved from the lignin core using KOH hydrolysis. It was 
estimated that the grafting densities obtained were approximately 2 and 17 polymers per lignin 
particle based on the low and high CTA grafted macroinitiators respectively. In one instance, 
polyacrylamide with Mn of 11,300 g/mol and Ð of 1.83 was obtained. All polymer-grafted lignin 
compositions were soluble in water at a concentration of 1 mg/mL and were surface active, reducing 
the surface tension to as low as 60 dyn/cm. They proposed that these lignin graft copolymers form 
random patchy nanoparticles with mixed hydrophilic and hydrophobic domains that result in 
unexpected interfacial behaviors. In a later report, Washburn and co-workers investigated the 
properties of Pickering emulsions produced using lignin–g–polyacrylamide nanoparticles [86]. 

A class of anionic polymer dispersants called superplasticizers are employed to inhibit 
aggregation in and fusion of hydraulic cement. This helps to reduce the yield stress of cement paste, 
lower the water requirements and extend the workability of cement. Molecular architecture 
requirements for polymer-grafted lignin superplasticizers was investigated by Gupta and Washburn 
et al. They developed high-performance superplasticizers made of polyacrylamide-grafted lignin 
prepared via RAFT and free radical polymerization (FRP) (Figure 25) [88]. The results indicated that 
high-performance dispersants are obtained through a grafted architecture using CRP of acrylamide 
using RAFT, whereas FRP resulted in a nanogel that lacked the dispersant performance.  
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AMBN in DMF/water at 70 ◦C

Cationic flocculant [90]

Washburn et al. prepared lignin-based surfactants using polyacrylamide and poly(acrylic acid)
that were “graft from” lignin macroinitiators via the RAFT polymerization method [85]. In the synthesis
route, potassium xanthate was reacted with 2-bromopropionic acid to produce xanthate carboxylic
acid, which was subsequently esterified with lignin. The RAFT polymerization was carried out in
DMF at 70 ◦C with acrylamide or acrylic acid monomers and AIBN as the radical initiator. To analyze
the graft copolymer, it was cleaved from the lignin core using KOH hydrolysis. It was estimated that
the grafting densities obtained were approximately 2 and 17 polymers per lignin particle based on the
low and high CTA grafted macroinitiators respectively. In one instance, polyacrylamide with Mn of
11,300 g/mol and Ð of 1.83 was obtained. All polymer-grafted lignin compositions were soluble in
water at a concentration of 1 mg/mL and were surface active, reducing the surface tension to as low as
60 dyn/cm. They proposed that these lignin graft copolymers form random patchy nanoparticles with
mixed hydrophilic and hydrophobic domains that result in unexpected interfacial behaviors. In a later
report, Washburn and co-workers investigated the properties of Pickering emulsions produced using
lignin–g–polyacrylamide nanoparticles [86].

A class of anionic polymer dispersants called superplasticizers are employed to inhibit aggregation
in and fusion of hydraulic cement. This helps to reduce the yield stress of cement paste, lower the
water requirements and extend the workability of cement. Molecular architecture requirements for
polymer-grafted lignin superplasticizers was investigated by Gupta and Washburn et al. They developed
high-performance superplasticizers made of polyacrylamide-grafted lignin prepared via RAFT and free
radical polymerization (FRP) (Figure 25) [88]. The results indicated that high-performance dispersants
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Kurtis, Washburn and co-workers extended their lignopolymer work to develop effective
plasticizers for Portland cement blended with two natural, finely divided minerals kaolin clay and
clinoptilolite zeolite [87]. Basically, they studied the plastic behavior of mineral-cement combinations
dosed with polyacrylamide-grafted kraft lignin and compared with lignosulfonate and commercial
polycarboxylate ether. Lignopolymer was found to adsorb strongly to both kaolin and clinoptilolite
and resulted in the lowest yield stresses in pastes indicating effective superplasticizer properties.

Tang et al. developed lignin and soy oil-derived polymeric biocomposites by “grafting from”
RAFT polymerization using organosolv lignin as the core [89]. They prepared the lignin-based chain
transfer agent (Lignin-RAFT) by simple esterification between 4-cyano-4-(phenylcarbonothioylthio)
pentanoic acid and lignin in the presence of DCC and DMAP at room temperature. Then, soybean
oil-based methacrylate monomers were polymerized via RAFT polymerization using Lignin-RAFT
and AIBN at 70 ◦C in dry toluene. Secondary amide containing polymers exhibited a higher glass
transition temperature due to the formation of hydrogen bonds.

A new kind of cationic flocculant was developed by Liu and coworkers via Steglich esterification
of phenolated kraft lignin and subsequent RAFT polymerization with 2-(methacryloyloxy)ethyl
trimethyl ammonium chloride to produce multi-arm star copolymers with a lignin core [90]. 2,2′-azobis
(2-methylbutyronitrile) was used as the initiator and DMF was used as the solvent. The polymers
had a high molecular weight of 105–106 g/mol that is essential for the flocculation applications.
The flocculation performance in the removal of kaolin particles from simulated wastewater was
evaluated. A maximum removal efficiency of 96.4% within 1 h settling was observed.

ROP

Ring-opening polymerization (ROP) is a well-established, industrially practiced form of
chain-growth polymerization. Cyclic monomers react with anionic, cationic or radical initiators
to produce polymers with functional groups such as ether, ester, amide, and carbonate. Some of the
current literature on lignin usage via ROP polymerization for the “graft from” polymers is summarized
in Table 4.
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Table 4. ROP literature for the preparation of lignin copolymers.

Lignin Source Monomers
(Representative)

Initiator and
Conditions Application Ref.
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by grafting such polymers from lignin [91]. As the first step, they modified lignophenol (LP) via 
Williamson ether synthesis of α,α′-dihalo-p-xylene to produce a halomethylphenyl-group-modified 
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Hydrogenolyzed lignin
hydroxyls, Phosphazene
base P4-t-Bu, THF, at 50
◦C for 2 days

Non-ionic
surfactants [98]

Polymers derived from the ring-opening polymerization of 2-alkyl-2-oxazoline are miscible with
various types of commodity polymers such as poly(vinyl chloride) (PVC), polyvinylpyrrolidone
(PVP), polycarbonate (PC), or polystyrene (PSt). Nemoto, Konishi, and co-workers envisioned that
lignin-based recyclable natural phenolic resins or high-performance polymer blends can be prepared
by grafting such polymers from lignin [91]. As the first step, they modified lignophenol (LP) via
Williamson ether synthesis of α,α′-dihalo-p-xylene to produce a halomethylphenyl-group-modified
lignin, where LP-Br was estimated to be 1.50 mmol/g (Figure 26). Subsequently, the LP-Br was used
to initiate the cationic ROP of 2-ethyl-2-oxazoline resulting in “graft from” poly(2-ethyl-2-oxazoline).
These lignin graft copolymers clearly indicated the miscibility with PVC and PVP.
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Figure 26. (A) Modification of organosoluble lignophenol with α,α′-dihalo-p-xylene; (B) Cationic
ring-opening polymerization of 2-ethyl-2-oxazoline. Reproduced with permission [91].

Chakraborty, Mandal, and coworkers developed a lignin-based anti-infective ointment to control
persistent inflammation [92]. They synthesized lignin–graft–polyoxazoline conjugated triazoles as the
new materials. Tosylated lignin macroinitiators were used to conduct the cationic ROP hydrophilic
2-methyl oxazoline monomers. The copolymer was covalently modified with triazole moiety to enhance
the antimicrobial and anti-biofilm activities. A lignin loading of 20 wt % was found to be appropriate
for hydrogel formation with spherical copolymer nanoparticles of 10–15 nm size. These lignin-based
materials have demonstrated abilities to prevent infection of burn wounds, aid healing, and act as an
anti-inflammatory dressing material.

Chung and Sattely et al. developed a catalytic and solvent-free method for synthesis of a
lignin–g–poly(lactic acid) (PLA) copolymer to improve the miscibility of lignin with other biopolymers
(Figure 27) [93]. In this method, graft polymerization of lactide onto lignin was catalyzed by
triazabicyclodecene (TBD). Preacetylation treatment or varying the lignin/lactide ratio demonstrated to
be useful handles to control the PLA chain length. It was evident that high grafting efficiency and
preferential grafting on lignin aliphatic hydroxyls over phenolic hydroxyls. The graft copolymers
displayed Tg’s ranging from 45 to 85 ◦C and multiphase melting behavior. Incorporation of lignin
resulted in an increase in tensile strength and strain while maintaining tensile modulus.

Polymers 2019, 11, x FOR PEER REVIEW 20 of 46 

 

 
Figure 26. (A) Modification of organosoluble lignophenol with α,α′-dihalo-p-xylene; (B) Cationic ring-
opening polymerization of 2-ethyl-2-oxazoline. Reproduced with permission [91]. 

Chakraborty, Mandal, and coworkers developed a lignin-based anti-infective ointment to 
control persistent inflammation [92]. They synthesized lignin–graft–polyoxazoline conjugated 
triazoles as the new materials. Tosylated lignin macroinitiators were used to conduct the cationic 
ROP hydrophilic 2-methyl oxazoline monomers. The copolymer was covalently modified with 
triazole moiety to enhance the antimicrobial and anti-biofilm activities. A lignin loading of 20 wt % 
was found to be appropriate for hydrogel formation with spherical copolymer nanoparticles of 10–
15 nm size. These lignin-based materials have demonstrated abilities to prevent infection of burn 
wounds, aid healing, and act as an anti-inflammatory dressing material.  

Chung and Sattely et al. developed a catalytic and solvent-free method for synthesis of a lignin–
g–poly(lactic acid) (PLA) copolymer to improve the miscibility of lignin with other biopolymers 
(Figure 27) [93]. In this method, graft polymerization of lactide onto lignin was catalyzed by 
triazabicyclodecene (TBD). Preacetylation treatment or varying the lignin/lactide ratio demonstrated 
to be useful handles to control the PLA chain length. It was evident that high grafting efficiency and 
preferential grafting on lignin aliphatic hydroxyls over phenolic hydroxyls. The graft copolymers 
displayed Tg’s ranging from 45 to 85 °C and multiphase melting behavior. Incorporation of lignin 
resulted in an increase in tensile strength and strain while maintaining tensile modulus. 

 
Figure 27. Ring-opening polymerization of lactide on lignin using triazabicyclodecene (TBD) 
organocatalyst. Reproduced with permission [93]. 

Production of biobutanol from corn or wheat straw results in lignocellulosic butanol residue as 
a co-product. Liu and coworkers developed a “graft from” ROP technique to fabricate lignin–graft–
poly(ε-caprolactone) copolymer (BBL–g–PCL) using biobutanol lignin (BBL) as raw material 
recovered from lignocellulosic butanol residue (Figure 28) [94]. A series of BBL–g–PCL copolymers 
with different molecular weights, ranging from 367 to 8200 g/mol were synthesized. They observed 
better dispersion and UV-protective properties of these copolymers. 

Figure 27. Ring-opening polymerization of lactide on lignin using triazabicyclodecene (TBD)
organocatalyst. Reproduced with permission [93].

Production of biobutanol from corn or wheat straw results in lignocellulosic butanol residue
as a co-product. Liu and coworkers developed a “graft from” ROP technique to fabricate
lignin–graft–poly(ε-caprolactone) copolymer (BBL–g–PCL) using biobutanol lignin (BBL) as raw
material recovered from lignocellulosic butanol residue (Figure 28) [94]. A series of BBL–g–PCL
copolymers with different molecular weights, ranging from 367 to 8200 g/mol were synthesized. They
observed better dispersion and UV-protective properties of these copolymers.
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Muller et al. investigated the effects of grafted chain lengths of polycaprolactone and lignin content
toward nucleation, crystallization, and thermal fractionation [99]. It was found that the competition
between lignin nucleation and PCL–g–lignin intermolecular interactions determines the crystallization
behavior of the copolymer. At low lignin contents (2–5 wt %), the nucleation of lignin contributes more
to the behavior due to the limited intermolecular hydrogen bonds. Higher lignin content induces
large antinucleation effects, where hydrogen bond act as physical crosslinks that limit crystallization
and lamellar sizes of PCL segments. This resulted in large decreases in both crystallization and
melting points.

He et al. fabricated PLA-lignin composites by blending lignin–g–rubber–g–poly(d-lactide)
copolymer particles and commercial poly(l-lactide) (PLLA) [95]. Lignin–g–rubber–g–poly(d-lactide)
copolymer was synthesized by the lignin-initiated ring-opening copolymerization of an
ε-caprolactone/l-lactide mixture that resulted in a rubbery layer, followed by the formation of poly(d-lactide)
(PDLA) outer segments via the polymerization of d-lactide. They envisioned that the PDLA segments
may contribute to strong interfacial interactions between lignin-rubber-PDLA and PLLA matrix
by stereocomplexation, as supported by the DSC measurements. More recently, Kai, Loh, and
coworkers investigated a series of new lignin-based copolymers lignin-poly(ε-caprolactone–co–lactide),
lignin-PCLLA for the potential use in healthcare applications [96]. Copolymers with tunable glass
transition temperatures (−40 to 40 ◦C) and molecular weights (10 to 16 kDa) were obtained. Blending
the copolymers with polyesters such as (polycaprolactone, and poly(l-lactic acid) was achieved via
electrospinning. The ultrafine nanofibers were engineered that exhibited antioxidant activity and
biocompatibility. Incorporation of lignin copolymers significantly improved the mechanical properties
of PCL nanofibers. However, a negative effect was observed for the PLLA nanofibers.

Polyhydroxyalkanoate (PHA) is a class of commercially available sustainable aliphatic polyesters
produced by various microorganisms for energy storage purposes [97]. While there are several types of
PHAs, poly(3-hydroxybutyrate) (PHB) has excellent features such as biodegradability, biocompatibility,
and thermoplastic behavior. Kai, Loh, and coworkers developed lignin-PHB copolymers to enhance
the mechanical properties of PHB. They made nanofibers from these modified lignin polymers via
electrospinning. Composites with 2% lignin showed improved tensile strength, elongation as well as
tunable antioxidant properties and biocompatibility.

Oxyanionic polymerization of ethylene oxide initiated by lignin precursors was investigated by
Schmidt et al. [98]. They were able to produce non-ionic surfactants with grafting of poly(ethylene
oxide) from renewable lignin fragments that were formed by hydrogenolysis. These surfactants were
used for the emulsion polymerization of styrene (Figure 29).
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ROMP

Washburn et al., in their patent disclosure, indicated that ring-opening metathesis polymerization
(ROMP) may be used to prepare lignin-based graft polymers using a lignin-derived macroinitiator
(Figure 30) [100]. In this approach, a ruthenium catalyst is covalently attached to the lignin surface, and
strained monomers such as norbornene may proceed to producing “grafting from” polymers. Although
lignin “grafting from” via ROMP is not well explored, there are reports of applicable chemistries where
norbornyl group is used to tether Grubbs′ catalyst to surfaces to make macroinitiators followed by
controlled polymerization of the monomers [101].
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Figure 30. Lignin-based ROMP macroinitiator structure before a ruthenium catalyst is covalently
attached [100].

5.4.5. “Grafting To” Method

The availability of modular and orthogonal “click” and related chemistries has enabled the more
efficient “grafting to” method for the preparation of graft copolymers. In this method, preformed
functional polymers are covalently connected to the substrate via a “click”-type coupling reaction.
This allows for precise control and tuning of properties of the resulting material. Click reactions used in
macromolecular synthesis is reviewed elsewhere [102,103]. While azide-alkyne cycloaddition reaction
is commonly used to make well-defined lignin graft polymers other chemistries such as thiol-based
reactions, Diels-Alder, azo coupling, etherification, esterification, and urethanization are also explored.

Azide–Alkyne Cycloaddition

Tang et al. demonstrated a simple procedure to the preparation of lignin-grafted polymers with
tunable compositions including PEG, PCL, and PLA via robust metal-free thermal azide−alkyne
cycloaddition reaction (TAAC) [104]. Lignin derivatives with reactive functional groups with either
alkyne or azide groups were prepared through facile chemical modifications of lignin hydroxyl groups.
Lignin-PCL and Lignin-(PCL–co–PLA) copolymers were prepared via ROP and functionalized via
esterification reactions. Macromolecules including Lignin-Azide, Lignin-Alkyne, Lignin-PCL-Alkyne,
and Lignin-(PCL–co–PLA)-Alkyne were paired appropriately and further treated thermally to produce
polymer-polymer conjugates. Figure 31 illustrates an example of the Lignin-PCL-Lignin copolymer
synthesis route. This approach enables the utilization of biomass toward low-cost scalable renewable
polymers and composites.
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Figure 31. Synthesis of lignin copolymers via copper-free thermal click chemistry of Lignin-PCL-Alkyne
with Lignin-Azide functional macromolecules. Reproduced with permission [104].

Thermoplastic elastomers (TPE), also referred to as thermoplastic rubbers, are an important
type of elastomers that within their purposed limits behave similar to thermoset rubber but are melt
processable above their melt or softening temperature. Unlike thermoset materials, TPEs can easily be
reprocessed and remolded extending their useful life span. This important feature is typically obtained
by incorporating hard domains in a matrix of elastic compositions. In a more recent paper, Tang et al.
developed TPEs by combining soybean oil-based azide-containing polymers and alkyne functionalized
lignin via TAAC (Figure 32) [105].
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Figure 32. Biobased elastomers prepared by combining soy-based azide-containing polymers and
lignin-alkyne. Reproduced with permission [105].

The elastomeric matrix made of a soybean oil methacrylate polymer with a Tg of −6 ◦C was
prepared by free radical polymerization. Subsequently, azide-functionalized polymers were afforded
by nucleophilic ring-opening of the oxirane group on the fatty pendant groups by sodium azide. Direct
esterification coupling between hydroxyl groups on lignin and 5-hexynoic acid generated the alkyne
functionalized lignin. The two types of polymers were dissolved in varying ratios in THF and poured
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into Teflon molds, solvent removed, and the curing was carried out at 120 ◦C. The resulting soybean
oil-based elastomers exhibited high mechanical strength and excellent elasticity.

Chung et al. reported a new lignin-containing functional polymer, lignin–graft–poly
(5-acetylaminopentyl acrylate) (Lignin–graft–PAA) by the covalent linkage of chemically modified
lignin with end-group functionalized polymer PAA [106]. They prepared PAA via RAFT polymerization
of the monomer with multiple hydrogen-bonding sites. The azide functionalized RAFT agent provided
the chain end functionality to the PAA polymer. Softwood lignin was coupled with 5-hexynoic acid
via DCC coupling to afford the alkyne functionality. A sophisticated structural modification was
achieved by grafting the polymer to lignin via the copper-catalyzed azide-alkyne cycloaddition reaction
(Figure 33). PAA polymer arm lengths of DP 300 and DP 500 were used to create lignin–graft–PAA
with a lignin weight percent of 10, 15, 20, and 25 wt %.
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Lignin–graft–PAA showed uniform dispersion indicating that lignin and PAA polymer are
highly compatible. Young′s modulus, maximum tensile strength, and energy-to-break increased
with increasing lignin content. However, at 25 wt% lignin loading, the material became brittle.
It was found that such chemical modifications impart autonomic self-healing properties to the
lignin-containing polymers.

Westwood and co-workers developed a new method to convert γ-hydroxyl of the β-O-4 unit in a
butanol-extracted organosolv lignin into azide groups [107]. Tosylation of the lignin followed by azide
substitution enabled the formation of a triazole-bridged connection from lignin to a substrate of choice.
2D HSQC NMR analysis of the products obtained via a thermal protocol between a model alkyne
and lignin confirmed the formation of both the 1,4- and 1,5-triazole isomers, as expected. However,
regioselective CuAAC variant was preferred due to the formation of only the 1,4-triazole isomer that
may result in a more homogeneous material. They were able to develop PEGlylated lignin using the
above chemistry, and found that the resulting material exhibit a Tm of 267 ◦C, while unmodified lignin
had a lower Tm at 246 ◦C. The TGA indicated about 14 ◦C increase of Tonset of thermal degradation
for the new materials. These results provide the evidence for an increase in thermal stability of the
PEGlylated lignin.

Thiol-Based Reactions

Thiol-based “click” reactions including thiol-ene and thiol-michael addition has gained much
attention with regard to macromolecular design [108,109]. There are several reports indicating the
use of thiol-ene reactions to graft small functional molecules or polymers to lignin. The reaction
can be photochemically or thermally driven. Generally, for photochemical thiol-ene reaction, two
methods are available: by photoinitiator and by photoredox catalyst. Zhang and Kong et al. developed
N-acetyl-l-cysteine functionalized bamboo lignin via UV-initiated thiol-ene reaction for the enhanced
adsorption of Cu(II) and Pb(II) [110]. In this work, they isolated lignin from bamboo feedstock using an
acetic acid method. The lignin was allylated and coupled with N-acetyl-l-cysteine under UV irradiation
in the presence of the photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA). Lawoko and
co-workers selectively allylated the ethanol-soluble fraction of Lignoboost Kraft lignin using allyl



Polymers 2019, 11, 1176 31 of 44

chloride via a mild and industrially scalable approach [111]. Later, they used thermally induced
initiator-free thiol-ene chemistry to produce lignin thermosets.

The Chung research group reported a low energy and environmentally friendly lignin modification
method induced by visible blue light via a photoredox thiol-ene reaction (Figure 34) [112].
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Figure 34. Lignin modification to prepare lignin-alkene and thiol-ene reaction of lignin-alkene and
PEG-thiol. Reproduced with permission [112].

They allylated softwood kraft lignin was prepared by DCC coupling of 4-pentenoic acid and
lignin. A variety of thiol compounds and PEG-thiol were used for the thiol-ene reaction. Out of three
different photochemical reagents, Ru-(bpy)3Cl2, Eosin Y, and DMPA, the best performing catalyst was
found to be Ru-(bpy)3Cl2. They observed high conversion between 81% and 97% at relatively short
reaction times between 60–180 min under low energy 3 W blue LED light or even by 4 h irradiation of
natural sunlight.

Habibi and co-workers made fully biobased maleimide-lignin derivatives by first coupling soda
lignin and 11-maleimidoundecylenic acid followed by coupling with multifunctional thiol linkers to
produce insoluble polymer networks out of the maleimide-lignin at room temperature, under solvent-
and catalyst-free conditions [113]. The final lignin content in the new lignin-based polymeric materials
was in the range of 30–40%. By varying the linker functionality, the thermal and mechanical properties
of the materials could be widely tuned.

Diels-Alder Reaction

The furan-maleimide Diels-Alder reaction has become a versatile click-unclick tool in
macromolecular design to fabricate thermally reversible advanced materials [114,115]. Habibi
and co-workers prepared thermo-reversible healable materials based on lignin (Figure 35) [116].
In their approach, soda lignin was esterified with 11-maleimidoundecylenic acid to produce
maleimide-containing lignin derivatives that were subsequently homogenized in DCM and polymerized
through the D–A click polymerization at 60 ◦C with different multifunctional furan linkers.
The polymeric networks demonstrated self-healing properties when scratched and further cured at
110–130 ◦C.
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Figure 35. Thermo-reversible D-A polymerization of maleimide grafted lignin with the multifunctional
furan linkers. Reproduced with permission [116].

Azo Coupling Reactions

Azo coupling reaction is simply the reaction between a diazonium compound and another
aromatic compound that produces an azo compound. It is a useful tool to prepare organic azobenzene
molecules or side chain azo polymers with a high degree of functionalization [117,118]. Qiu, Qian and
co-workers prepared lignin-based azo polymers from alkali lignin [119]. UV-blocking performance
of hollow lignin azo colloids and their controlled release of photosensitive pesticide avermectin was
investigated. Macromolecular functionalization via post-azo-coupling reaction was efficiently utilized
to synthesize advanced lignin grafted polymers (Figure 36) [120]. In this work, He et al. PEGylated
alkali lignin to make water-soluble lignin-based polymers by a one-step coupling reaction between
lignin and PEG-based macromolecular diazonium salts in alkaline water. Interestingly, the graft
polymers had good solubility both in water over a wide pH range (pH 2–12) and in many organic
solvents. Self-assembled colloidal particles and nanofibers were developed by vapor diffusion and
electrospinning. In addition, photo-responsive properties were observed in these lignin azo polymers.
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Figure 36. Synthetic route to produce PEGylated alkali lignin (AL-azo-PEG). Reproduced with
permission [120].
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Etherification

Lignin hydroxyl groups are often etherified or esterified to produce functional materials. Washburn
et al. prepared PEGylated lignin to study the effects of PEGylation on the interfacial activities [121].
They modified kraft lignin and sodium lignosulfonate using a simple etherification reaction. First,
they mesylated mPEG hydroxyl groups using methanesulfonic anhydride. The lignin phenolic
hydrogyl groups were then reacted with mPEG-Ms at high pH conditions via nucleophilic substitution
chemistry which generated a grafting density of ca. 5 polymer grafts per lignin core. PEGylated lignin
demonstrated modest reductions in air-water surface tension and formulations based on PEGylated kraft
lignin are significantly more effective at stabilizing oil-water interfaces than PEGylated lignosulfonate.

Epoxy ring opening reaction has shown utility in grafting small molecules and polymers as
well as producing cross-linked lignin thermosets. Lignin-based water-soluble polyoxyethylene
ether was synthesized by Qui et al. via covalent grafting epoxy functionalized poly(ethylene
glycol) to kraft lignin [122]. Reactive PEG polymers with various lengths were fabricated via chain
end functionalization using epichlorohydrin and the catalyst BF3-Et2O. Then, kraft lignin phenolic
hydroxyl groups were blocked by etherification with the PEG-chlorohydrin intermediate under alkaline
condition. The lignin-PEG copolymer was used as a dispersant for 50% dimethomorph agricultural
suspension concentrates and demonstrated improved dispersing and rheological properties compared
to lignosulfonate and PEG.

Esterification

A novel lignin-based targeted polymeric nanoparticles platform was developed by Lei, Wang, and
Ma et al. utilizing folic acid-polyethylene glycol-alkaline lignin conjugates [123]. A simple esterification
method was followed to covalently attach alkaline lignin and folic acid functionalized PEG.

Boronic acid-containing macromolecules have gained attention in the polymer and materials
science to produce dynamic covalent materials, dual thermo- and saccharide-responsive hydrogels,
sensors, and nanomaterials [124]. Arylboronate ester linkages are formed between the reaction of
boronic acids and 1,3-diols. In a groundwork investigation, Iovine et al. synthesized arylboronate
ester-modified artificial lignins [125]. The presence of 1,3-diols in lignin’s most prevalent structural
subunit (β-O-4) indicated the possibility of grafting to lignin using boronic acid chemistry. Iovine et al.
more recently developed PCL graft organosolve lignin using a novel “graft to” approach (Figure 37) [126].
The graft copolymers were prepared by covalently linking boron end-functionalized polycaprolactone
PCL homopolymers with organosolv lignin via reversible covalent bonds consisting of arylboronate
ester bonds.Polymers 2019, 11, x FOR PEER REVIEW 28 of 46 
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Urethane Linkages

The interest in making polyurethanes and polyesters from lignin for applications in adhesives
and coatings is immense [127]. Diisocyanates (or polyisocyanates) and polyols with terminal hydroxyl
groups react to form polyurethane (carbamate) groups. In terms of the “grafting to” method, urethane
chemistry has great potential in lignin chemistry due to the abundance of phenolic and aliphatic
hydroxyl functional groups in lignin. For example, Figure 38 illustrates the polyurethane synthesis
from organosolv lignin and an isocyanate-terminated poly(propylene oxide) macromonomer catalyzed
by dibutyltin dilaurate as reported by Gandini et al. [128].
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Zhang, Fang, and coworkers reported renewable high-performance polyurethane bioplastics
derived from lignin-poly(ε-caprolactone) (Figure 39) [129].
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They incorporated poly(ε-caprolactone) as a biodegradable soft segment to lignin using
hexamethylene diisocyanate as the reactive grafting agent. The polyurethane film possessed high
performance in tensile strength (19.4 MPa), breaking elongation (188%), and tear strength (39 kN/m)
when the lignin content was as high as 37%. In addition, the thermal stability of the new materials was
excellent compared to purified lignin.

6. Conclusions and Future Prospects

Lignin chemistry has fascinated many generations of scientists, scholars and industry leaders.
There certainly are many opportunities in developing new materials based on lignin with tailor-made
physical properties. The complex and variable molecular architecture of lignin provides a challenging
avenue to move forward. Due to the variability of the chemical structure, lignins can be considered
as macromolecules with a generally known structure that depends on the plant source and chemical
reactions used in isolation. Thus, each family of lignins requires specific characterization before
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manipulation for targeted end-use applications. As discussed above, controlled polymerization
methods such as ATRP, RAFT, and ADMET, as well as polymer “grafting to” chemistries such as
versatile “click” reactions, have facilitated many exciting innovations leading to a variety of chemical
structures, physical properties, and applications.

In the past four decades, numerous studies and efforts have been dedicated to incorporating
lignin or lignin derivatives into commercial polymeric materials. The use of multifunctional lignin
macromolecules or oligomers as the replacement of polyols is one of the more promising strategies
that would enable the use of lignin in a variety of applications in adhesives [130], foams [131] and
coatings. However, the immiscibility of lignin and its thermal charring properties has some drawbacks.
There are many reports that demonstrate the utility of polymer grafting to improve lignin miscibility
and tune thermal properties. Such advances will lead to the utilization of lignins as functional
fillers and reinforcement agents to improve the mechanical and thermal properties of polymeric
materials. 3D-printable resins made of lignin have gained tremendous interest [132]. Melt stability,
extrudability, and mechanical properties are several aspects of investigations that are needed in this
research focus. Lignin-based materials such as Arboform™ thermoplastic material by Tecnaro have
captured industrial attention. It is essential to have high glass transition temperatures (>60 ◦C) to
replace commodity plastics in the amorphous state [133]. High temperature-resistant thermoplastics,
thermosets, and heat-resistant additives are several classes of materials that can be developed from
lignin. For example, lignin-derived methacrylate polymers can have tunable and high glass transition
temperatures [47,134]. Lignin and its tailor-made derivatives can have many beneficial characteristics
for biomedical applications. In several cases, pharmacological activities of lignin such as antiviral,
antidiabetic, and antitumor effects are observed [135]. Lignin-based polymeric materials have potential
applications in drug delivery and gene delivery as well. Furthermore, lignin is considered to be a
useful substrate to produce carbon materials such as activated carbon, carbon fibers, graphitic carbons,
and carbon black with applications such as environmental protection, catalysts, energy storage and
reinforcing agents [136]. Scion and Revolution Fibers Ltd. (Auckland, New Zealand) have successfully
produced lignin-derived continuous carbon nanofiber mats using pilot-scale electrospinning [137].
Lignin-based nanomaterials are gaining interest. Nanolignin-derived materials may provide new
approaches for polymeric lignin valorization [138].

Interest should also be given to understanding the environmental impact of lignin extraction
via the paper pulping process or lignin-first methods. Since lignin is an important soil former,
one aspect of research is to understand how much wood or lignin should be present in natural
environments for biodegradation and soil ecosystem balance. Many researchers are interested in
exploring microorganisms such as white rot fungi that can efficiently degrade woody material and
lignin. There is evidence to support the biodegradation of lignin, and that lignin biodegradation can
be accelerated using other carbon sources for microorganisms. However, it would be interesting to
study how polymer grafting can be used as a tool to fine tune lignin biodegradation.

The biotechnology advances to produce designer lignins, as well as improvements in lignin
isolation methods, will enhance lignin utilization as a chemical feedstock. Increased environmental
awareness and education change consumer behavior towards “greener” materials that may help
biobased materials compete with petroleum-based products. However, it is always challenging to
replace current commodity materials without a performance advantage. Given the competitive nature of
petroleum-based alternatives, lignin-based new chemicals and materials need careful and cost-effective
designs with reproducible properties in order to reach into the market to serve as value-added
materials. Lignin valorization requires combined global efforts from scientists representing many fields
of science and engineering. With more efforts from the global research community, more advanced,
high-performance lignin biopolymers and composites will be a technical and commercial success in
the near future.
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ADMET Acyclic diene metathesis
AGET ATRP Activators generated by electron transfer atom transfer radical polymerization
AIBN Azobisisobutyronitrile
ATRP Atom transfer radical polymerization
BBL Biobutanol lignin
BiBB 2-Bromoisobutyryl bromide
CTA Chain transfer agent
CRP Controlled radical polymerization
DEAEMA 2-(Diethylamino)ethyl methacrylate
DMAEMA 2-(Dimethylamino)ethyl methacrylate
DMPA 2,2-Dimethoxy-2-phenylacetophenone
FRP Free radical polymerization
HLS Hardwood lignosulfonates
KF-3CR Kabachnik-Fields three-component reaction
LCST Lower critical solution temperature
LMC Lignin model compound
LP Lignophenol
MCR Multi-component reaction
NIPAM N-isopropylacrylamide
NMP Nitroxide mediated polymerization
PAA Poly(5-acetylaminopentyl acrylate)
PC Polycarbonate
PCL Polycaprolactone
PEG Poly(ethylene glycol)
PET Poly(ethylene terephthalate)
PHA Polyhydroxyalkanoate
PHB Poly(3-hydroxybutyrate)
PLLA Poly(l-lactide)
PNIPAAm Poly(N-isopropylacrylamide)
PPG Poly(propylene glycol)
PSA Pressure-sensitive adhesives
PSt Polystyrene
PVC Poly(vinyl chloride)
PVP Polyvinylpyrrolidone
RAFT Reversible addition fragmentation chain transfer
ROMP Ring-opening metathesis polymerization
ROP Ring-opening polymerization
SI-ATRP Surface-initiated ATRP
SLS Softwood lignosulfonates
TAAC Thermal azide−alkyne cycloaddition reaction
TBD Triazabicyclodecene
TGA Thermal gravimetric analysis
TPE Thermoplastic elastomers
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