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Visual appearance of natural objects is profoundly affected by viewing conditions such
as viewpoint and illumination. Human subjects can nevertheless compensate well for
variations in these viewing conditions. The strategies that the visual system uses to
accomplish this are largely unclear. Previous computational studies have suggested
that in principle, certain types of object fragments (rather than whole objects) can be
used for invariant recognition. However, whether the human visual system is actually
capable of using this strategy remains unknown. Here, we show that human observers
can achieve illumination invariance by using object fragments that carry the relevant
information. To determine this, we have used novel, but naturalistic, 3-D visual objects
called “digital embryos.” Using novel instances of whole embryos, not fragments, we
trained subjects to recognize individual embryos across illuminations. We then tested
the illumination-invariant object recognition performance of subjects using fragments. We
found that the performance was strongly correlated with the mutual information (MI) of the
fragments, provided that MI value took variations in illumination into consideration. This
correlation was not attributable to any systematic differences in task difficulty between
different fragments. These results reveal two important principles of invariant object
recognition. First, the subjects can achieve invariance at least in part by compensating
for the changes in the appearance of small local features, rather than of whole objects.
Second, the subjects do not always rely on generic or pre-existing invariance of features
(i.e., features whose appearance remains largely unchanged by variations in illumination),
and are capable of using learning to compensate for appearance changes when necessary.
These psychophysical results closely fit the predictions of earlier computational studies of
fragment-based invariant object recognition.
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INTRODUCTION
We rarely encounter a given object under the same viewing
conditions twice: the viewpoint, illumination, retinal size, and
background all tend to differ from one encounter to the next.
Yet, we have little difficulty in recognizing an object for what it
is while ignoring the irrelevant image variations. How the visual
system accomplishes this invariant recognition of objects (also
referred to as perceptual constancy) has remained largely unclear
(for reviews, see Walsh and Kulikowski, 1998; Wallis and Bulthoff,
1999; Christou and Bulthoff, 2000; Rolls, 2008; Biederman and
Cooper, 2009). This is both because the underlying computa-
tional problems are profoundly difficult, and because experi-
mental and computational studies have so far largely focused on
understanding object recognition without these variations.

Previous studies have shown that the visual system can use
local, informative image fragments of a given object, rather than
the whole object, in order to recognize the object under con-
stant viewing conditions (Ullman et al., 2002; Harel et al., 2007;
Ullman, 2007; Hegdé et al., 2008; Lerner et al., 2008; Kromrey
et al., 2010). Such image fragments are referred to as “informative
fragments.” Computational studies indicate that this fragment-
based approach is also beneficial specifically for invariant object

recognition (Bart et al., 2004; Ullman and Bart, 2004), including
for pose and illumination invariance.

These studies have identified two broad functional sub-
categories of informative fragments useful for invariant recog-
nition. One sub-category of fragments, referred to as “Invariant
fragments,” are those local features whose appearance is largely
resistant to variations in viewing conditions. For instance, the
appearance of the hairline changes relatively little under vari-
ations of illumination, which therefore makes it useful for
illumination-invariant face recognition. On the other hand,
the appearance of many features changes significantly with
viewing conditions, which makes them unsuitable as invariant
fragments.

“Extended fragments” are a second sub-category of fragments
useful for invariant object recognition. In contrast to invariant
fragments, extended fragments do not require feature appear-
ance to be stable under changes in viewing conditions. Instead,
an extended fragment records the appearance of the given fea-
ture under all viewing conditions of interest. In principle, this
may involve simply memorizing the appearance of a given feature
under each set of viewing conditions. An extended fragment can
then be used for recognizing the feature regardless of the viewing
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conditions. For instance, even though the appearance of a nose
changes under variations of illumination, it can still be useful
for recognition if one learns how a nose looks under various
illuminations. Since extended fragments do not depend on fea-
ture appearance being resistant to viewing conditions, any feature
can be used as an extended fragment. Therefore, extended frag-
ments may provide more information to the visual system and
thus achieve better performance. However, extended fragments
may be more difficult to learn than invariant fragments. This is
because, in order to use a feature as an extended fragment, one
must somehow learn its appearance under the various viewing
conditions.

The extent to which the human visual system actually uses
either extended or invariant fragments in object recognition is
largely unclear. The mechanisms by which we learn either type of
fragments, and conditions under which they can be learned, are
also unknown. While previous studies have addressed the ques-
tion of feature learning in general [e.g., (Kobatake and Tanaka,
1994; Schyns et al., 1998; Wallis and Bulthoff, 1999; Wallis et al.,
2009)], it is unclear whether and to what extent the mechanisms
suggested by these studies can generalize to learning extended or
invariant fragments, given that the nature of object fragments
is fundamentally different from the features addressed by these
studies (for details, see Ullman, 2007; Hegdé et al., 2008).

The present study focused on testing a specific hypothesis,
namely that the visual system is capable of using extended and/or
invariant fragments to help achieve a particular type of percep-
tual constancy, namely illumination-invariant object recognition.
In particular, we varied the direction of illumination while hold-
ing all other viewing parameters, including other illumination
parameters such as brightness or color of illumination, constant.
Note that the general framework of extended and invariant frag-
ments is not limited to illumination; in particular, it has been used
for pose-invariant recognition as well (Bart et al., 2004; Ullman
and Bart, 2004).

We have previously shown, in the context of the aforemen-
tioned informative fragments, that both humans and monkeys
automatically learn the fragments when they learn new object cat-
egories, and can use the learned fragments to recognize whole
objects (Hegdé et al., 2008; Kromrey et al., 2010). We there-
fore use a similar experimental design in the present study
to characterize how the human visual system learns and uses
extended and/or invariant fragments for illumination-invariant
object recognition. We find that human subjects can automat-
ically learn extended fragments when they learn new objects,
and can use the learned extended fragments to recognize whole
objects.

MATERIALS AND METHODS
PARTICIPANTS
Five adult volunteer human subjects (three females) with nor-
mal or corrected-to-normal vision participated in this study. All
protocols used in this study conformed to the relevant regula-
tory standards, and were approved in advance by the Human
Assurance Committee of the Georgia Health Sciences University,
where the psychophysical experiments were carried out. All sub-
jects gave informed consent prior to participating in the study.

STIMULI
We generated 50 novel, naturalistic virtual 3-D objects called
“digital embryos” using a custom implementation of the Virtual
Phylogenesis (VP) algorithm (Brady and Kersten, 2003; Hegdé
et al., 2008; Hauffen et al., in press). All 50 embryos were descen-
dants of the same parent object, and thus constituted a single
naturalistic “category.” The overall appearance of all objects was
similar, with relatively small variations distinguishing individual
objects from each other, so that distinguishing one embryo from
another was nontrivial (see, e.g., Figure 1A). It is important to
note that these shape variations were not imposed externally, but
rather arose randomly during VP. To the extent that VP simu-
lates the natural processes of morphogenesis and phylogenesis,
these variations can be considered naturalistic (Hegdé et al., 2008;
Hauffen et al., in press).

For each embryo, we generated four different images, corre-
sponding to four different directions of illumination (illuminated
from top left, top right, bottom left, and bottom right; see
Figure 1B) using the 3DS Max graphics toolkit (Autodesk, Inc.,
San Rafael, CA).

FRAGMENT SELECTION
Difference-of-Gaussians (DoG) interest points were located in
each embryo image as described by (Lowe, 2004). A 20 × 20-pixel

FIGURE 1 | Training stimuli. (A) Five example digital embryos from our
training set. All five embryos are shown under the same illumination. Note
that the embryos are perceptually similar enough that distinguishing among
them is not trivial. (B) The four directions of illumination used in our
experiments. The directions are denoted by arbitrary numbers: 0
(illuminated from bottom left), 1 (from top right), 2 (from top left), and
3 (from bottom right). The same digital embryo is shown under the four
illumination directions to illustrate the appearance changes induced by
changes in illumination.
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window around each interest point was extracted to form a
candidate fragment.

For each fragment, the mutual information (MI) was com-
puted. The MI I(F; L) between the fragment F and the object
identity label L is defined as I(F; L) = H(L) − H(L | F), where
H(X) is the entropy of the random variable X and measures the
uncertainty in the value of X. Thus, H(L) is the uncertainty in
the identity label of the given image in the absence of any infor-
mation, and H(L | F) is the uncertainty in the identity given
the information in the fragment F. Therefore, MI of the frag-
ment F measures how much the uncertainty about object identity
decreases by using the given fragment.

In practice, the MI can be computed by using the expression

I (F; L) =
∑

f ,l

p(f , l) log
p(f , l)

p
(
f
)

p(l)
. (1)

The quantities of interest p(f , l), p(f ), and p(l) can be eval-
uated from the training images, i.e., the set of images used as
input to the fragment selection process. For example, the quan-
tity p(F = 1) is the probability that a given fragment is present in
an image. Similarly, the quantity p(F = 1, l) is the probability that
the fragment is present in an image of object l.

The presence of fragments in images was determined by using
the absolute value of normalized cross-correlation (ANCC), as
previously described in (Bart et al., 2004; Ullman and Bart, 2004).
Briefly, to determine whether a given 20 × 20-pixel fragment
V was present in a given image X, ANCC was first computed
between the fragment and all 20 × 20-pixel windows in the
image. The highest ANCC value was taken; this highest value is
denoted A(V, X). If A(V, X) was above a pre-determined thresh-
old, the fragment was considered present in the image (F = 1);
otherwise, it was considered absent (F = 0). Thus, a 20 × 20-
pixel fragment and a threshold determine the variable F and can
be used to compute MI. The appropriate value of the threshold
itself was determined by considering multiple threshold values for
each fragment and selecting the threshold that maximized MI, as
in (Bart et al., 2004; Ullman and Bart, 2004). ANCC values them-
selves were computed as follows. For two 20 × 20-pixel windows
V, W, normalized cross-correlation is defined as

NCC(V, W)

=
1

20×20

20∑
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20∑
y = 1

(
V

[
x, y

] − V
) (

W
[
x, y

] − W
)

σVσW
, (2)

where V[x, y] is the pixel value at position (x, y) in the win-
dow V, V is the average of all pixel values in V, σV is the
standard deviation of the pixel values, and similarly for W.
Normalized cross-correlation has values between +1 and −1;
the value +1 indicates perfect correlation, −1 indicates perfect
anti-correlation, and 0 indicates no correlation. The ANCC there-
fore has values between 0 and 1, with lower values indicating
weaker correlation and higher values indicating stronger positive
or anti-correlation (in practice, anti-correlation rarely occurs in
our images; data not shown). An example of MI computation and
threshold selection is given in Figure 2.

There are two ways to use ANCC to determine a fragment’s
presence in a given image. One is to render the fragment under a
fixed illumination (say, illumination 0) and use the rendering at
this illumination to compute ANCC, regardless of which illumi-
nation the given image is in. Mathematically, we set F = 1 if the
single template’s ANCC value is above the threshold and compute
MI using Equation (1). Of course, if the fragment appearance
changes across illuminations, the results will be poor when the
fragment illumination is different from the image illumination.
This method of computation therefore implicitly assumes that the
fragment’s appearance is invariant to viewing conditions. When
fragments are used in this manner, they are called “invariant frag-
ments,” and MI computed in this manner is called “Invariant MI”
and denoted by Iinv. See Bart et al. (2004), Ullman and Bart (2004)
for details.

A second method of using ANCC to determine the presence
of a fragment in a given image is to learn the appearance of each
fragment under all illuminations in question. Computationally,
this requires rendering and storing for each fragment the four
templates, one for each illumination, as illustrated in Figure 3.
In a biological system, this could be achieved by learning the
appearance of a given feature in a given set of training examples.
Given an image in a particular illumination, all four templates
are matched to it using ANCC, and the best-matching template
is selected in order to calculate the similarity. Mathematically,
we set F = 1 if the maximal ANCC value over all four tem-
plates is above the threshold. The advantage of this method is
that matching across illuminations is no longer necessary. In
most cases, the template with the best ANCC value will auto-
matically be the one that matches the image illumination (Bart
et al., 2004; Ullman and Bart, 2004), thus eliminating compar-
ison across illuminations. This generally results in much better
similarity estimates and improved recognition performance (Bart
et al., 2004; Ullman and Bart, 2004). The disadvantage is that
training examples are needed, and the learning process may be
difficult. When fragments are used in this manner, they are called
“extended fragments,” and MI computed in this manner is called
“Extended MI” and denoted by Iext. See Bart et al. (2004); Ullman
and Bart (2004) for details.

For each candidate fragment, both Iext and Iinv were calculated.
Four “goodness” measures were defined as follows:

• G1 = Iext + Iinv favors fragments that have high Extended MI
and high Invariant MI.

• G2 = Iext − Iinv favors fragments that have high Extended MI
and low Invariant MI.

• G3 = −Iext + Iinv favors fragments that have low Extended MI
and high Invariant MI.

• G4 = −Iext − Iinv favors fragments that have low Extended MI
and low Invariant MI.

For each of these measures, the fragments were sorted accord-
ing to the decreasing value of the measure. Note that G3 = −G2;
the reason to use both is that we wanted to have fragments with
high Iext and low Iinv, as well as fragments with low Iext and high
Iinv. This allowed us to disassociate between Iext and Iinv and
determine how each separately affects the performance. Similarly,
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FIGURE 2 | An example of MI computation. The top row shows images of
three different objects (labeled 1, 2, and 3), with four different images for each
object. The second row shows the object labels. The MI of the fragment
shown (enlarged) in row three was computed. The fourth row shows the
ANCC values for this fragment in each image. Using a threshold value of 0.77
gives the presence/absence values of the F variable shown in the fifth row.
Since there are four 0’s in this example, out of 12 total observations, we get an
empirical estimate p(F = 0) = 4/12 = 1/3. Similarly, the following estimates
can be obtained: p(F = 1) = 2/3; p(L = 1) = 1/3; p(L = 2) = 1/3; p(L = 3)
= 1/3; p(F = 0, L = 1) = 0; p(F = 0, L = 2) = 1/6; p(F = 0, L = 3) = 1/6;

p(F = 1, L = 1) = 1/3; p(F = 1, L = 2) = 1/6; p(F = 1, L = 3) = 1/6.
Substituting these values into Equation (1), we get MI = 0.25. The ANCC
values need to be computed only once, but the F values need to be
recomputed for every threshold. For example, for the threshold setting of 0.87,
the F values in row six are obtained, giving MI = 0.92. If the ANCC values are
sorted in increasing order, the following sequence is obtained: 0.71, 0.74,
0.74, 0.76, 0.78, 0.79, 0.80, 0.81, 0.95, 0.97, 0.97, 0.99. Any threshold
in-between two consecutive ANCC values will result in the same F values and
therefore in the same MI. Therefore, in this example only 11 representative
threshold values need to be evaluated to select the optimal threshold.

G4 = −G1; the reason to have G1was to assess any additive effects
of Iext and Iinv, while the reason to have G4 was to assess the per-
formance of uninformative fragments. The top 20 fragments were
selected for each measure, subject to the constraint that a frag-
ment’s visual similarity (as measured by ANCC) to any previously
selected fragment could not exceed 0.9. This resulted in a total of
80 fragments.

The 20 fragments selected by measure G1 are shown in
Figure 7. Note that there are still many fragments in this set that
are visually similar to each other and thus redundant. Therefore,
five non-redundant fragments were selected from this set man-
ually by the authors (fragments 1–5 in Figure 3 and fragments
3, 4, 14, 17, and 20 in Figure 7). Similarly, five non-redundant
fragments out of each subset of 20 were selected for the other
goodness measures. This resulted in the final set of 20 non-
redundant fragments shown in Figure 3. Note that this final set
contains five fragments selected by each of the four goodness
measures.

TRAINING IN ILLUMINATION-INVARIANT OBJECT RECOGNITION
Except where noted otherwise, the procedures used in the psy-
chophysical training phase (this section) and testing phase (see
next section) of the experiment were identical to those described
by us previously (Hegdé et al., 2008). Briefly, during the train-
ing phase, we trained the subjects to recognize individual digital
embryos across illuminations using a simultaneous match-to-
sample task. In this task, the subjects had to match a single sample
embryo at one illumination at the center of the screen to an array

of ten test embryos at another illumination arranged along the
periphery of the screen (Figure 4). The subjects were allowed
unlimited time to examine the images and arrive at a decision.
Once the subjects reported their decision using a key press, visual
feedback was provided (including the correct response, if the sub-
ject’s response was wrong). The subjects had unlimited time to
re-examine the display in light of the feedback. During initial
training, the subjects were not required in any way to learn the
fragments, nor were they even told of their existence. The per-
formance was monitored across the training blocks (Figure 5).
After a subject’s performance remained asymptotic at above-
chance levels for at least three sequential training blocks of 50
trials each (binomial tests, p < 0.05), the subjects moved to the
testing phase (see below). All the subjects achieved asymptotic
learning within 10 blocks (not shown). To minimize day-to-day
forgetting of the learned objects, each subject carried out up to
50 “refresher” training trials at the start of each testing day. Note
that during these refresher trials the subjects were aware of the
existence of fragments, although they still weren’t explicitly asked
to learn them.

TESTING ILLUMINATION-INVARIANT OBJECT RECOGNITION
USING FRAGMENTS
During the testing phase, the subjects performed an object iden-
tification task on the sole basis of a given fragment. In each trial,
a composite object showing a sample fragment at illumination
0 was displayed at the center of the screen. Two test embryos
at illumination 3 abutted the composite object. All stimuli
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FIGURE 3 | The 20 fragments used in our experiments. The appearance of each fragment under each of the four illuminations is shown, as well as the
corresponding Extended and Invariant MI values (MIext and MIinv, respectively).

were presented simultaneously for 3000 ms (Figure 6). Only one
fragment in the composite object was clearly visible (see below).
This fragment (called the “sample fragment”) was also present in
one of the test embryos (“positive embryo,” presented on a ran-
domly chosen side during a given trial) and absent from the other
test embryo (“negative embryo”). Following a 200 ms random
noise mask, subjects had unlimited time to indicate, based on the

sample fragment in the composite object, whether the compos-
ite object was the same as the left test embryo or the right test
embryo.

The composite object was generated by graphically overlay-
ing the sample fragment over a randomly drawn “background”
embryo. The composite object was shown to the subject behind
a rectangular translucent occluder with a hole, so that only the
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FIGURE 4 | The training paradigm. This figure illustrates the configuration
of stimuli during a typical trial during the training phase. During each trial, a
randomly selected sample embryo was shown in the center in a randomly
selected illumination. The 10 test stimuli were shown simultaneously arrayed
along the periphery of the screen. The illumination was the same across all
sample stimuli, but was different from the illumination of the sample embryo.
The test embryos were assigned randomly to numbered locations (white
numbers). One of the test embryos was the same object as the sample
embryo, but at a different illumination. The subjects had to identify the test

embryo that matched the sample embryo, and enter the number of this test
embryo using the computer’s keyboard, which then appeared as a yellow
number next to the sample embryo. Note that this task required the subjects
to generalize across the illuminations. The subjects pressed another key to
finalize their response. After the subjects finalized their response, they
received visual feedback (not shown), along with the correct response, if the
subject’s response was incorrect. Subjects had unlimited time both to
perform the task and to examine the subsequent feedback. The stimulus
configuration shown subtended 26◦ × 26◦ during the actual experiments.

sample fragment (0.53◦ × 0.53◦) was visible unhindered through
the hole in its proper position on the object, whereas the rest of
the object appeared as a faded “background” (see Figure 6). This
design helped ensure that the subjects saw the sample fragment in
its proper spatial context. This design is better than presenting the
sample fragment by itself without the spatial context, because it
minimizes the possibility that the subject may have to use seman-
tic and spatial cues (e.g., configural cues, such “the corner of the
left eye”) to help perform the task.

Subjects were informed that only the unoccluded fragment of
the composite object was useful for the task, and that the faded
background portion of the composite object (i.e., the portion vis-
ible behind the translucent occluder) was randomly selected, so
that they would not be able to perform the task above chance
levels using the background object.

Two different test objects (called “test embryos”) were shown
on either side of the composite object. Whole objects, rather

than just fragments, were used as test objects to help ensure
that (1) the task involved object identification, as opposed
to simple visual matching of individual fragments, and (2)
task required only implicit perceptual learning and not declar-
ative (or explicit) association between a fragment and an
object.

A sample fragment and two test embryos (one positive and
one negative) constitute a “testing configuration.” For each frag-
ment in Figure 3, five embryos in which the fragment was most
active, and five embryos in which it was least active, were selected.
This activation level was measured by finding the highest ANCC
value among all illuminations of a given embryo. All 25 pos-
sible testing configurations for each of the 20 fragments were
created, resulting in 500 total testing configurations. This choice
of testing configurations was motivated by the following consid-
erations. The test embryos need to be visually distinguishable
on the basis of the sample fragment; otherwise, the trial will be
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FIGURE 5 | Subject performance during training. Y axis: % correct
responses during a single block (50 individual trials). X axis: block number.
Left: average across all subjects (error bars indicate standard error of

the mean). Right: performance of a single representative subject (subject
M00). As can be seen, the performance improved significantly as a result of
training.

FIGURE 6 | The testing paradigm. A composite object (center) and two test
objects (left and right) were presented simultaneously during each trial. The
composite object was occluded by a translucent surface with a hole, such
that only the given object fragment was visible, unoccluded, through the
hole, and the location of the fragment relative to the overall object was
apparent through the translucent occluder. Subjects were informed that only
the fragment, but not the darkened remainder of the composite object, was

useful for the task. The fragment in the composite object was always in
illumination 0, and both test embryos were always at illumination 3. The
fragment was present in one of the test embryos, and absent from the other
(“positive” and “negative” embryos, respectively). The location of the two
test embryos was shuffled randomly from one trial to the next. Subjects had
to report, using a key press, whether the positive test embryo was to the left
or right of the composite object.

meaningless as the fragment will provide no information as to
the correct answer. Embryos with highest fragment activation
were compared to embryos with the lowest fragment activation
to maximize this visual distinguishability. We used five embryos
of each type, because fewer than 25 configurations per fragment
might be insufficient to ensure thorough testing, while more than
25 configurations would make the testing too long and laborious
for the subjects.

No feedback was provided during testing. Each fragment was
presented over six randomly interleaved repetitions for each
subject, so each subject performed 3000 trials during the testing
phase.

DATA ANALYSIS
The results were analyzed using scripts custom-written in R
(r-project.org) and Matlab (Mathworks, Natick, MA, USA).
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FIGURE 7 | The 20 fragments selected by the G1 measure. The appearance of each fragment under each of the four illuminations is shown, as well as the
fragment’s Extended and Invariant MI.

Additional details of the analyses are provided in the “Results”
section, where underlying rationale will be clearer.

RESULTS
Our study was aimed at testing the hypothesis that the human
visual system can use invariant and/or extended fragments
to achieve invariant object recognition. During the testing

phase of the experiment, the subjects had to determine
which of the two test embryos contained the sample frag-
ment (i.e., which one was the “positive” embryo). This task
was difficult, because the sample fragment was presented in
illumination 0, while both test embryos were presented in
illumination 3. This difference in illumination induced a sig-
nificant change in appearance (see, e.g., Figure 3) that the
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subjects had to compensate for in order to perform the task
properly.

Several possible strategies for performing this task were evalu-
ated. One possible strategy is that during each trial, the subject
matches the fragment’s visual appearance directly to both test
embryos and selects the embryo that resembles the fragment
more closely. Another possibility is that the subject discounts the
illumination (for example, by somehow transforming the frag-
ment into the embryo’s illumination or vice versa) and then
performs the visual comparison. A third possibility is that, as sug-
gested by a computational model of invariance (Bart et al., 2004;
Ullman and Bart, 2004) and our previous experiments (Hegdé
et al., 2008; Kromrey et al., 2010), the subjects preferentially
learn fragments that are useful for the object recognition task
they were previously trained on. This usefulness can be measured
objectively by using MI.

MI can be calculated under one of two hypotheses. One pos-
sibility is that the subjects assume illumination invariance, or
preferentially seek out and exploit invariant fragments. The other
possibility is that the subjects make no invariance assumptions
and instead use learning to compensate for appearance changes
across illumination by using extended fragments.

Five predictor variables corresponding to the strategies out-
lined above were computed for each testing configuration (i.e.,
the set of the sample fragment and two test embryos presented
during a given trial):

(1) M03 was the difference in visual similarity of the fragment to
the “positive” and “negative” test images shown to the sub-
ject. Visual similarity was measured by ANCC, as described
above. Denoting the fragment rendered in illumination 0 by
V0, the positive test embryo rendered in illumination 3 by
X+

3 , and the negative test embryo rendered in illumination 3
by X−

3 , M03 was defined as A
(
V0, X+

3

) − A(V0, X−
3 ), where

A was the ANCC value, as defined above. If the subjects used
the naive strategy of direct matching by visual appearance,
this M03 would be expected to correlate strongly with per-
formance. Note that in practice, this strategy is likely to result
in poor performance, since the fragment and the embryo
images had different illuminations. This variable is also called
Margin 0 → 3, which refers to the fact that a fragment in
illumination 0 is matched to images in illumination 3.

(2) M00 was the difference in visual similarity of the fragment to
the “positive” and “negative” embryos rendered in illumina-
tion 0 (same illumination as the fragment). M00 was defined
as A

(
V0, X+

0

) − A(V0, X−
0 ), where X+

0 was the positive test

embryo rendered in illumination 0, and X−
0 was the negative

test embryo rendered in illumination 0. This variable is also
called Margin 0 → 0. If the subjects mentally transformed
the embryo images to illumination 0 and then used match-
ing by visual appearance, this value would be expected to
correlate strongly with performance.

(3) M33 was the difference in visual similarity of the fragment,
rendered in illumination 3 (same illumination as the embryo
images) to the “positive” and “negative” images displayed.
M33 was defined as A

(
V3, X+

3

) − A(V3, X−
3 ), where X+

3 was
the positive test embryo rendered in illumination 3, X−

3 was

the negative test embryo rendered in illumination 3, and V3

was the fragment rendered in illumination 3.  This variable
is also called Margin 3 → 3. If the subjects mentally trans-
formed the fragment image to illumination 3 and then used
matching by visual appearance, this value would be expected
to correlate strongly with performance.

(4) Extended MI (MIext) measured how useful the given frag-
ment is for object recognition for subjects who use extended
fragments.

(5) Invariant MI (MIinv) measured how useful the given frag-
ment is for object recognition for subjects who rely on the
invariance of features across illumination.

Note that the first three variables, in general, change from one
stimulus configuration to the next, while the last two variables
have the same value for all 25 configurations involving a single
fragment.

Scatter plots of performance with the five predictor variables
are shown in Figure 8. Examination of performance averaged
across all subjects revealed that the subjects systematically under-
performed in many configurations despite abundant visual cues.
This suggests (although does not, by itself, prove) that visual
appearance alone was insufficient to explain the subjects’ per-
formance. To help discern whether this is indeed the case, we
defined a configuration to be “visually recognizable” if the margin
M03 was above 0.05 (note that the absolute values of normal-
ized correlation range from 0 to 1). This threshold is shown as
a red vertical line in Figure 9. The underlying intuition was that
this amount of visual difference is easily detectable by human
observers and can therefore be interpreted reliably. This intu-
ition is confirmed by the fact that 67 configurations with M03
less than 0.05 were recognized correctly in over 80% of the trials
(blue rectangle in Figure 9). In other words, even smaller mar-
gins were sufficient to allow reliable recognition. However, there
were 49 configurations with a margin above 0.05 whose recogni-
tion rate was between 50 and 70% (green rectangle in Figure 9).
Note that 50% recognition is expected by chance. In other words,
even though these configurations contained sufficient visual cues
to perform the task, the subjects systematically failed to do so.
Similar results can be obtained using M00 or M33 to define visual
recognizability instead of M03 (see Figure 8). These informal
considerations support, although do not by themselves prove, the
notion that factors other than visual recognizability significantly
affect subjects’ performance.

To rigorously analyze the intuition presented above, we fit-
ted a linear regression to the data that accounted for the average
performance in terms of the aforementioned five independent
variables. An examination of the fitted model revealed that MIext

was the only independent variable that contributed significantly
to the fit (Table 1). This contribution was highly significant (p =
1.5 × 10−14, F-test). The contributions of the three visual vari-
ables (M03, M00, and M33), as well as the contribution of MIinv,
were each statistically insignificant (p > 0.05).

We also compared the regression with the three purely visual
variables (M03, M00, and M33) to regression with all five
variables. Adding the MI-based variables had a highly signifi-
cant effect (p = 7 × 10−15, F-test). In other words, even after

Frontiers in Computational Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 56 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bart and Hegdé Illumination-invariant object recognition

FIGURE 8 | Scatter plots of performance (Y axis) with the five predictor variables (X axis) defined in the “Results” section. Hexagonal binning was used due
to a large number of overlapping points. The depth of shading of each bin indicates the number of points that fall in it, according to the legend at the bottom right.

accounting for the purely appearance-based factors given by the
variables M03, M00, and M33, the MI-based variables explained
a significant additional fraction of variance. In contrast, the
performance of the two MI-based variables by themselves did
not improve further after adding the three purely visual vari-
ables (p = 0.09, F-test). That is, the visual variables add no
information beyond that already contained in the MI-based
variables.

These analyses further support the conclusion that subjects
do not rely on visual appearance alone, and can preferen-
tially use extended fragments that are useful for the recognition
task.

DISCUSSION
INVARIANT OBJECT RECOGNITION BASED ON FRAGMENTS
Our results empirically confirm, for the first time, the hypothe-
sis that the human visual system can use extended fragments to
achieve invariant object recognition. The results found no sup-
port for the use of invariant fragments by the visual system. Note
that this does not necessarily mean that the visual system cannot
use invariant fragments for invariant object recognition under

any circumstances; rather, it only shows that invariant fragments
were not used in the current experiment. Nonetheless, it is worth
noting that the statistical power of the sample was adequate
enough to find affirmative evidence that the human visual system
is capable of using extended fragments for invariant recognition.
It is also worth noting that the fact that the visual system can use
extended fragments under our experimental conditions does not
necessarily mean that extended fragments are the universal, much
less the sole, means by which the visual system achieves invariant
object recognition in general, or illuminant-invariant recognition
in particular (also see below).

The demonstration that the visual system is capable of using
extended fragments is significant, for two main reasons. First, it
provides the empirical “existence proof” for a hitherto theoretical
idea. Second, as extensively noted by previous studies, fragment-
based object approach is a substantially different approach to
object recognition in general, and invariant object recognition
in particular, than the conventional approaches based on whole
objects [cf. (Wallis and Bulthoff, 1999; Christou and Bulthoff,
2000; Rolls, 2008; Biederman and Cooper, 2009; Wallis et al.,
2009)]. Therefore, the empirical demonstration that the visual
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FIGURE 9 | Scatter plot of performance (Y axis) with the M03 variable

(X axis) defined in the “Results” section. Hexagonal binning was used due
to a large number of overlapping points. The depth of shading of each bin
indicates the number of points that fall in it, according to the legend on the
right. The red line indicates the “visual recognizability” threshold, defined in

the “Results” section. Note that testing configurations remained discernible
even below this threshold (blue rectangle). However, subjects systematically
underperformed in some highly recognizable configurations (green
rectangle), indicating that factors other than visual recognizability affected
performance. See text for details.

Table 1 | Coefficients of linear regression for the five independent

variables and the intercept term.

Variable Estimate Std. Error Partial r2 p value

(F -test)

Intercept 21.0 0.2 (Not Applicable) 2.0 × 10−16

M03 0.5 0.3 0.004 0.06

M00 0.5 0.4 0.003 0.15

M33 0.1 0.4 0.0001 0.71

MIext 2.4 0.3 0.08 1.5 × 10−14

MIinv 0.4 0.2 0.004 0.06

With all terms included, the value of r2, the coefficient of determination,

was 0.39.

system can use fragments for this purpose opens important
new avenues of future research for invariant object recognition
in general, and illumination-invariant object recognition in
particular (also see below).

ILLUMINATION-INVARIANT OBJECT RECOGNITION
Several key implications of our results for illumination-invariant
object recognition are worth noting. First, if the subjects only
used visual cues to perform the testing task, then the perfor-
mance would be explained by the margin variables and would
not be affected by MI. Since adding MI in fact improves

the fit highly significantly (p = 7 × 10−15, F-test), we conclude
that the subjects preferentially use informative fragments that
are useful for the recognition task they were trained with. In
contrast, uninformative fragments are neglected, even when
sufficient visual information is available for accurate recogni-
tion.

Second, if the subjects compensated for illumination effects
at the level of whole objects, then illumination of all features
of a given object would be compensated for in a similar man-
ner. The performance would thus depend only on how visually
recognizable a given feature is after accounting for illumination.
In practice, however, fragments with similar visual recognizabil-
ity have dramatically different recognition rates (see “Results” for
details). These considerations indicate that illumination compen-
sation occurs on a feature level, rather than on a whole object
level.

Finally, if the subjects assumed (implicitly or explicitly) that
individual features were invariant to illumination, then the use-
fulness of individual features for recognition would be given
by the Invariant MI. However, Invariant MI did not contribute
significantly to explaining performance (p > 0.05, F-test). In
contrast, the contribution of Extended MI, computed under the
assumption that illumination is compensated for by extended
fragments, rather than by assuming invariance, was highly sig-
nificant (p = 1.5 × 10−14, F-test). Thus, subjects are highly
unlikely to have assumed invariance, but rather must have
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compensated for viewing conditions by using extended frag-
ments.

Note that for the training task we have used, computational
simulations predict invariant features to perform much poorer
than extended fragments. We cannot therefore conclude that sub-
jects always use extended fragments. It is possible that when
invariant features are sufficient to perform a task, those would be
used instead of, or in addition to, extended fragments. However,
as noted above, our results do provide an “existence proof”
that subjects are capable of using extended fragments, and do
use them when needed. Further work is necessary to determine
under what conditions extended fragments can be learned and
used. However, our “existence proof” is by itself an important
conclusion, because using extended fragments is a nontrivial
task.

Together, the above arguments support two main conclusions.
First, illumination invariance is not achieved on a whole-object
level. Rather, the illumination is compensated for feature-by-
feature, with some features being preferred over others. The
preferred features are those which support the recognition task,
and their appearance variations are compensated for more care-
fully. Second, the subjects do not rely on invariance of individual
features. Rather, they are capable of using extended fragments to
compensate for appearance changes when necessary. Both conclu-
sions fit closely with the computational model for invariant object
recognition developed in Bart et al. (2004) and Ullman and Bart
(2004).

LEANING DURING TRAINING VS. PRIOR LEARNING
Using extended fragments to compensate for illumination
requires familiarity with the visual appearance of a given object
feature under various illuminations. This familiarity may be
achieved by learning during the training process. Alternatively,
this familiarity may be achieved by generalizing from previous
visual experience, or may even be innate. The demonstration that
subjects can use extended fragments at all is novel and interest-
ing by itself, regardless of the exact learning mechanism used.
We therefore did not attempt to establish the learning mechanism
conclusively in this experiment.

In principle, some generalization from prior experience might
have occurred in our experiment. For example, a corner may
be recognizable as a corner under many different illuminations
without dedicated training. However, it seems unlikely that such
generalization would affect informative and uninformative frag-
ments differentially, as in our experiment. There were no system-
atic visual differences between different fragments (see Figure 3).
Moreover, the notion of MI itself is highly task-specific. For exam-
ple, by computing MI for a different task where only two (rather
than four) illuminations are used, the informativeness of frag-
ments in Figure 3 changes dramatically. In particular, some of
the uninformative fragments in Figure 3 become highly infor-
mative for this modified task (data not shown). The fact that
subjects preferentially compensate for illumination changes of
fragments informative for the given specific task, rather than for a
number of possible alternative tasks, indicates that generalization
from prior experience, if it exists, is modulated substantially by
learning.

IMPLICATIONS FOR THE NEURAL MECHANISMS FOR
ILLUMINATION-INVARIANT OBJECT RECOGNITION
The neural mechanisms by which the visual system learns
extended fragments, or uses them to achieve illumination-
invariant object recognition, remain to be characterized.
However, previous neuroimaging studies in human subjects have
shown, using informative fragments, that the lateral occipi-
tal complex and the posterior fusiform gyrus are preferentially
responsive to fragments with high MI values (Lerner et al., 2008),
also see Harel et al. (2007). Both of these brain regions are known
to play a central role in visual object recognition (Grill-Spector
et al., 1999, 2000, 2001, 2004; Grill-Spector and Malach, 2004).
Both of these regions have also been previously shown to play
important roles in perceptual learning, albeit of whole visual
objects (Gauthier and Tarr, 1997; Gauthier et al., 1998, 1999;
Bukach et al., 2006; Wong et al., 2009). Taken together, these con-
siderations suggest the possibility that these two brain regions
play a key role in learning and/or using extended fragments for
illumination-invariant object recognition.

It has been observed that object representations become both
more selective and more invariant as they propagate upstream
in the visual system (see, e.g., Rust and Dicarlo, 2010). This is
thought to be a consequence of the hierarchical architecture of the
visual system, where cells at higher levels pool input from several
lower-level cells and thus become more tolerant of changes than
each individual lower-level cell (Riesenhuber and Poggio, 1999).
Our results are consistent with this view, because the features we
have used are quite high-level, and are expected to be processed in
high-level visual areas, and can therefore be expected to be quite
tolerant of viewing conditions.

FUTURE DIRECTIONS
It is worth noting that our results, although highly statistically
significant, only account for about 40% of the variability in
the subjects’ performance (Table 1). In the future, it would be
interesting to determine what factors account for the remain-
ing variability. One potential source of this residual vari-
ability is that our sample sizes, even with 3000 trials per
subject (see “Materials and Methods”), were nonetheless rel-
atively small from the statistical viewpoint. Using more test-
ing configurations per fragment and repeating the experiments
with more subjects and more trials per subject would help
reduce the intrinsic randomness in the performance. Another
potential source of variability is a scenario where the subjects
learn features at a smaller scale than those extracted compu-
tationally, but learn different subsets of these smaller features.
Although extracting such small features is easy computation-
ally, it may present practical problems for our current exper-
imental setup. This is because even the current features are
small enough to cause visibility concerns. However, designing
an experiment where smaller features are not useful for recog-
nition, or using a different testing paradigm, may alleviate this
problem.

Although the experiments in the current work addressed
illumination invariance, it should be noted that our experi-
mental setup can readily be used to test other types of invari-
ant recognition, such as viewpoint (or pose) invariance, size
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(or scale) invariance, etc. This could be a particularly interesting
direction for future work, especially since the underlying com-
putations are fundamentally the same (Bart et al., 2004; Ullman
and Bart, 2004) This is not necessarily to say, however, that the
underlying neural mechanisms are the same. Indeed, given that
the relevant visual features tend to be processed differently by
the visual system (Felleman and Van Essen, 1991; DeYoe et al.,
1994; Vuilleumier et al., 2002; Grill-Spector and Malach, 2004),
the underlying neural mechanisms are likely to be substantially

different. However, the fragment-based approach provides a
common, rigorous conceptual framework for the experimental
study of many different types of perceptual invariance.
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