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Attempted Arm and Hand 
Movements can be Decoded from 
Low-Frequency EEG from Persons 
with Spinal Cord Injury
Patrick Ofner   1, Andreas Schwarz   1, Joana Pereira   1, Daniela Wyss2, Renate Wildburger2 
& Gernot R. Müller-Putz   1

We show that persons with spinal cord injury (SCI) retain decodable neural correlates of attempted 
arm and hand movements. We investigated hand open, palmar grasp, lateral grasp, pronation, and 
supination in 10 persons with cervical SCI. Discriminative movement information was provided by 
the time-domain of low-frequency electroencephalography (EEG) signals. Based on these signals, 
we obtained a maximum average classification accuracy of 45% (chance level was 20%) with respect 
to the five investigated classes. Pattern analysis indicates central motor areas as the origin of the 
discriminative signals. Furthermore, we introduce a proof-of-concept to classify movement attempts 
online in a closed loop, and tested it on a person with cervical SCI. We achieved here a modest 
classification performance of 68.4% with respect to palmar grasp vs hand open (chance level 50%).

Persons with cervical spinal cord injury (SCI) have lost the majority of voluntary motor control functions. In 
addition to paralysis of the lower limbs, upper limb functionality is usually severely limited. Brain-computer 
interfaces (BCIs)1 in combination with upper-limb motor neuroprostheses2,3 have been proposed as a remedy4–6. 
A BCI can detect user induced changes in brain-signals and transform them into control signals for neuropro-
stheses or robotic arms5–16. Brain signals can be recorded invasively or non-invasively for this purpose. In the 
present work, we focus on and apply the non-invasive electroencephalography (EEG) recording technique. 
EEG-based BCIs for neuroprostheses control rely typically on changes of oscillations originating from senso-
rimotor areas17,18 to detect and differentiate executed, imagined or attempted movements involving different 
body parts15. However, oscillation-based BCIs could impose non-intuitive control paradigms (e.g. repetitive foot 
motor imagery to control a hand function). In recent years, low-frequency time-domain signals have also gained 
attention in the BCI field as these have been shown to encode even more information about movements such as 
trajectories19–23, see24 for a review. Movement-related cortical potentials (MRCPs)25,26 in particular were shown to 
encode, e.g., reaching directions/targets27–29, or force30.

MRCPs are particularly interesting when designing an intuitive control paradigm for a BCI. For example, 
MRCPs encode even various single movements of the same limb, such as hand open, hand close, or different grasp 
types31–33, which could be detected by an EEG-based BCI and transformed into movements via a neuroprosthesis. 
As a result of this a person with SCI would only need to attempt to open the right hand in order to actually open 
it, and analogously, to close it. This eventually allows a natural control paradigm. In this work, we thus analyzed 
MRCPs in participants with SCI during attempted movements.

This work comprises two parts. In the first part, we analyzed whether attempted arm and hand movements of 
participants with SCI can be classified from MRCPs. We have shown in our previous work31,32 that low-frequency 
time-domain EEG signals (which capture MRCPs) encode information about hand and arm movements of the 
same limb in able-bodied participants. The translation of these results to participants with SCI, however, is still 
lacking. MRCPs in participants with SCI are present during movement imagination and movement attempts but 
there is evidence that they are altered34–36. As a result of this they may not be encoding the same information as 
in able-bodied participants. We therefore analyzed whether single movement attempts (i.e. hand open, palmar 
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grasp, lateral grasp, supination, and pronation) can be classified based on low-frequency time-domain EEG sig-
nals in participants with SCI. Furthermore, we analyzed movement-related differences of the neural correlate.

In the second part, we propose a proof-of-concept of an MRCPs-based online classifier for self-paced 
attempted hand movements (hand open vs palmar grasp). In this proof-of-concept study, we describe the nec-
essary adaptations of the training paradigm and the classifier, and present the online results of two sessions in a 
participant with SCI.

Results
Movement classification.  Classification accuracies.  We measured 10 participants with cervical SCI, each 
of whom was seated in a wheelchair in front of a computer screen. Instructions were given on the computer 
screen to the participants, and according to the instructions, they attempted or executed one of the following 
movements: pronation, supination, palmar grasp, lateral grasp or hand open. The offline paradigm is shown in 
Fig. 1. Participants executed or attempted a movement depending on their individual SCI status (see Table 1 and 
Supplementary Table 1)37. We performed an offline analysis and classified the 5 movements from the band-pass 
filtered EEG signals (0.3 to 3 Hz) with a shrinkage linear discriminant analysis (sLDA) classifier. This yielded a 
grand average accuracy, which peaked with 45.3% at 1.1 s after class cue presentation. The confidence interval 
at this peak was [40.3%, 50.3%] (calculated based on a t-distribution38). A plot of the participants’ classification 

Figure 1.  Offline Paradigm. (a) Participants with SCI sat in their wheelchairs and attempted the movement 
requested on a computer screen. (b) Illustration of the attempted movements.

participant sex age [years]
dominant 
hand

tested 
hand

time since lesion 
[years | months] AIS NLI

P01 male 35 right right 0 11 B sub C6

P02 male 42 right right 0 10 D sub C1

P03 male 62 right right 0 7 B sub C5

P04 female 20 right right 16 9 B C5

P05 male 57 right right 0 9 A sub C4

P06 male 78 right right 0 7 D sub C5

P07 male 27 right left 0 4 C sub C4

P08 male 69 right right 2 0 B C7

P09 male 53 right right 6 2 A sub C4

P10 male 55 right right 1 11 A sub C6

Table 1.  Status of participants. Includes American Spinal Injury Association Impairment Scale (AIS) and 
Neurological Level of Injury (NLI). Explanation of AIS scores: A = complete, B = sensory incomplete, 
C = motor incomplete, D = motor incomplete.
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accuracies and the grand average can be found in Fig. 2a. The plot includes the 95% confidence interval of the 
grand average (based on a t-distribution38). The chance level for 5 classes is 20% and the significance level for 
the grand average was determined as 22.3% (α = 0.05, adjusted wald interval39,40, Bonferroni corrected for the 
length of the analyzed time interval). Additionally, the peak accuracies for individual participants with their 
corresponding latencies are shown in Table 2. The confusion matrix in Fig. 2b, calculated at the peak of the grand 
average accuracy, shows that all classes are discriminable but classes involving common joints are more prone to 
be misclassified than classes involving separate joints. We classified EEG samples using a time window of 1.4 s 
length which was shifted along the trial, and aligned the classification accuracies to the center of this time window 
(we refer to this time window as feature extraction window). Similar to31, we then also compared different lengths 
of feature extraction windows. One can see in Fig. 2d and Supplementary Table 2 that the classification accuracies 
start saturating with feature extraction windows above 1 s. We therefore did not test feature extraction windows 

Figure 2.  Offline Results for the full set of participants (n = 10). All times are relative to the trial start (a) 
Classification accuracy as a function of time. Grand-average classification accuracy and its respective 95% 
confidence interval is shown in black, individual classification accuracies are shown in thin, colored traces 
(feature extraction window size = 1.4 s). The grand average classification accuracy peak is marked. (b) 
Confusion matrix at peak grand average classification accuracy. (c) Difference Topoplots. Statistically significant 
differences on electrodes are marked with an “x”. (d) Grand average classification accuracies for different feature 
extraction window sizes (0 s corresponds to one sample). (e) Grand average time courses of the electrical 
potentials on electrode Cz with 95% confidence intervals.

participant p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

peak acc [%] 35.1 47.7 50.2 52.8 52.7 58.2 40.4 47.7 44.2 42.1

peak latency [s] 2.4 3.3 3.1 3.1 3 2.8 3.1 2.2 3.1 2.9

Table 2.  Peak classification accuracies per participant, and respective latencies with a feature extraction 
window size of 1.4 s.
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longer than 1.4 s and selected this window length for the classification analyses. The reader must keep in mind 
here that the filter and feature extraction windows were non-causal.

The motor skills of our participants were not homogeneous and some of them had a remaining but impaired 
hand function or could rotate the forearm. We therefore selected a subset comprising 5 participants who have 
a motor score of 0 or 1 for finger flexors and finger abductors on the International Standards for Neurological 
Classification of Spinal Cord Injury (ISNCSCI) impairment scale37, i.e. no active hand movement. This subset 
was then subjected to a 3-class classification (palmar grasp, lateral grasp, hand open). By this means we analyzed 
exclusively those movement classes which could not be executed by the participants. Figure 3a shows the time 
course of the classification accuracies. The grand average peak was 53.0% at 1 s after class cue presentation with a 
95% confidence interval of [47.5%, 58.6%] (the chance level is 33.3% and significance level is 38.1%). The confu-
sion matrix in Fig. 3b indicates that all classes can be discriminated.

MRCPs.  The trial averaged electrical potential on the central electrode Cz shows the typical pattern emerging in 
a synchronous paradigm (c.f. Fig. 2e). 500 ms after the presentation of the class cue, a positive peak developed cor-
responding to the cognitive processing of the cue. This positive peak is then followed by a negative peak around 
1 s after cue presentation which we attribute to the movement attempt and related to MRCPs. Also the averaged 
potentials of the 5 participant subset (i.e. without active hand movement) have qualitatively similar features (c.f. 
Fig. 3d). Signals were non-causal filtered between 0.3 to 3 Hz with a monopolar reference. The 95% confidence 
intervals are based on a t-distribution38 over participants.

Figure 3.  Offline Results for the subset of participants (n = 5) with no active hand movement comprising 
only of palmar grasp, lateral grasp and hand open classes. All times are relative to trial start (a) Classification 
accuracies of individual participants (thin traces) and the grand average (black thick line) with its respective 
95% confidence interval. The classification accuracy peak is marked. (b) Confusion matrix at peak grand 
average classification accuracy. (c) Difference Topoplots. Statistically significant differences on electrodes 
are marked with an “x”. (d) Grand average time courses of the electrical potentials on electrode Cz with 95% 
confidence intervals.
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The early positive and the later negative peaks were defined as points-of-interest, and we analyzed whether 
their amplitude or latency contains discriminative information for the 5 movement classes. Descriptive statistics 
can be found in Table 3 which indicates differences of the peaks in the amplitudes and time latencies with respect 
to the movement classes. Moreover, a nonparametric Friedmann test (α = 0.05) found a statistically significant 
effect of the class on the amplitude of the positive and negative peak ([χ2(4) = 16.3, p = 0.0026], [χ2(4) = 20.3, 
p = 0.0004]), as well as on the latency of the positive and negative peak ([χ2(4) = 22.1, p = 0.0002], [χ2(4) = 12.2, 
p = 0.0158]). Thus, the early positive and the later negative peak contain discriminative information about the 
movement class.

Difference topoplots.  We calculated the differences between the topoplots of each class (see Section Difference 
topoplots for further explanations). This allowed us to check the origin of the brain signals containing discrim-
inative information. The resulting plots are termed difference topoplots in this work, and can be seen in Figs 2c 
and 3c where we averaged over the full set of participants and the subset, respectively. For both sets, the differ-
ence topoplot sequences indicate differences on the central motor cortex, which peak around second 1. This 
means that at the time point of maximum classification accuracy, signals do indeed originate from plausible, i.e. 
movement-related, brain regions and not from other sources. The subset difference topoplots furthermore show 
an involvement of the occipital cortex around 1.5 s. Statistically significant differences at time points and elec-
trodes are marked (α = 0.05, one-tailed nonparametric permutation test).

Proof-of-Concept of an online classifier.  We presented the offline classification of attempted movements 
in the previous section, here we introduce a proof-of-concept to demonstrate the classification of hand open vs 
palmar grasp in a closed-loop for a participant with SCI. We recruited participant P09 who has an ISNCSCI 
motor score of 0 for elbow extensors, finger flexors and finger abductors, i.e. total paralysis of the hand, and meas-
ured two sessions on different days.

We introduced a new training paradigm for the classifier. One must keep in mind that the offline paradigm is 
synchronous and has a cue which requires a cognitive processing, which is then reflected in the EEG potential. 
Figure 2e is a convenient example of this. However, in a self-paced paradigm the cue-related potential would not 
be generated at all but only the MRCPs (associated to the negative peak). Therefore, it is imperative that the clas-
sifier is trained on MRCPs which are affected to the least extent possible by the cue. Figure 4a shows the training 
paradigm used for the proof-of-concept study. We used a training paradigm where the class cue was presented 
immediately at the trial start. This class cue was then replaced by the ready cue, a green filled circle, which started 
shrinking at a random speed. When the shrinking ball hit the circumference of a small white circle, representing 
the go cue, the participant was required to attempt the movement.

The trial-averaged electrode potential of Cz, time locked to the go cue (second 0), is shown in Fig. 4c. One 
can see in Fig. 4c that the positive peak before the negative peak is reduced. The depicted potentials include 95% 
confidence intervals based on a t-distribution38 over trials. The potentials corresponding to the two sessions differ 
right after the movement attempt at around 0.5 s to 1 s, which corresponds to the characteristic negative deflection 
of MRCPs. Interestingly, it was noted that there is a second negativity around 1.5 s to 2 s exclusively for the second 
session. This difference between sessions might be due to slightly different instructions to the participant. We 
asked for a sustained single movement attempt in the first session and for a short single movement attempt in the 
second session. The additional positive peak between 2 s and 2.5 s is well separated from the negative peak and 
could have been induced by the sudden disappearance of the cues on the computer screen at trial end. Overall, we 
can see that the potential time course is closer to that of typical MRCPs25,26. This training paradigm is therefore 
apparently more applicable to train a self-paced movement classifier than the offline paradigm. Using this new 
training paradigm and additional rest trials, we trained a 3-class online classifier to detect hand open, palmar 
grasp and rest state.

Subsequently, we evaluated the classifier using the test paradigm shown in Fig. 4b. The class cue (hand open, 
palmar grasp, rest) was shown together with a white cross in the beginning of a trial. After 5 s, the class cue dis-
appeared and the white cross was shown for the next 60 s. The participant was instructed to perform in this 60 s 
period multiple self-paced movement attempts if it was a hand open or palmar grasp trial, or to remain inactive in 
rest trials. During recording, the online classifier was constantly active and provided feedback. When a movement 
was detected, a hand open or palmar grasp symbol was shown for 2 s on the computer screen. The participant was 
furthermore instructed to report a movement attempt by a soft speech sound 2 s after the movement attempt to 
mark movement events.

class

positive peak negative peak

amplitude [µV] latency [s] amplitude [µV] latency [s]

mean std dev mean std dev mean std dev mean std dev

pronation 8.01 2.97 0.44 0.14 −5.48 2.38 1.10 0.09

supination 8.44 3.79 0.49 0.13 −6.05 2.15 1.05 0.11

hand open 8.17 3.36 0.51 0.11 −5.33 2.41 1.35 0.59

palmar grasp 6.56 3.34 0.53 0.08 −4.45 2.02 1.41 0.41

lateral grasp 6.68 2.86 0.56 0.08 −3.68 2.19 1.27 0.21

Table 3.  Descriptive statistics of the positive and negative peaks of the electrical potentials on Cz. Latency is 
relative to the class cue.
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We defined then a true positive window relative to these reported events. We considered a movement detec-
tion only as a true positive when it occurred within the true positive window (regardless of the movement class). 
The true positive rate (TPR) is then the number of true positives (TP) divided by the number of reported move-
ment attempts multiplied by 100. Formally, the TPR is defined as TPR = TP/P·100, where P is the number of 
condition positives (i.e. the sum of true positives and false negatives). The classification accuracy regarding hand 
open vs palmar grasp was calculated based on true positives only, i.e. detections outside the true positive window 
were ignored. We also calculate the number of false positives per minute (FP/min). To do this, every detec-
tion within a rest trial was counted as a false positive and then normalized to a per minute rate. Eventually, we 
obtained an average classification accuracy of 68.4% over both sessions, and the individual session results can be 
found in Table 4.

Finally, we analyzed whether the classifier was indeed decoding from brain signals. First, we selected all true 
positives, i.e. all movement detections within the true positive window irrespective of the movement class. Next, 
we aligned to the assumed movement onset which is the time point of the movement detection minus the detec-
tion delay (c.f. Section Detection delay). The detection delay was 2.5 s in session 1 and 2.2 s in session 2. We then 
averaged over trials for each session, and show the electrode potential of Cz in Fig. 4d. The potentials show the 
typical negativity present in MRCPs and in the potentials elicited in the training paradigm, which is shown in 
Fig. 4c. The electrode potentials are shown separate for each movement class in Fig. 5. Second, we show in Fig. 6 
the topoplots at the time lags used as features by the classifier (0 s to 1.4 s in 200 ms intervals). The topoplots (not 
to be confused with the difference topoplots) indicate that the classifier uses brain signals originating from lateral 
and central motor areas which is typical for MRCPs. Importantly, the EEG signals in Fig. 6 were causally filtered 
to show the reader what the classifier identified when it detected a true positive. The signals in Fig. 4c,d, however, 
were non-causally filtered to avoid phase distortion and ease the interpretation.

Figure 4.  Training and test paradigms for online classification and respective electrode potentials. (a) Training 
paradigm. A green filled circle shrunk with a random speed. The participant attempted a movement (hand open 
or palmar grasp) when it hit the inner white circle, i.e. the go cue. (b) Test paradigm. The participant repeatedly 
attempted self-paced movements. (c) 95% confidence intervals of the electrode potentials on Cz, time locked to 
the go cue. (d) 95% confidence interval of the electrode potentials on Cz, time locked to the assumed movement 
onset (i.e. the movement detection time point corrected by the detection delay). Additionally, movement 
detection time points are shown for each session.

session movement attempts TP count TPR [%] FP/min accuracy [%] significance level [%]

1 188 50 26.6 3.2 66.0 62.4

2 130 48 36.9 3.6 70.8 65.3

Table 4.  Online detection and classification results of both sessions.
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Discussion
Movement classification.  We showed that participants with cervical SCI having impaired upper limb 
movements encode information about attempted arm and hand movements in low-frequency time-domain EEG 
signals. This information can be used to discriminate hand open, palmar grasp, lateral grasp, pronation, and 
supination.

We showed in our previous work the decoding of arm and hand movements from MRCPs31,32, i.e. 
low-frequency time domain signals. However, MRCPs are altered in participants with SCI34–36. It was therefore 
unclear if these participants encode similar information in the EEG as participants with an intact spinal cord. 
With respect to non-invasive recording techniques, it was so far only shown that low-frequency time-domain 
magnetoencephalography (MEG) signals can be used to discriminate a limited attempted movement set (hand 
open vs hand close) in participants with SCI41. To the best of our knowledge, this study is therefore the first to 
show that an extended arm/hand movement set can be classified from low-frequency time-domain EEG signals 
in participants with SCI.

Figure 5.  Electrode potentials at the proof-of-concept classification. Shown are the 95% confidence intervals 
at electrode Cz time locked to the go cue or assumed movement onset, respectively. (a) Session 1, training 
paradigm. (b) Session 1, test paradigm. (c) Session 2, training paradigm. (d) Session 2, test paradigm.

Figure 6.  Topoplots from test paradigm. The topoplots are time-locked to true positive movement detections 
and second 0 corresponds to ttrain (i.e. the detection time point minus 575 ms, see Section Detection delay). Thus, 
the time lags shown comprise the input features of the classifier. (a) Topoplot from session 1. (b) Topoplots from 
session 2.
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8Scientific Reports |          (2019) 9:7134  | https://doi.org/10.1038/s41598-019-43594-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

We focused on low-frequency signals as they encode movement trajectories, movement directions, grasp 
types, speed or force in EEG19–21,23,32,33,42–45 and ECoG signals46–51. Other frequency bands used in classical 
oscillation-based BCIs5,6,17, i.e. mu and beta band, were found to encode a general movement state rather than 
movement parameters (how a movement is performed)27,42,49,51–53. However, recent studies extend these findings. 
For example, Iturrate et al.33 found spectral power differences in the upper alpha and lower beta bands for power 
and precision grasps. Korik et al.54 demonstrated the decoding of executed and imagined 3D hand movement 
trajectories from mu, beta, and low gamma bands. Future studies will have to further investigate the decoding of 
movement parameters from time-domain and frequency-domain features and consistently integrate the findings 
from both domains.

We found the EEG neural correlates of hand and arm movements differ in central brain areas. No apparent 
lateralization effect was observable. This is plausible as central brain areas like the Supplementary motor area 
(SMA), primary motor cortex (M1), and somatosensory cortex (S1) are involved in motor control55,56. However, a 
precise localization is not possible in the channel space. Furthermore, the accuracy plots and difference topoplots 
indicate that the movement information is spread over time. Moreover the electrical potential on Cz develops 
two distinctive peaks over time, a positive peak immediately after the cue followed by a negative peak. The pos-
itive peak is most likely a complex of P3 and positive slow wave potentials related to stimulus evaluation57,58 and 
response selection59,60; earlier perception related potentials are filtered out due to their higher frequency com-
ponents. The negative peak can be explained as an MRCP25,26. Both peaks differ in their amplitude and latency 
depending on the movement, however only the negative peak around 3 s after cue leads to significant differences 
in the difference topoplots. Furthermore, we obtained significant classification accuracies at both peak latencies 
(especially with a short feature extraction window). We therefore make the assumption that processes related to 
inferring the desired behavior (evaluation of rules) as well as movement related processes can be decoded from 
low-frequency EEG signals.

We found as in31,32 that the classification accuracy improves with the length of the feature extraction window. 
This is expected as the discriminable information is spread over time. Moreover, the additional time inputs are 
weighted by the classifier which can be seen as a temporal filter. This filter could fine-tune the 0.3–3 Hz band-pass 
filter to extract the proper signals. The classification accuracies, however, show a saturation effect and time win-
dows above 1 s add little or no improvement. Furthermore, we found that the discriminability is dependent on 
the joints involved in the movement. The confusion matrix indicates that movement classes with separate joints 
are better discriminable than movement classes with common joints, e.g. pronation is better discriminable from 
hand open than from supination. This was observed before in healthy participants31, and it implies that related 
body parts are encoded closer in low-frequency time-domain EEG signals than less related body parts. Thus, their 
signal sources are spatially closer and/or the time courses of the generated signals are more similar.

One can observe in the classification accuracy plots that the accuracy raises above significance level before 
the cue onset, i.e. at a time period when no class information was yet available to the participants. We ascribe 
that effect to the employed zero-phase band-pass filter and the symmetric feature extraction window which were 
non-causal. Due to these non-causal features and the low-frequency band, future information in the signal is 
perceptibly spread back in time. This leads to discriminable signals even before the class cue onset.

Participants with SCI available for studies are often heterogeneous with respect to their residual movement 
functions, and despite all participants having restrictions in their upper limb movements, the degree of move-
ment function nevertheless varied from person to person. We therefore run an additional analysis comprised only 
of participants with no active hand movements and a restricted movement set (hand open, palmar grasp, lateral 
grasp). We obtained a statistically significant classification accuracy which peaked again around 1 s. Furthermore, 
the emerging neural correlates were similar. As before, differences in central brain areas are observable, but addi-
tionally also on occipital areas, which could be related to the visual processing of the cue. However, this effect 
vanished in a larger group and could be a spurious finding due to the small group size. Also the electrical potential 
on Cz has a qualitatively similar shape, comprising of a positive peak followed by a negative peak.

Proof-of-concept of an online classifier.  An online classifier ideally detects self-paced movements (i.e. 
movement vs. rest state), and simultaneously classifies them, for example as hand open or palmar grasp as in this 
work. The critical issue for an effective online classifier is the availability of applicable training data: the train-
ing paradigm should elicit MRCPs which are as close as possible to MRCPs elicited in a self-paced paradigm. 
However, cue-based paradigms similar to the Graz BCI paradigm61 are not suitable to elicit clean MRCPs because 
they are usually contaminated with cue-related potentials (as we have observed in the first part of this study). 
An alternative would be a self-paced training paradigm where the classifier is trained by time-locking on the 
movement onset62–67. However, participants with SCI may have lost all movement functionality of the respective 
limb, and may not provide any measurable EMG signals to detect the movement onset. We therefore designed 
a suitable training paradigm and added ready and go cues in addition to the class cue. The class cue requires the 
retrieval and selection of memorized task rules, and separates these processes from the actual movement attempt. 
There were variable time intervals before the go cue in order to make class and ready cue associated potentials 
indiscernible when time-locking to the go cue and averaging. Another important point in our paradigm is that 
the ready and go cues have a class-independent appearance to avoid any class-related perception differences. Plus, 
by adding a fixation cross in the middle and a symmetrically shrinking green ball, eye movements can be mini-
mized. Finally, both cross and green ball are still displayed for 2 seconds after the go cue to avoid further evoked 
potentials close to the go cue due to their disappearance. Furthermore, the predictability of the go cue as given by 
our training paradigm is critical. The literature shows that MRCPs preceding self-paced and regular-cued move-
ments are similar in shape and topography68–70. On the downside, our training paradigm may be contaminated 
with a contingent negative variation (CNV) potential, which is elicited by a warning stimulus followed by an 
imperative stimulus71,72. The CNV comprises of two components, one occurs after the warning stimulus and one 
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before the imperative stimulus (i.e. the go cue in our paradigm). The last component in particular could form a 
potential complex with the Bereitschaftspotential (BP)26. However, for longer intervals between the warning and 
imperative stimulus (in the second range), the second component of the CNV and the late BP become similar in 
time course and scalp distribution73–75. Aside from these theoretical considerations, the potentials measured on 
participant P09 resemble the shape of band-pass filtered MRCPs. Interestingly, around 1.5 s to 2 s after the go cue 
we can observe a sustained positive potential deflection in training session 1 which is absent in training session 
2. This difference in the potentials is probably due to differences in the movement strategy. Participant P09 was 
instructed to sustain the attempted movement until the end of the trial in training session 1 but not in training 
session 2. However, the majority of the EEG samples used for classifier training are from an interval before the 
deflection differences occur. The effect of the movement strategy on the evaluation outcome should be therefore 
negligible, which is also indicated by comparable classification accuracies in the two test sessions.

Interestingly, the hand open vs palmar grasp vs rest classifier had its maximum offline classification accuracy 
at ttrain = 1.875 s (session 1) and ttrain = 1.625 s (session 2), respectively. This means that the classifier found - using 
a 1.4 s long feature extraction window - the EEG samples from 0.475 s to 1.875 s (session 1), and from 0.225 s to 
1.625 (session 2) most discriminative. Thus, the classifier was trained on an interval which started just before the 
negative potential peak on Cz and also covered the following positive deflection. This differs from the classifier 
in the offline paradigm, which on average used samples symmetrically around the negative peak. However, this 
shift could have been caused by the fact that we used a non-causal filter with the offline paradigm and/or that no 
rest class was present.

In addition to the training paradigm, we also designed an online test paradigm. This test paradigm elicited 
MRCPs which are similar in morphology to the MRCPs found in the training paradigm: they show a notable 
negative deflection followed by a positive deflection on Cz. This is to be expected since a classifier detects the 
trained pattern. However, the test MRCPs have larger amplitudes than the training MRCPs. One reason for this 
could be that self-paced movements cause similar yet more pronounced potential peaks than predictably cued 
movements70. Another reason could be the detection logic based on pre and post classes. It could be that the strict 
detection thresholds – which had to be exceeded by the pre, post and movement class – only allowed the detec-
tion of very pronounced MRCPs. Furthermore, the associated topoplots are interesting as they show a broad but 
central negativity followed by a lateralized positivity. This indicates that the classifier has indeed decoded brain 
signals, i.e. MRCPs, and not movement induced artefacts. However, the test paradigm was designed for a first 
proof-of-concept and this took place in a controlled environment, to avoid external influences. Future studies 
will need to evaluate and improve the classifier’s generalization capabilities as MRCPs depend on various factors, 
like force and speed30,76, goal-directedness77, attention diversion78, or externally or internally selected movement 
types79. This generalization is essential in the process of translating the research to the practical needs of end-users.

We obtained a TPR of around 30%, with more than 3 FP/min for participant P09. TPR and FP were calculated 
regardless of the movement class (hand open or palmar grasp). Furthermore, we obtained a classification accu-
racy of 68.4%. The classification accuracy was calculated using true positives only. False positives do not coincide 
with an intention to move and would impede the interpretation of the classification accuracy. The separation of 
TPR and FP/min from the classification accuracy allows evaluation of the movement detection performance 
separately from the movement classification. The detection of movements from MRCPs, particularly lower limb 
movements, is well reported in the literature30,44,62–65,67,80. Lower-limb MRCPs-based movement detection per-
formances up to a TPR of 82.5% with FP/min of 1.38 are reported62, which are nearly 3 times better than the 
performance reached in this work. However, those results were obtained in healthy participants, and lower limb 
movements produce more pronounced MRCPs than upper limb movements81. What is novel in our work is the 
simultaneous online classification of various self-paced hand movement attempts in a participant with SCI using 
EEG. It is noteworthy that we tested our classification approach on a participant with a chronic and complete 
cervical SCI, and without any remaining hand function (AIS A, NLI C4). Thus, an intact spinal cord is not a pre-
requisite to classify movements from MRCPs. To the best of our knowledge, only a study based on MEG applied a 
related protocol for movement online classification in participants with SCI41, although this was cue-based. In this 
MEG study, two out of five paralyzed participants reached a significant and comparable classification accuracy of 
83.3% and 66.7%, respectively, on classifying hand open vs hand close movement attempts.

The participant group size in the offline analysis (n = 10) is in the range of typical BCI studies but rather 
small compared to typical medical or general neuroscience standards. While we backed up all findings with 
state-of-the-art analysis and statistics, spurious findings cannot be fully excluded. Nevertheless, the classification 
and imaging findings are consistent with the literature, which strengthens our confidence in the interpretation of 
the results. Because of the limited group size and the resulting localization error, we refrained to do an analysis of 
the difference topoplots in the source space or to discuss the origin of the signal sources in detail. Moreover, we 
would like to point out that the band-pass filter was not systematically optimized with respect to the classification 
performance but based on previous studies31,32. Furthermore, the online classifier is a proof-of-concept. Other 
classification approaches based on, e.g. recurrent neural networks or hidden markov models for time series may 
provide a better detection and classification performance. In addition, we would like to highlight that the online 
training paradigm was in fact a cue-based paradigm. The influence of the class cue has been diminished, but a true 
self-paced training paradigm could yield more authentic MRCPs and therefore a better classification and detection 
performance. Moreover, we demonstrated our online classifier with a single person with SCI, and therefore cannot 
make any predictions of the expected performance or its variance in the population of persons with SCI.

We showed that various movement attempts of the upper limb can be classified offline from low-frequency 
time-domain EEG signals in participants with SCI. Furthermore, we have introduced a proof-of-concept on how 
to detect and classify movements in quasi real-time in a closed-loop setup. While the performance of the classifier 
is probably not yet sufficient to be used for neuroprosthesis control, we were able to show for the first time the 
general feasibility of classifying different single upper limb movements in an end-user with SCI.
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Methods
Movement classification.  Participants.  We recruited and measured 10 participants with subacute and 
chronic cervical SCI in a rehabilitation center (AUVA rehabilitation clinic, Tobelbad, Austria). They were aged 
between 20 and 69 years and suffered their lesion 3 months to 16 years before the study. Inclusion criteria were 
legal age of 18 years and restricted hand function, whereas artificial ventilation was an exclusion criterion. 
Their neurological level of injury (NLI) ranged from C1 to C7 and their American Spinal Injury Association 
Impairment Scale (AIS) score ranged from A to D. See Table 1 and Supplementary Table 1 for details. Written 
informed consent was obtained from all participants or a witness. The study was conducted in accordance with 
the protocol approved by the ethics committee for the hospitals of the Austrian general accident insurance insti-
tution AUVA (approval number 3/2017).

Paradigm.  Each of the participants sat in front of a computer screen with an arm resting on a pillow on their 
lap or on a table and they carried out the instructions given on the computer screen. At the trial start, a fixation 
cross and a beep sound were presented. We asked the participants to focus their gaze firmly on the cross which 
was displayed during the whole trial period of 5 s to avoid eye movements, see Fig. 1a. Furthermore, we instructed 
participants to avoid swallowing and eye blinking during the trial period. The class cue was displayed 2 s after 
the trial start for 3 s (i.e. until the end of the trial) and corresponded to one of 5 classes: pronation, supination, 
palmar grasp, lateral grasp or hand open (c.f. Fig. 1b). Based on the participants’ residual motor abilities (c.f. 
Supplementary Table 1), they were asked to execute or attempt the corresponding movement immediately when 
the class cue appeared. Furthermore they were asked to avoid any other movement during the current cue phase. 
If the participants were able to execute a movement, they went back to their initial rest position after the trial 
period. Between trials, a break with a random period of 1 s to 3 s followed. We recorded 9 runs with 40 trials per 
run, i.e. 72 trials per class in total.

Recording.  We measured the EEG with 61 electrodes covering frontal, central, parietal and temporal areas. 
Additionally, we measured the electrooculogram (EOG) with 3 electrodes placed above the nasion and below the 
outer canthi of the eyes. Reference was placed on the left earlobe and ground on AFF2h. Signals were recorded 
using four 16-channel g.USBamps biosignal amplifiers and a g.GAMMAsys/g.LADYbird active electrode system 
(g.tec medical engineering GmbH, Austria) with 256 Hz and a band-pass filter from 0.01 Hz to 100 Hz (8th order 
Chebyshev filter). Power line interference was suppressed with a notch filter at 50 Hz.

Preprocessing.  Signals were processed using Matlab R2017a (MathWorks, Massachusetts, USA) and the exter-
nal toolboxes BioSig 3.3.082 and EEGLAB 14.1.1b83,84. In short, first (1) we removed noisy channels, next (2) we 
removed stationary artefacts with ICA, we then (3) detected trials with transient artefacts, and finally (4) we 
removed stationary and transient artefacts from a narrow band EEG signal (0.3–3 Hz). It is noteworthy that we 
performed steps 2 and 3 on the EEG signal using a broader frequency range of 0.3–70 Hz to ease the detection of 
artefacts. The ICA weights were then cached and subsequently applied in step 4.

First (1), we visually inspected signals and removed channels contaminated with perceptible noise. 
Additionally, we removed by default channel AFz as it is sensitive to eye blinks and eye movements.

Next (2), we removed stationary artefacts by filtering the signals from 0.3 Hz to 70 Hz (4th order Butterworth 
zero-phase band-pass filter) and computed independent components (ICs) with the extended infomax independ-
ent component analysis (ICA) implemented in EEGLAB. We reduced the data dimensionality before computing 
the ICA with a principal component analysis (PCA) and retained principal components explaining 99% of the 
variance of the data. Furthermore, we computed the ICA only on samples with an absolute value of less than 10.4 
times the median absolute deviation (MAD)85 of a channel. MAD is robust deviation measure and the chosen 
threshold corresponds to 7 times the standard deviation for normally distributed data. We then identified the ICs 
contaminated with muscle and eye related artefacts, removed those ICs and projected the remaining ICs back to 
the original space.

Next (3), we detected transient artefacts using EEGLAB and marked trials for rejection with (1) values above/
below −100 μV and 100 μV, respectively, (2) trials with abnormal joint probabilities, and (3) trials with abnormal 
kurtosis. The methods (2) and (3) used as threshold 5 times the standard deviation of their statistic to detect 
artefact contaminated trials.

Finally (4), we removed the previously computed and artefact contaminated ICs from the original data (i.e. 
0.01–100 Hz filtered). For this purpose we applied the cached ICA weights, removed previously identified artefac-
tual components, and back-projected to the channel space. Lastly, we applied a zero-phase 4th order Butterworth 
band-pass filter from 0.3 Hz to 3 Hz as in31, and excluded trials marked for rejection from further processing.

Classification.  We re-referenced the preprocessed EEG signals to a common average reference (CAR) and clas-
sified the EEG with a multiclass shrinkage linear discriminant analysis (sLDA) classifier86,87. The input to the 
sLDA classifier were the EEG samples from all low noise channels. Furthermore, we used multiple causal and 
non-causal time points of the EEG as an input to the classifier. For this purpose, EEG samples spaced in 200 ms 
intervals were taken from a time window, i.e. the feature extraction window, and fed into the classifier (here we 
tested 8 different window lengths from 0 s to 1.4 s, see Supplementary Table 3 for the feature number). The output 
of the classifier was normalized with a softmax function to obtain probabilities.

We shifted the feature extraction window along the trial in steps of 1/16th of a second, and calculated classifi-
cation accuracies aligned to the center of the feature extraction window. Classification accuracies were validated 
with a trial-based 10 × 10 cross-fold validation.

https://doi.org/10.1038/s41598-019-43594-9


1 1Scientific Reports |          (2019) 9:7134  | https://doi.org/10.1038/s41598-019-43594-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Difference topoplots.  The EEG channel layout corresponds to the 10-5 system88. Noisy channels which were 
excluded in the preprocessing step were interpolated with a biharmonic spline interpolation (griddata command 
in Matlab). We calculated the differences of the trial averaged electrode potentials for all class combinations (i.e. 
palmar grasp vs lateral grasp, hand open vs lateral grasp, etc.). Next, we computed the absolute values of all differ-
ences as we were only interested in the intensity of the differences and not in any polarity, and averaged over all 
class combinations. Finally, we averaged over non-overlapping 250 s time segments from 0 s to 3 s relative to the 
class cue. We refer to these average absolute potential differences as difference topoplots.

We found significant differences on channels and time points with a one-tailed nonparametric permutation 
test89,90 with α = 0.05. For this purpose, we shuffled class labels once for each participant and computed shuffled 
difference topoplots. The test statistic was the difference between the shuffled and unshuffled difference topoplots. 
We accounted for multiple comparisons by calculating the permutation distribution using the maximum test 
statistic over channels and time points.

Proof-of-concept of an online classifier.  Paradigm.  We employed two separate paradigms in the online 
classification, one to train the classifier (training paradigm), and one to evaluate the performance (test paradigm). 
The training paradigm comprises two different trial types: movement trials and rest trials. In a movement trial 
(c.f. Fig. 4a), a class cue together with a cross and a beep were displayed in the beginning of a trial. The class cue 
represented either hand open or palmar grasp. After 2 s, the class cue was replaced by the ready cue, a filled green 
circle with a smaller inner white circle. After a random time interval of 0.5 s to 1 s, the filled green circle started 
to shrink with a random speed to the size of the inner white circle in 2 s to 4 s. The participant was instructed to 
attempt the movement corresponding to the class cue when the filled green circle hit the inner white circle, i.e. the 
go cue. In session 1, we instructed the participant to attempt to open or grasp, and deliberately hold the position 
until the end of the trial, i.e. attempt a sustained movement. In session 2, we gave the instruction not to hold the 
position, but to make a short single movement attempt. In both sessions, the experimenter demonstrated the 
participant a hand open and a palmar grasp movement executed at a regular speed, and asked the participant to 
attempt to imitate these movements. The screen was then cleared 2 s later at the end of the trial. A break of 2 s to 
3 s was between trials. The other trial type was a rest trial, where a cross was shown for 70 s and the participant 
was instructed to avoid any movement during this period. We recorded 5 movement runs, each comprises 30 
movement trials, and 4 rest runs each comprises 1 rest trial. Thus, in total we recorded 150 movement trials (75 
trials per movement class) and 4 rest trials.

In the test paradigm, the class cue (hand open, palmar grasp, rest), a fixation cross, and a beep were presented 
at the beginning of a trial. The class cue was then removed at 5 seconds and a 60 s long period of movement or rest, 
followed. In the case of a rest class cue, we instructed the participant to avoid any movement during this period. In 
the case of a movement related class cue, we instructed the participant to attempt multiple self-paced movements 
of the requested movement class during the 60 s period, see Fig. 4b. Furthermore, we instructed the participant 
to report any movement attempt 2 s afterwards by a soft speech sound. The experimenter then promptly pressed 
a button on the computer to mark the time point of a movement event. However, due to a misunderstanding, the 
participant reported movement attempts immediately afterwards in session 1, which is also reflected in different 
true positive window offsets (see Section Definition of the true-positive window). Moreover the participant was 
instructed to wait at least 3 s after reporting before attempting the next movement. The online classifier was 
constantly active and showed the corresponding movement icon (hand open or palmar grasp) for 2 s whenever 
a movement attempt was detected. We then recorded 6 runs in session 1 and 5 runs in session 2. Each run com-
prised of 4 movement trials and 1 rest trial.

Online classifier and detection thresholds.  Recording, preprocessing, and classification were performed in a man-
ner similar to the descriptions in Section Movement classification except that the feature extraction window and 
band-pass filter were causal and no ICA artifact removal was applied. Using the training paradigm (see Fig. 4a) 
and the previously described classifier with a 1.4 s long feature extraction window, we classified 3 classes: hand 
open, palmar grasp and rest. Rest trials were obtained by epoching the 70 s long original rest trials into 150 
trials. Thus, the number of rest trials was equal to the total number of movement trials. We then calculated the 
offline classification accuracies on the time interval 1 s to 2 s after the go cue with a 10-fold cross-validation, and 
found the time point ttrain with the highest offline classification accuracy (ttrain = 1.875 s in training session 1, 
ttrain = 1.625 s in training session 2, respectively). In addition to the 3 original movement/rest classes, we intro-
duced a pre class and a post class to increase the robustness of the classifier. The pre and post classes respectively 
detect the early and late phases of MRCPs. These phases could otherwise increase the chance of detecting a 
wrong class if the MRCPs, which are spread over time, are not yet (or are no longer) fully covered by the feature 
extraction window. The pre class and post class features were gathered for this purpose from ttrain − 500 ms and 
ttrain + 500 ms, respectively. That is, the feature extraction window was shifted by −500 ms and 500 ms relative 
to ttrain. Pre class and post class comprised features from both hand open and palmar grasp trials but no rest 
trials. The final online classifier was then trained with the classes hand open, palmar grasp, rest, pre and post. 
If the participant attempted a movement, an ideal output of the online classifier would show a peak of the pre 
class probability, followed 500 ms later by a peak of the hand open or palmar grasp class probability, and another 
500 ms later by a peak of the post class probability. See Supplementary Fig. 1c,d for examples of the trial averaged 
classifier output.

Finally, we defined 3 time windows to detect the pre, movement, and post class probability peaks. Each time 
window was specified by time length and time position relative to a reference position t0. The pre window ranged 
from −650 ms to −350 ms relative to t0; the movement window ranged from −50 ms to 50 ms; the post window 
ranged from 350 ms to 650 ms. A movement was detected when all the following conditions were met: (1) pre 
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class probability is above 0.7 for at least 150 ms within the pre window, (2) hand open or palmar grasp class prob-
ability is above 0.9 during the movement window, and (3) post class probability is above 0.7 for at least 150 ms 
within the post window. The movement class (hand open or palmar grasp) with the higher probability within 
the movement window was then eventually detected. After a detection, a refractory period of 2 s was imposed. 
Supplementary Fig. 2 illustrates the thresholds and time windows. The thresholds were set before the evaluation 
and were not subsequently changed.

Detection delay.  Different causes led to a delay between the movement attempt and the detection of the move-
ment attempt. We assume that the participant started the movement attempt exactly at the go cue in the training 
paradigm. First, due to the time extension of the MRCPs, the filter delay, and the 1.4 s long feature extraction 
window, the point with the highest classification accuracy is delayed from the go cue and is given by ttrain. Second, 
we introduced a delay by our pre, movement and post window based detection logic. We provide in the following 
a conservative estimation of the expected detection delay, i.e. the average maximum delay, under the assump-
tion that the average post class classifier output is maximal 500 ms after ttrain and symmetric (c.f. Supplementary 
Fig. 1c,d). This is a reasonable assumption, since the post class is trained on data 500 ms after ttrain. For a conserv-
ative estimation, we assume that the average post class classifier output crosses the probability-threshold (0.7) 
for exactly the length of the time-threshold (150 ms, see the description of the detection logic in the previous 
section). Shorter probability-threshold crossings do not cause a detection, and longer crossings cause an earlier 
detection. The total average maximum detection delay then comprises (1) ttrain, (2) the time delay from ttrain to the 
center of the post window (500 ms), and (3) half of the time-threshold (150/2 ms; the other half is already covered 
by the previous point). Thus, the maximum detection delay between the movement attempt and the detection 
time point is on average ttrain + 500 ms + 75 ms.

It is a conservative estimation because crossings of the post window probability-threshold for longer than 
150 ms – but still centered on ttrain + 500 ms – cause earlier crossings of the 150 ms time-threshold, and therefore 
shorter movement detection delays, see Supplementary Fig. 2. An exact assessment of the average detection delay 
would require the knowledge of the exact pre, movement, and post class probability distributions in the test para-
digm which we cannot measure. Furthermore, we estimated the average of the detection delay and not the single 
trial detection delays which are not possible to determine.

Definition of the true-positive window.  In order to evaluate the performance of the online classifier, we defined a 
true positive window and counted every detection within it as a true positive, and every detection outside it as a 
false positive. We set the length of the true-positive window to 2 s which allowed for a maximum of one detection 
due to the refractory period. The center of the true-positive window was set by an offset relative to the time points 
of the reported movement attempts, whereby the true-positive window should capture the assumed movement 
onset (i.e. the movement detection corrected by the detection delay). Thus, the offset should correspond to the 
average time difference between the assumed movement onset and the movement event marked by the exper-
imenter. As the offset is not known a priori (i.e. there is no ground truth regarding the start of the movement 
attempt), we employed a systematic approach to determine it. We iterated the offset from 0 s to 5 s and calculated 
for each offset value the TP/FP ratio, to which we refer as detection ratio. The offset which maximized the detec-
tion ratio was then used as the offset for a session (leading to an offset of 2.2 s in session 1 and 4.2 s in session 2). 
See Supplementary Fig. 1a,b for the dependency of the detection ratio and classification accuracy on the offset.

As a remark, the FPs in the movement trials were solely used to determine the offset of the true-positive 
window but not to determine the FP/min rate shown in the results section. The FP/min rate was determined 
exclusively from rest trials.

Data Availability
Data are available from the BNCI Horizon 2020 database at http://bnci-horizon-2020.eu/database/data-sets (ac-
cession number 001–2019) and from Zenodo at https://doi.org/10.5281/zenodo.2222268.
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