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Abstract: The glucose-acetate transition in Escherichia coli is a classical model of 

metabolic adaptation. Here, we describe the dynamics of the molecular processes involved 

in this metabolic transition, with a particular focus on glucose exhaustion. Although changes in 

the metabolome were observed before glucose exhaustion, our results point to a massive 

reshuffling at both the transcriptome and metabolome levels in the very first min following 

glucose exhaustion. A new transcriptional pattern, involving a change in genome expression in 

one-sixth of the E. coli genome, was established within 10 min and remained stable until the 

acetate was completely consumed. Changes in the metabolome took longer and stabilized 

40 min after glucose exhaustion. Integration of multi-omics data revealed different modifications 

and timescales between the transcriptome and metabolome, but both point to a rapid adaptation 

of less than an hour. This work provides detailed information on the order, timing and 

extent of the molecular and physiological events that occur during the glucose-acetate transition 

and that are of particular interest for the development of dynamic models of metabolism. 
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Abbreviations 

1,3DPG: 1,3-bisphospho-D-glycerate; 2/3PG: 2-/3-phosphoglycerate; 6PG: 6-phospho D-gluconate; 

6-PG: 6-phosphogluconate; 6PGL: 6-phospho D-glucono-1,5-lactone; a-KG: 2-oxoglutarate; AC: acetate; 

acea: isocitrate lyase; aceb: malate synthase; aceef: pyruvate dehydrogenase; ack: acetate kinase;  

acn: aconitate hydratase; ACoA: acetyl-CoA; ACP: acetyl phosphate; acs: acetyl-CoA synthetase;  

AMP: adenosine-monophosphate; ADP: adenosine-diphosphate; ATP: adenosine-triphosphate;  

CACN: cis-aconitate; CIT: citrate; crp: CRP transcriptional dual regulator; cya: adenylate cyclase;  

DHAP: dihydroxyacetone phosphate; E4P: erythrose-4-phosphate; ED: Entner-Doudoroff;  

eno: enolase; F6P: fructose-6-phosphate; fba: fructose bisphosphate aldolase; FBP: fructose-bisphosphate; 

Fbp: fructose-1,6-bisphosphatase; FOR: formate;  frd: fumarate reductase; fum: fumarase;  

FUM: fumarate; G6P: glucose-6-phosphate; gap: glyceraldehyde 3-phosphate dehydrogenase;  

GHAP: D-glyceraldehyde 3-phosphate; GLC: glucose; GLX: glyoxylate;  GLYC: glycolysis;  

gltA: citrate synthase; GMP: guanosine-monophosphate; GDP: guanosine-diphosphate;  

GTP: guanosine-triphosphate; gnd, 6-phosphogluconate dehydrogenase; gpm: 2,3-bisphosphoglycerate-

dependent phosphoglycerate mutase; IC: ionic chromatography ; icd, isocitrate dehydrogenase;  

ICIT, iso-citrate;  mae, malate dehydrogenase ; MAL, malate; mdh: malate dehydrogenase;  

MS: mass spectrometry;  NAD+: beta-nicotinamide adenine dinucleotide; NMR: nuclear magnetic 

resonance; OA: oxaloacetate;  pck: phosphoenolpyruvate carboxykinase; PEP: phosphoenolpyruvate ; 

Pfk, 6-phosphofructokinase; pfl, pyruvate formate-lyase ; pgi, phosphoglucose isomerase;  

pgk: phosphoglycerate kinase;  pgl: 6-phosphogluconolactonase; PP: pentose phosphate;  

ppc: phosphoenolpyruvate carboxylase;  PPP: pentose phosphate pathway; pps: phosphoenolpyruvate 

synthetase; pta: phosphate acetyltransferase;  PTS: phosphotransferase system; pyk: pyruvate kinase; 

PYR: pyruvate; R5P: D-ribose 5-phosphate;  Rib-5P: ribose-5-phosphate; rpe: ribulose-5-phosphate 

3-epimerase; rpi: ribose-5-phosphate isomerase;  RT-PCR: reverse transcription polymerase chain 

reaction; RU5P: D-ribulose 5-phosphate; S7P: D-sedoheptulose 7-phosphate; sdh: succinate 

dehydrogenase; suc: 2-oxoglutarate decarboxylase; SUC: succinate; Succ: succinyl-CoA synthetase; 

SUCCoA: succinyl-CoA; tal: transaldolase; TCA: Tricarboxylic acid; tkt: transketolase; tpi: triose 

phosphate isomerase; UMP: uridine-monophosphate; UDP: uridine-diphosphate; UTP: uridine-

triphosphate; XUP: D-xylulose 5-phosphate; zwf: glucose 6-phosphate-1-dehydrogenase. 

1. Introduction 

The Enterobacterium, Escherichia coli, is subjected to constant environmental variation in the 

intestine, especially in nutrient availability [1]. The capability of the bacterium to efficiently alternate 

nutrients, which requires the reorganization of cellular metabolism, is a fundamental advantage in the 

competition with other colonic microorganisms [2–4]. The metabolic flexibility of E. coli is also extensively 

exploited for a broad range of biotechnological applications in which metabolism can be modified to 

enable the production of valuable compounds. Hence, a comprehensive understanding of the mechanisms 

that ensure efficient adaptation of metabolism to nutrient changes is of great interest for both basic and 

applied research [5]. The glucose-acetate switch is a classical model of metabolic transition in E. coli, 

partly because of its physiological importance [6] and partly because the production of acetate as a 
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fermentation by-product can be a major obstacle in the development of biotechnological processes. 

During the growth of E. coli on glucose, a significant proportion of the sugar is converted into acetate. 

This process results from an overflow metabolism that is usually explained by saturation of the tricarboxylic 

acid cycle and the need to regenerate NAD+ [6]. When glucose becomes scarce, E. coli cells use the 

previously produced acetate. This requires a profound reorganization of their central carbon metabolism, 

mainly the shutdown of glycolysis, the activation of acetate utilization pathways and the activation of 

gluconeogenesis. Because it involves network-wide metabolic adaptation, the glucose-acetate transition is 

also the current paradigm in systems biology for the development of explanatory and predictive models of 

metabolism and its adaptation [7–9]. 

The molecular mechanisms underlying the adaptation of metabolism to glucose and acetate have 

been extensively studied; for a review, see [6,10]. In contrast, the dynamics of the metabolic transition 

is poorly understood with respect to the sequence and timing of the molecular events involved in the 

reorganization of metabolism. E. coli cells pre-grown on glucose and transferred into fresh medium 

containing acetate as the sole carbon source needed more than three hours for a novel gene-expression 

pattern to appear that allowed them to grow on the new substrate [11–13]. In a more recent study of the 

response of glucose-limited chemostat cultures to glucose pulses, Sunya et al. [14] suggested that a 

metabolic response could occur within two to three min. These investigations showed that the timing 

of the metabolic transition is still elusive. Neither has there been a detailed investigation of the timing 

of molecular and metabolic processes during the adaptation phase, despite the fact that this transition  

is a valuable biological framework for the development of dynamic metabolic models in systems  

biology [8,15]. Here, we report a detailed investigation of the timing of transcriptome and metabolome 

changes during the glucose-acetate transition in a standard culture of E. coli on glucose. The results 

showed the overall rapidity of the transition, which was completed within 40 min after glucose 

exhaustion, and most of the molecular components adjusted in the first 10 min. Finally, incorporating 

multi-omics data revealed different changes and timescales between the transcriptome and the metabolome. 

2. Results and Discussion 

2.1. Results 

2.1.1. Macrophenotype Parameters of the Glucose/Acetate Transition in a Model Condition 

Detailed physiological characterization of the glucose/acetate transition was obtained from 

Escherichia coli K12 MG1655 cells grown in M9 mineral medium [16] containing 15 mM glucose  

(2.7 g L−1) as the sole carbon source. Growth experiments were performed aerobically in bioreactors at  

37 C, pH 7, under sufficient oxygenation (pO2 > 20%). As expected, cells consumed glucose for growth, 

which followed an exponential regime, as long as glucose was available in the medium (Figure 1). 

Acetate was produced during growth on glucose, with the maximum concentration being observed when 

glucose was completely consumed. Besides acetate, other metabolic end products, such as formate, ethanol 

and orotate, were detected by nuclear magnetic resonance (NMR) in the culture medium collected 

during the exponential growth phase. The maximum concentrations of formate, ethanol and orotate 

were 20-times lower than that of acetate (Figure 1). Orotate is an intermediate in the de novo 

biosynthesis pathway of UMP, and its accumulation is explained by its limited ability to synthesize 
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purines in some E. coli strains, including in the strain, K12 MG1655 [17]. The detection of this 

compound illustrates the advantage of NMR in detecting metabolic end products without prior 

consideration. Because all products were correctly identified and quantified by NMR, a nearly complete 

carbon balance was obtained at the time of glucose exhaustion (95.3%, encompassing: biomass, 54.8%; 

CO2, 31.0%; acetate, 8.6%; orotate, 0.6%; ethanol, 0.2%; and formate, 0.04%). Past this point, acetate was 

consumed for three hours before exhaustion. The small amount of formate detected at the end of the 

exponential growth phase was readily consumed, whereas neither orotate nor ethanol was consumed 

over the entire study period. For the sake of simplicity, the period of culture will be expressed relative 

to the time of glucose exhaustion (GE) in the following (Figure 1). Before GE refers to the period 

during which cells grow exponentially using glucose as the carbon source. After GE refers to what 

occurs subsequently. 

Figure 1. Physiological characterization of the glucose/acetate transition in E. coli. Three 

independent cultures of E. coli were grown in a bioreactor as described in the Experimental 

section. Time 0 was defined as the time (±30s) when the pO2 suddenly increased, indicating 

complete consumption of glucose. Culture samples were collected every 10 to 30 min to 

measure growth (OD: Optical Density at 600 nm) and extracellular metabolite concentrations. 

 

2.1.2. Changes in Metabolite Profiles 

The metabolic events that occur during the diauxic transition were investigated by measuring changes in 

the time course of metabolite pools. Metabolites belonging to central carbon pathways (mainly glycolysis, 

the PP pathway, the ED pathway and the TCA cycle) and to energy metabolism (i.e., nucleotides) were 

analyzed by ion-exchange chromatography coupled with tandem MS (IC-MS/MS; [18,19]). Reliable 

quantification of metabolite pools was obtained by isotopomer dilution mass spectrometry [20]. To 

obtain detailed information about the changes in metabolite pools during the metabolic transition, 

metabolic samples were collected throughout the culture period until the acetate was exhausted. The 
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pool sizes of central carbon metabolites measured during the exponential growth phase were consistent 

with results obtained with E. coli cells grown in similar conditions [8,21]. The concentrations of most 

compounds remained constant before GE (Figure 2), indicating metabolic stability. There were two 

exceptions: fructose-bisphosphate (FBP) and most of the TCA cycle intermediates. The concentration 

of FBP increased slightly, but continuously, during the exponential growth phase (Figure 2A). This 

compound is the product of the reaction catalyzed by phosphofructokinase (PFK), which is the key 

step of glycolysis. The pool sizes of TCA cycle metabolites decreased during the exponential growth 

phase. This decrease began as soon as 50 min before GE, while 50% of the initial glucose amount was 

still present in the medium (Figure 2C). This was the earliest metabolic event observed in these 

experiments. In contrast, the nucleotide pools remained constant throughout the exponential growth 

phase (Figure 2D). 

Figure 2. Changes in metabolite pool sizes during the glucose/acetate transition. 

Intracellular contents of central carbon metabolites were determined as described in the 

Experimental section. For the sake of clarity, the metabolites were divided into four groups 

according to the metabolic pathways to which they belong: the Embden-Meyerhof-Parnas 

pathway (glycolysis, 2A), the pentose phosphate pathway (metabolites, 2B), the tricarboxylic 

acid pathway (metabolites, 2C) and nucleotides and nucleotide-derived molecules (2D). 

Ratios were obtained by normalizing the concentrations to a sample collected three hours 

before glucose exhaustion, i.e., during early exponential growth. 
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Upon GE, drastic changes in the pool size of a large number of metabolites were observed. The 

concentration of all upper glycolysis metabolites, including FBP, fell dramatically and stabilized only 

two hours after GE. Similar changes were observed in PPP metabolites (Figure 2B). Both pathways are 

fed from external glucose, and the drop in their metabolites after GE was expected. Interestingly, the 

drop in upper glycolytic compounds did not result in a similar drop in metabolites from lower 

glycolysis. Indeed, the pool sizes of phosphoenolpyruvate (PEP) and 2-/3-phosphoglycerate (2/3PG) 

increased immediately after GE (Figure 2A). This increase is a consequence of the role of PEP as a 

phosphate donor for the transport of glucose via the PTS system. Upon GE, the PEP demand for glucose 

transport suddenly drops, resulting in increased pools sizes of both this compounds and its metabolic 

precursor, 2/3PG). These compounds returned to their initial concentrations before acetate was completely 

exhausted. The pool sizes of the TCA cycle metabolites did not significantly change after GE (Figure 2C). 

Because of the decrease observed before GE, the concentrations of the TCA metabolites during the 

period of acetate utilization were lower than during the exponential growth phase. The pool sizes of 

adenosine derivatives decreased moderately after GE, but a marked decrease (to a third of the initial 

concentrations) in guanosine nucleotides (GMP, GDP and GTP) was observed (Figure 2D). As expected, 

the concentration of the signaling metabolite cyclic-AMP (cAMP), whose production is known to be 

triggered by GE, was extremely low before GE, but increased strongly within three min after GE 

(Figure 2D). Then, the concentration of cAMP remained stable during growth on acetate. 

2.1.3. Changes in Gene Expression during the Glucose-Acetate Transition 

Changes in gene expression during the diauxic transition were monitored by transcriptome analysis. 

To ensure the consistency of metabolome and transcriptome data, RNA was sampled using the same 

cultures and sample times as metabolite sampling. For each individual biological replicate, the sample 

taken in the early exponential phase was used as the reference to evaluate changes in gene expression. 

The profiles emphasized the stability of gene expression during the exponential growth on glucose. 

The first variations were detected between 20 and five min before GE (Figure 3A) and increased 

dramatically in the first five min after GE (Figure 3B). A change in expression in the highest number 

of genes was observed 70 min later. At that time, roughly 700 genes were up- or down-regulated,  

i.e., one-sixth of the E. coli genome. Interestingly, the expression profile remained stable for three 

hours, which is also the period of time during which acetate was consumed (Figure 3A). The main 

functional categories activated or shut down after GE were obtained by calculating the median of the 

expression of genes belonging to the Gene Ontology terms of interest, as defined in EcoCyc [22]. The 

results pointed to a massive reshuffling of metabolic and organizational functions after GE (Figure 3C). 

The main processes during which downregulation was observed upon GE included ribosome biogenesis, 

ATP biosynthesis, amino acid biosynthesis and glycolysis. Upregulation was observed for stress-response 

genes (oxidative and osmotic stress genes) and reserve storage genes. For most cellular functions, the 

reorganization of the transcriptome pattern was completed within 40 min after GE, although some 

functions, e.g., glycolysis, were readily and stably reset five min after GE. The expression of stationary 

phase hallmark genes was triggered three hours after GE, which corresponded to when acetate was 

exhausted (Figure 3C), since no acetate was detected in the medium after that time (data not shown). 
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Figure 3. Changes in gene expression during the glucose/acetate transition. (3A) The 

change in E. coli genome expression during the transition. Each line represents a change in 

the expression of a single gene, in comparison with the level of expression measured -170 min 

before GE. A color scale is used for the expression ratios (toward red when the gene is 

overexpressed; toward green when it is downregulated). (3B) The number of significantly 

induced or repressed genes per time point (t-test < 0.05; red: ratio over 1.5; green: ratio under 

0.667). (3C) The change in the median of gene expression for selected gene categories. The 

experiments were performed in three independent biological replicates. 
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These investigations were performed by RT-PCR, which is well suited for reliable quantification of small 

changes in gene expression [23]. The results are shown in Figure 4. 

Figure 4. RT-PCR analysis of key gene expressions during the glucose/acetate transition. 

The plot shows changes in gene expression profiles. Gene expression ratios were 

normalized according to gene expression levels measured at time –170. (4A) Genes up- or 

down-regulated before GE. (4B) Genes up- or down-regulated in the three min following 

GE. (4C) Genes up- or down-regulated more than three min after GE. Glycolytic genes are in red, 

gluconeogenic genes are in green, blue was used for other central metabolic genes, purple 

for secondary metabolism genes and gray for non-metabolic genes. 
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agreement with the microarray data. A dramatic repression of glycolytic and PPP genes, concomitant with 

the induction of gluconeogenic genes (e.g., pck, encoding PEP carboxykinase) was observed. Acetate 

metabolism genes, such as acs, encoding acetate synthase, were also rapidly induced. Interestingly, the 

expression profiles remained mostly stable over the period of acetate utilization 

Only three genes linked to the ED pathway (i.e., edd, encoding phosphogluconate dehydratase), to 

the TCA cycle (mdh, encoding malate dehydrogenase) and to the transcriptional regulator, ihfA (Figure 4C), 

regulated later. 

2.1.5. Data Integration  

To investigate the correlations between the transcriptome and metabolome data, the two datasets 

were plotted on a single graph using the visualization tool developed by Enjalbert et al. [26]. A time 

series of maps representing changes in metabolites and transcripts related to central carbon metabolism 

was generated to analyze the fine tuning of molecular events that occurred during the glucose-acetate 

transition (Figure 5A). As expected, these representations emphasized the metabolic quasi-steady-state 

during the exponential growth on glucose, since very few modifications were observed during this 

phase. The few noticeable changes concerned the metabolome, especially in the TCA cycle. After GE, 

drastic changes occurred at both the metabolome and transcriptome levels, indicating fast and 

profound molecular adaptation to the new environmental conditions. To obtain further insight into the 

correlations between the omics data during the transition period, the median profiles of both metabolite 

concentrations and gene expressions were calculated and plotted together according to their metabolic 

pathways. The data (Figure 5B) indicated that the overall decrease in TCA metabolites observed before 

GE did not correlate with a general repression of TCA cycle genes. These results suggest that the 

changes in TCA cycle metabolites during the exponential growth phase were not due to gene-level 

regulation, even though the RT-qPCR data showed that a few TCA genes were downregulated 50 min 

before GE. The median profiles emphasized the overall decrease in the pool sizes of metabolites from 

the upper glycolysis and pentose phosphate pathways and the TCA cycle after GE. The median 

profiles of the upper glycolysis and pentose-phosphate pathways were similar: the overall, marked 

decrease in metabolite pools did not correlate with a general repression of pathway genes. 

Interestingly, the profiles obtained for lower glycolysis were strikingly different from those obtained 

for upper glycolysis, since in the former, there was a general increase in metabolite pools together with 

a general decrease in gene expression after GE. This suggests genetic control to avoid over-accumulation 

of metabolites in this part of the pathway. Finally, variations in TCA cycle metabolites were observed 

before GE, after which the metabolite pools tended to stabilize, whereas TCA genes were repressed. 

Figure 5. Gene expression and metabolite concentration profiles in the main carbon 

metabolic pathways. (5A) Biochemical network used for the plotting of omics data. This 

map represents the set of metabolites (blue symbols) and genes (pink symbols) for which the 

data are plotted. (5B) Changes in transcriptome and metabolome data during the glucose-to-acetate 

transition. Gene expression levels and metabolite ratios are plotted for eight selected time 

points throughout the transition period and are expressed relative to a reference time  

(−170 min before glucose exhaustion). The figure was created using Cytoscape software and 
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its MODAM plug as described in Enjalbert et al. [26]. Color code: red indicates a positive ratio 

(higher expression or concentration), green indicates a negative ratio (lower expression or 

concentration) and yellow indicates unchanged ratios. (5C) Changes in the medians of 

expression/concentration for the genes/metabolites belonging to the same metabolic pathway 

(the upper or lower glycolysis and pentose phosphate pathway and the TCA cycle). The 

Pearson correlation score (PC) indicates the similarity of genetic and metabolic variations. 
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2.2. Discussion 

The sequence and timing of the major events that occurred during the glucose-acetate transition, as they 

appeared in the work reported here, are summarized in Figure 6. The changes in transcriptome and 

metabolome data can be analyzed in light of the changes in the physiological data. 

According to the data reported here, the central metabolism and gene expression pattern were almost 

stable throughout the initial period of growth on glucose, which is consistent with steady-state metabolism 

during exponential growth on glucose. By studying the maltose-lactose transition, Mitchell et al. [27] 

recently reported that E. coli could anticipate which gene expression was necessary for the use of the 

second substrate before the first one is completely consumed. This behavior was reported in cells that 

had been trained for generations to alternate maltose and lactose. Because E. coli has been grown for 

decades on glucose and has certainly evolved to increase its efficiency to grow in such laboratory 

conditions, it is questionable whether the adaptation to the use of acetate can be anticipated. From the 

data reported here, in which both metabolism and gene expression were stable, this is likely not the 

case. The few changes that occurred before glucose exhaustion included a progressive decrease in 

TCA metabolites and an increase in the FBP/hexose-6-phosphates ratio. Due to the nature of these 

changes, and to the fact that they were not primarily due to changes in gene expression, it is unlikely 

that they represent a pre-adaptation to acetate utilization. On the contrary, they are consistent with the 

onset of the overflow metabolism responsible for acetate production during growth on glucose [6]. 

Indeed, they indicate a slight imbalance between upper glycolysis and downstream metabolism. Interestingly, 

the first changes observed, even though they were limited, were metabolic and occurred before changes in 

gene expression could be detected. This is in agreement with current views placing genetic control after 

global physiological control mechanisms [28,29]. 

Figure 6. Timing of the glucose/acetate transition. Pink boxes represent extracellular 

metabolite variations, Yellow boxes represent metabolite concentrations and blue boxes 

represent gene expressions. 

 

After complete exhaustion of glucose, the response was extremely fast and massive at both genetic 

and metabolic levels (Figure 6). Changes in gene expression were observed in up to a sixth of the  
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by GE, while reserve sugars and stress genes were induced. These changes in gene expression mostly 

stabilized within the 10 min following GE. The very rapid (within three min) and strong production of 

cAMP, which is known to regulate the expression of a large number of genes in E. coli, is consistent 

with such rapid genetic adaptation. Such a rapid response could be explained by the onset of adaptive 

changes in the final min preceding the disappearance of glucose, as hypothesized elsewhere [30,31]. In 

this context, Ferenci [32] reported that E. coli cells were able to co-consume glucose and acetate when 

the concentration of glucose was set at 0.3 mM or lower during chemostat culture, indicating that 

functional acetate utilization processes can operate at very low glucose concentrations. In our 

conditions—i.e., in batch cultures with ODs > 2.5, it would take roughly two min to fully utilize 

glucose at such a low concentration. As this is below the time resolution of the present investigation, 

these data do not allow us to conclude on possible co-consumption of the two substrates during the last 

few min before glucose exhaustion. Nevertheless, our data support the hypothesis of glucose 

exhaustion being a critical factor in triggering the metabolic transition. The rapidity of the observed 

molecular changes is also consistent with the capability of E. coli to respond to environmental changes 

within min or even more rapidly [14]. 

Valgepea et al. [33] investigated the growth rate dependency of acetate utilization by  

glucose-grown cells. They reported that cells growing on glucose at a low growth rate efficiently 

consumed externally added acetate, but acetate consumption decreased with the growth rate and 

stopped at μ = 0.48 h−1 or above. Interestingly, the increase in acetate consumption with decreasing 

growth rate was shown to be correlated with an increase in cAMP production, the induction of acs and 

a decrease in TCA metabolite concentrations. We made similar observations just after GE, indicating 

that such changes could be related to the drop in the growth rate as glucose availability decreases. In 

contrast, the drop in PPP metabolites observed after GE in our experiments was not observed in the 

experiments performed by Valgepea et al. In their experiments, glucose was still available in the 

feeding medium when acetate was added. The fact that the drop in pentose phosphate pathway 

metabolites was observed upon GE in our experiments, but not in the experiments by Valgepea et al., 

suggests that this drop was mainly due to the fact that glucose was not available after GE. Taken 

together, the above observations suggest that the response observed upon GE in our experiments was 

triggered by at least two factors: the drop in the growth rate and the disappearance of glucose. 

The last molecular changes observed during the glucose-acetate transition were at the level of 

metabolite pools, which continued to decrease for 40 min after GE. A noticeable exception was PEP 

and its precursors, which accumulated after glucose exhaustion, likely due to the drop in the demand in 

PEP for glucose transport and phosphorylation by the PTS system. This means that the adaptation of E. 

coli metabolism to acetate utilization was completed within 40 min after glucose exhaustion, on both 

genetic and metabolic levels. This is different from the three hours reported by Kao et al. [12,13]. In 

the latter works, cells were grown at 37 C on glucose until the mid-exponential phase, chilled in cold 

ethanol, washed at 4 C and, then, transferred into a pre-warmed medium containing acetate as the sole 

carbon source. The longer transition period in their work could be partly explained by stress caused by 

the processes (cell harvest, cold treatment) by which cells were transferred from the first to the second 

medium. In the present work, we investigated the timing of adaptation without disturbing the culture, 

meaning that there was no cell harvest and, thus, no stress related to cell collection and cold treatment. 

It can be reasonably concluded that E. coli cells need 40 min to fully adapt to acetate utilization after 
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growth on glucose. Interestingly, this time is similar to that observed for the glucose-lactose transition, 

in which adaptation to lactose was completed within 50 min after glucose exhaustion [31]. 

In conclusion, the present work emphasized the rapid massive reshuffling of both gene expression 

and metabolism just after glucose exhaustion. Detailed information is provided regarding the order, 

time and extent of the molecular and physiological events that occur during the glucose-acetate transition in 

E. coli, which will be of particular interest in the development of dynamic models of metabolism. The 

datasets generated in this study are available to the scientific community on the MIAME-compliant 

EBI database [34]. They are of particular interest in light of recent progress toward comprehensive 

understanding of metabolism dynamics [8,15]. 

3. Experimental Section  

3.1. Strain, Media and Growth Conditions  

E. coli K12 MG1655 was cultured in M9 mineral medium complemented with 2.7 g.L−1 (15 mM) 

of D-glucose [35]. Cultures in shake flasks were performed in a volume of 200 mL or 50 mL. Cultures 

in bioreactors were inoculated with a washed cell sample obtained from an overnight pre-culture in M9 

glucose. Cultures were performed in controlled conditions, using a Multifors bioreactor (Infors, 

Switzerland). Three independent batches of E. coli K12 MG1655 were cultured in 400 mL of M9 

mineral medium containing 2.7 g L−1 of D-glucose as the sole carbon source. Parameters were locked 

at pH 7.0, 37 °C, stirring at 800 rpm and air flow at 0.2 L/s to keep the dissolved oxygen tension 

(DOT) above a minimum threshold of 20%. Throughout the culture, online measurements were 

performed (DOT, temperature, pH, percentages of CO2 and O2 in the gas output using BCP gas analyzers - 

Bluesens, Germany), and pH was set to 7.0 using 1 M solutions of NaOH and HCl. Optical density was 

measured in triplicate using a spectrophotometer (Genesys6 from Thermo Scientific, Massachusetts). 

Because the focus of this work was on the glucose-to-acetate switch, RNA and metabolites were sampled 

before and after glucose exhaustion. The sampling times were defined in preliminary experiments. 

Samples were taken at 10 minute intervals around glucose exhaustion and at 30 min intervals outside this 

period. The carbon balance was calculated from the total amounts of all compounds (CO2, biomass, 

acetate, etc.) produced and the glucose consumed at the time of glucose exhaustion. 

3.2. Metabolome Analysis 

Exocellular metabolites were identified and quantified by nuclear magnetic resonance (NMR). 

Broth samples were collected at different times and filtered (Minisart 0.2 µM filter from Sartorius, 

Göttingen, Germany). The supernatants, corresponding to the culture medium, were mixed with 100 µL of 

D2O containing 2.35 g/L of TSPd4 as the standard (3-(trimethylsilyl)-1-propanesulfonic acid-tetra deuterated). 

Proton-NMR spectra were recorded on an Avance 500 MHz NMR spectrometer equipped with a 5 mM 

BBI probe head (Bruker, Rheinstatten, Germany). Spectral processing and metabolite quantification 

were performed using Topspin 2.1 (Bruker, Rheinstatten, Germany). Extracellular metabolites from three 

independent biological replicates were analyzed. Three technical samples were collected and analyzed 

for each biological replicate and at each sampling time. 
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Intracellular metabolites were sampled by fast filtration as described previously [18]. Briefly, 100 µL of 

culture were rapidly placed on a filter and washed with ten volumes of diluted cultivation medium 

containing 1 g L−1 of glucose (or acetate after the shift) and frozen in liquid nitrogen. Metabolites were 

extracted by boiling the filters in 8 mL of H2O for 10 min in the presence of 100 µL of a fully 13C-labeled 

cellular extract (used as the internal standard). The solution was filtered, lyophilized and resuspended 

in 200 µL of ultrapure water. Intracellular metabolites were analyzed as previously described [18,19]. 

Briefly, analysis was by high performance anion exchange chromatography (Dionex ICS 2000 system, 

CA, USA) coupled to a triple quadrupole QTrap 4000 (AB Sciex, CA, USA) mass spectrometer. All 

samples were analyzed in the negative mode by multiple reaction monitoring (MRM). To ensure 

highly accurate quantification, the isotope dilution mass spectrometry (IDMS) method was used [20]. 

Metabolome analysis was performed on three independent biological replicates. Three metabolite 

samples were collected and analyzed for each biological replicate and at each sampling time. 

3.3. Transcriptome Analysis 

Global gene expression levels were determined using DNA-microarrays (3 × 6 K E. coli microarray 

slides, Alberta University, Edmonton, Alberta, Canada). At each sampling time, 2 mg of cell dry 

weight were harvested by centrifugation (4 °C, 2 min, 5,000 × g) and flash frozen in liquid nitrogen. 

RNA isolation was performed using the Qiagen RNeasy Midi kit according to the manufacturer’s 

instructions. The quality and quantity of RNA were checked by capillary electrophoresis (Bioanalyzer 

from Agilent, Santa Clara, California, USA) following the manufacturer’s instructions. The samples 

were labeled with Cy5 and a pool of RNA from the first sampling time was labeled with Cy3. The 

cDNA were co-hybridized on the microarrays, and signals were quantified and assigned to gene names 

with Genepix software (Molecular Devices Corp.) Normalizations were performed with the Genespring 7 

software from Agilent (Lowess and normalization to the first sample to prevent dye swap biases). 

Transcriptome analysis was performed of three independent biological replicates.  

3.4. RT-PCR Analysis 

Gene expression of selected genes was also monitored by RT-PCR using the same three independent 

triplicates. A volume equivalent to 2 mg of cell dry weight was harvested by centrifugation (1 min, 13,000 × g) 

and flash frozen in liquid nitrogen. Total RNA extractions were performed using a Qiagen RNeasy Midi 

extraction kit. Samples were treated with DNase to eliminate genomic DNA; the samples were subjected to 

a reverse transcription using the Super Script II Reverse transcriptase (Life Technology). RT-PCR was 

performed using the SYBR-Green based detection protocol (Life Technology), with an ICycler real-

time PCR detection system (Bio-Rad) and using “MyIQ” software (Bio-Rad). Primers (Table 1) were 

designed with “primer3” online freeware [36]. Data were normalized versus two controls (16S and ihfB 

genes) and versus the mid-exponential phase level of expression. 
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Table 1. RT-PCR primers. 

Name Sequence (5' to 3') Name Sequence (5' to 3') 

Q-16S-3' ATCCGGACTACGACGCACTT Q-lacZ3' GCATAACCACCACGCTCATCG 

Q-16S-5' ACGACCAGGGCTACACACG Q-lacZ5' ACCTACGGGTAACAGTTTCTTTATG 

Q-AceA-3' AACCAGCAGGGTTGGAACG Q-maeA3' ATTGCGCGGGAGACTTTCTG 

Q-AceA-5' ACATGGGCGGCAAAGTTTTA Q-maeA5' AAGTGAAACGCTGGCGCAGT 

Q-aceB-3' TCAGGCCATAAATCGGCACA Q-mdh3' TGGCCCATAGACAGGGTTGC 

Q-aceB-5' GGTGAACGCACCGAAGAAGG Q-mdh5' CCGAGCAGGAAGTGGCTGAT 

Q-acs-3' GGATCTTCGGCGTTCATCTC Q-pck3' GTGTCTACGCCCGGCAGTTC 

Q-acs-5' GGGAAAATTGACTGGCAGGA Q-pck5' GACGCCATCCTCAACGGTTC 

Q-crp3' ACAGGCCCAGTTCGCCAATA Q-pfkA3' CACCCATGTAGGAACCGTCA 

Q-crp5' AGGCTCTGTGGCAGTGCTGA Q-pfkA5' AATTCCGCGACGAGAACATC 

Q-cya3' CCCGGCGGCACATAAATAAA Q-ppc3' CAGGCGAGAACGCAGGTTTT 

Q-cya5' GCCGCGTTTGAAGCATTACC Q-ppc5' ATGGTTGAAGCGACCCCTGA 

Q-edd3' ACCAAGTGGCGGCATGAGTT Q-pps3' CTGGCTCGTAACGCTCACCA 

Q-edd5' GTTTGCTGGACCGCGATTGT Q-pps5' GTGCCGCGTTTTATCCGAAG 

Q-frdD3' CCGCAGGTACGTGGATTTTC Q-ptsG3' GGAATGTCGCCGTGGAAAAC 

Q-frdD5' TGGTCGCGTATTCCTGTTCC Q-ptsG5' CCGTTTGGTCTGCACCACAT 

Q-glgS3' GCTCTCTTGCCTGCATCATCTG Q-pykF3' GCAACCATGATGCCGTCAGA 

Q-glgS5' CGGTCGATATTCTGGCCGTTA Q-pykF5' CGGCGAAAACATCCACATCA 

Q-Icd-3' TTCGTCACCGATGTTTGCAC Q-sdhD3' ACACACCCCACACCACAACG 

Q-Icd-5' CGCCTGTATGAACCTGAACG Q-sdhD5' CGTTAAACCGCTGGCTTTGC 

Q-ihfA3' TACTCGTCTTTGGGCGAAGC Q-sucA3' GGTGTCAGGGTCGGAGATCG 

Q-ihfA5' GCGAGGATATTCCCATTACAGC Q-sucA5' ACGGGAGTCAAACCGGATCA 

Q-ihfB-3' CAAAGAGAAACTGCCGAAACC Q-yfiA3' TGTGGCGTCAGCAACAAACC 

Q-ihfB-5' GCCAAGACGGTTGAAGATGC Q-yfiA5' ACCGTCTCGCCAAACTGGAA 

Q-infA3' ACAATGCGGCCTTTGCTCAG Q-zwf3' GCCCTTCGATCCCCACTTCT 

Q-infA5' GCACACATCTCCGGTAAAATGC Q-zwf5' GGCGCTGCGTTTTGCTAACT 

4. Conclusions 

Knowledge of the molecular mechanisms underlying metabolic adaptations in E. coli is still sparse. 

The regulation, sequence and timing of the events underlying these phases are still poorly understood, 

as datasets describing the fine timing of metabolic transitions are still rare, even for a classical workhorse 

like E. coli. The main reason for this knowledge gap is the complexity of the regulatory network that 

controls metabolism, with interwoven genetic and metabolic regulations [8,26,37]; hence the need to 

combine several omics approaches to address this complexity [38]. Here, we demonstrated the value of 

multi-omic approaches to further our understanding of metabolic adaptation. Due to the complexity of 

metabolism and its many layered regulation, this work focused on central carbon metabolism as the 

first target, but the approach now needs to be extended to the entire metabolic network to get the full 

picture of adaptation mechanisms. 
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