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Objective: Age-related macular degeneration (AMD) causes visual damage and
blindness globally. The purpose of this study was to investigate changes in functional
connectivity (FC) in AMD patients using resting-state functional magnetic resonance
imaging (rs-fMRI).

Subjects and Methods: A total of 23 patients (12 male, 11 female) with AMD were
enrolled to the AMD patients group (AMDs), and 17 healthy age-, sex-, and education-
matched controls (9 male, 8 female) to the healthy controls group (HCs). All participants
underwent rs-fMRI and mean FC values were compared between the two groups.

Results: Significantly higher FC values were found in the inferior frontal gyrus
(IFG), superior frontal gyrus (SFG), inferior parietal lobule (IPL), rectal gyrus (RTG),
and superior parietal lobule (SPL) in AMDs compared with HCs. Conversely, FC
values in the cerebellum posterior lobe (CPL), middle cingulate gyrus (MCG), medulla
(MDL), cerebellum anterior lobe (CAL), and thalamus (TLM) were significantly lower in
AMDs than in HCs.

Conclusion: This study demonstrated FC abnormalities in many specific cerebral
regions in AMD patients, and may provide new insights for exploration of potential
pathophysiological mechanism of AMD-induced functional cerebral changes.
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INTRODUCTION

As a prevalent, chronic and progressive disease of the macula,
age-related macular degeneration (AMD) is the leading cause
of central vision impairment worldwide. The prevalence of
AMD ranges from 6.8% in Asians to 12.3% in Europeans,
is lower in Africans than in Europeans, but similar between
Asians and Africans (Kawasaki et al., 2010; Laude et al., 2010;
Wong et al., 2014). Major visual impairment occurs mainly
in the late stages of AMD in one of two forms: neovascular
(wet) AMD and geographic (dry) atrophy. Age is an important
risk factor for AMD, other strong and consistent risk factors
being darker iris pigmentation (Chakravarthy et al., 2010),
previous cataract surgery (Cugati et al., 2006), cigarette smoking
(Seddon et al., 1996), and obesity (Seddon et al., 2003).
In clinical practice, fundus fluorescein angiography (FFA),
optical coherence tomography, and fundus autofluorescence
imaging are now extensively applied in diagnosis and to
guide management of AMD (Lim et al., 2012). However,
these examinations may not be suitable for patients with
severe ocular media opacity or significant disease such as
heart or renal failure. Advances have been made in disease
detection and diagnosis allowing for rapid intervention,
monitoring, and amelioration of the disease, improving
prognosis, and evaluation.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is widely performed to assess cerebrum functional
connectivity (FC), which is temporally correlated within resting
state functional networks. rs-fMRI is increasingly applied to map
the representation of cerebral function in many diseases, such
as amyotrophic lateral sclerosis (Douaud et al., 2011), traumatic
brain injury (Mayer et al., 2015), stroke (Puig et al., 2018),
and Alzheimer’s disease (Zhao et al., 2020), and has proven
valuable for characterizing and analyzing cerebral activity in the
resting state (Damoiseaux et al., 2006; De Luca et al., 2006) and
in task performance (Spreng and Grady, 2010). Based on the
correlation between the anatomical structure and physiological
functions of the retina and cerebrum (Wong et al., 2001b;
Patton et al., 2005), the potential of retinopathy to provide
indirect indicators of intracerebral lesions has attracted extensive
attention (Fuller et al., 2001; Wong et al., 2001a, 2002; Yatsuya
et al., 2010). Abnormal spontaneous FC has been observed
in ophthalmic diseases such as glaucoma (Li et al., 2017),
amblyopia (Ding et al., 2013; Liang et al., 2017), and strabismus
(Yan et al., 2019). The frontal, thalamic and temporal cerebral
regions comprise the default mode network, which participates
in memory, emotional, and cognitive functions (Raichle, 2010;
Zhang and Raichle, 2010). Therefore, we hypothesize that FC
is abnormal in AMD patients, and that relevant cognition-
related or connectivity changes in visual areas may result in
anxiety and depression.

To explore this possibility, rs-fMRI was used to measure
cerebral FC, promoting an in-depth understanding of the
potential neural mechanism of cerebrum visual pathway injury
in patients with AMD (Figure 1), and allowing better evaluation
and improved prognosis for patients.

MATERIALS AND METHODS

Subjects
A total of 23 subjects with AMD (12 males, 11 females) were
recruited to the AMD group (AMDs) at the First Affiliated
Hospital of Nanchang University (Nanchang, China) according
to the inclusion criteria described in previous publications (Seiple
et al., 2005; Zuo et al., 2020). Information about the AMD patients
is provided in section “Results.” Seventeen healthy controls (HCs)
(9 male and 8 female subjects) without AMD were recruited to
the HCs group. The two groups were matched for age, gender,
handedness, educational level, and total intracranial volume. The
inclusion criteria for HCs were as follows: (1) no history of AMD
or other ocular disease; (2) no MRI contraindications; (3) no
history of drug or alcohol abuse; and (4) no neurological or
psychiatric diseases.

This study was conducted in accordance with the Declaration
of Helsinki, and was approved by the Medical Ethics Committee
of the First Affiliated Hospital of Nanchang University. All
participants signed declarations of informed consent.

Functional Magnetic Resonance Imaging
Parameters
The MRI scans were performed using a 3-T MR scanner (Trio;
Siemens, Munich, Germany). T1-weighted (T1W) gradient echo
images were acquired using the following parameters: TR/TE
1,900/2.26 ms; gap 0.5 mm; slice thickness 1.0 mm; acquisition
matrix 256 × 256; field of view 250 × 250 mm; and flip
angle 9◦. Functional images were processed using the following
parameters: TR/TE 2,000/30 ms; gap 1.2 mm; slice thickness
4.0 mm; acquisition matrix 64 × 64; field of view 220 × 220 mm;
flip angle 90◦; number of axial slices 29. All participants were
awake with eyes closed for the duration of the scan.

Functional Magnetic Resonance Imaging
Data Processing
The fMRI data were classified using MRIcro software,1 and
processed using statistical parametric mapping software2 and
the rs-fMRI Data Analysis Toolkit (REST3), using the Data
Processing Assistant for Resting-State fMRI (DPARSF) software4

for resting-state fMRI. This methodology has been described
previously (Chao-Gan and Yu-Feng, 2010; Huang et al., 2016).
The first 10 volumes from each participant were eliminated
to ensure the stability of signal values, and images were
motion corrected. Data were smoothed using a Gaussian at
full width half-maximum of 8 × 8 × 8 mm. Bandpass
filtering (0.01–0.08 Hz) and image detrending were applied to
reduce the influence of other factors that may lead to errors
(Lowe et al., 1998).

1www.MRIcro.com
2http://www.fil.ion.ucl.ac.uk/spm/
3http://www.restfmri.net
4http://rfmri.org/DPARSF
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FIGURE 1 | Fundus photograph (A) and fluorescence fundus angiography image (B) of age-related macular degeneration. The fundus photograph shows bleeding
and exudation in the macular area, while the leakage of strong fluorescein spot and shadowing fluorescein at the macular area are shown in the fundus fluorescein
angiography image. Red arrow indicates bleeding, and yellow arrows indicate the leakage.

Functional Connectivity Analysis
The GIFT v3.0b toolbox5 was used for preprocessing analysis
(Calhoun et al., 2001), and the rs-fMRI data preprocessing was
performed using Data Processing & Analysis for Brain Imaging
software (DPABI6) (Yan et al., 2016). The generalized linear
model and one-way analysis of covariance were used to generate
the FC maps. A previously published resting-state network
template (Ding et al., 2011) was applied. This approach has been
described in detail previously (Li et al., 2019).

Statistical Analyses
SPSS software version 19.0 (IBM Corporation, Armonk, NY,
United States) was used to analyze the processed data. Two-
sample t-tests and Gaussian Random-Field theory were applied
to correct for multiple comparisons. The correction parameters
were set to voxel-level threshold of 0.005 and cluster-level
5http://icatb.sourceforge.net/
6http://www.rfmri.org/dpabi

TABLE 1 | Clinical characteristics of patients between AMDs and HCs.

Characteristics AMDs HCs t-Value P-Values

Male/female 12/11 9/8 0.124 0.972

Age (years) 55.72 ± 5.29 56.33 ± 5.62 −0.361 0.819

Weight (kg) 57.49 ± 7.72 58.41 ± 6.21 −0.484 0.876

Handedness (left/right) 0/23 0/17 NA NA

Duration (years) 0.83 ± 0.49 NA NA NA

Best-corrected VA, left 0.15 ± 0.06* 1.06 ± 0.18 −2.732 0.031

Best-corrected VA, right 0.22 ± 0.09* 1.12 ± 0.34 −3.052 0.028

IOP, left 15.62 ± 3.27* 16.02 ± 4.11 −2.853 0.026

IOP, right 14.63 ± 3.25* 15.64 ± 3.46 −2.792 0.024

Independent t-tests comparing the two groups (*P < 0.05) represented statistically
significant differences.
AMDs, age-related macular degeneration group; HCs, healthy controls; NA, not
applicable; VA, visual acuity; IOP, intraocular pressure.

threshold of 0.05, using a two-sided test. Age, gender, handedness
and educational level were regression covariates. P-values < 0.05
were considered statistically significant. In addition, receiver
operating characteristic (ROC) curves were generated to compare
data from specific cerebral regions between the AMDs and HCs.

Correlation Analysis
The Hospital Anxiety and Depression Scale (HADS) was
completed by all participants. GraphPad Prism 8 software
(GraphPad Inc., San Diego, CA, United States) was used for
Pearson’s correlation analysis, and to evaluate and plot the linear
correlation between HADS scores and mean FC signal values of
the middle cingulate gyrus (MCG) and thalamus.

RESULTS

Demographic and Clinical
Characteristics
No significant differences in age (P = 0.819), weight (P = 0.876),
or duration (P > 0.05) was found between AMDs and HCs.
However, intraocular pressure (IOP) and binocular best corrected
visual acuity were significantly different (P < 0.05) between the
two groups. Details are shown in Table 1.

Seed Regions of Interest
The different insula subregions for resting-state FC patterns
between the AMDs and HCs are shown in Figure 2. The
ventral anterior insula (vAI) is chiefly connected with the limbic
cortices and pregenual anterior cingulate mediating affective
processes, while the dorsal anterior insula (dAI) connects
with the dorsolateral prefrontal cortex and dorsal anterior
cingulate cortex contributing to regulation of cognitive processes.
Moreover, the posterior insula (PI) was predominantly connected
with sensorimotor cortices. The three insular subregions were
considered seed regions of interest to study the variability
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FIGURE 2 | Resting-state functional connectivity patterns of insula subregions in AMDs and HCs. AMDs, age-related macular degeneration group; HCs, healthy
controls; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula; L, left; R, right.
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TABLE 2 | Cerebral areas showing functional connectivity differences with insular subdivisions between AMDs and HCs.

Seed-ROIs Cerebral areas L/R MNI coordinates Number of voxels t-Values

X Y Z

Left vAI

Cerebellum posterior lobe L −30 −75 −42 43 −4.547

Inferior frontal gyrus L −12 42 −30 65 4.309

Superior frontal gyrus R 12 60 −12 73 4.122

Inferior parietal lobule L −45 −36 42 72 3.945

Right vAI

Cerebellum posterior lobe L/R 6 −75 33 65 −3.478

Middle cingulate gyrus L −9 −12 36 50 −3.609

Left dAI

Rectal gyrus L −6 36 −27 40 3.986

Superior parietal lobule R 33 −63 66 46 5.196

Right dAI

Medulla L −6 −48 −51 42 −3.478

Cerebellum posterior lobe L −24 −75 −39 68 −4.632

Left PI

Cerebellum anterior lobe R 30 −30 −39 42 −3.908

Inferior frontal gyrus L −12 36 −30 61 4.419

Right PI

Thalamus R 12 −30 0 50 −3.875

Voxel level P < 0.01, AlphaSim corrected.
AMDs, age-related macular degeneration group; HCs, healthy controls; L/R, left/right; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula.

of resting-state FC in specific subregions of the insula for
first episode schizophrenia and clinical high risk for psychosis
(Li et al., 2019).

Group Differences in Functional
Connectivity
The FC in specific cerebral regions are shown in Table 2 and
Figure 3. We found that the mean FC values in inferior frontal
gyrus (IFG), superior frontal gyrus (SFG), inferior parietal lobule
(IPL), rectal gyrus (RTG), and superior parietal lobule (SPL)
were statistically significantly higher in AMDs than in HCs,
while values in cerebellum posterior lobe (CPL), MCG, medulla
(MDL), cerebellum anterior lobe (CAL), and thalamus (TLM)
were significantly lower in AMDs.

Receiver Operating Characteristic Curve
Receiver operating characteristic curve analysis was used to
verify differences and to explore whether FC values of specific
cerebral regions have potential as biomarkers to differentiate
patients with and without AMD. The individual areas under
the curves (AUCs) of FC values within the range of regions
are as follows: left vAI CPL (0.934, P < 0.001), IFG (0.854,
P < 0.001), SFG (0.831, P < 0.001), and IPL (0.806, P = 0.001);
right vAI CPL (0.890, P < 0.001) and MCG (0.916, P < 0.001)
(Figure 4A); left dAI RTG (0.821, P = 0.001) and SPL
(0.841, P < 0.001); right dAI MDL (0.951, P < 0.001) and
CPL (0.957, P < 0.001) (Figure 4B); left PI CAL (0.980,
P < 0.001) and IFG (0.834, P < 0.001); right PI TLM
(0.872, P < 0.001) (Figure 4C). These findings indicate

that the mean FC values of specific cerebral regions can
accurately distinguish AMDs from HCs, and may be applied as
diagnostic biomarkers.

Correlation Analysis
Statistically significant positive correlations were found between
HADS scores and overall FC values in the MCG (r = 0.8434,
P < 0.0001 for anxiety and r = 0.8116, P < 0.0001 for
depression; Figures 5A,B), and thalamus (r = 0.9298, P < 0.0001
for anxiety and r = 0.8819, P < 0.0001 for depression;
Figures 5C,D) in AMDs.

DISCUSSION

Foveal scotoma due to macular photoreceptor atrophy in AMD
has caused vision loss and blindness for a large number
of individuals globally, particularly in developed countries
(Rosengarth et al., 2013; Wong et al., 2014). Previous studies
in animals (Kaas et al., 1990; Darian-Smith and Gilbert, 1995;
Giannikopoulos and Eysel, 2006) and humans (Pascual-Leone
et al., 2005; Liu et al., 2007) have demonstrated altered cerebral
functions in response to reduced visual input, but the extent
of cerebral changes associated with AMD remains unclear and
has attracted the attention of many researchers. Our study has
indicated that FC values are significantly increased in the IFG,
SFG, IPL, RTG, and SPL, and decreased in the CPL, MCG, MDL,
CAL, and TLM in AMDs compared with HCs (Figure 6). These
findings may reflect compensatory changes supporting cerebral
performance in AMD patients with vision loss.
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FIGURE 3 | Functional connectivity group differences in insular subregions within different cerebral areas are shown (A–L). (A,C), (B,D), (E,G), (F,H), (I,K), and (J,L)
show cerebral regions of altered FC in the left vAI, right vAI, left dAI, right dAI, left PI, and right PI, respectively. *P < 0.01. AMDs, age-related macular degeneration
group; HCs, healthy controls; vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula; CPL, cerebellum posterior lobe; IFG, inferior frontal gyrus;
SFG, superior frontal gyrus; IPL, inferior parietal lobule; MCG, middle cingulate gyrus; RTG, rectal gyrus; SPL, superior parietal lobule; MDL, medulla; CAL,
cerebellum anterior lobe; TLM, thalamus.

Previous MRI research on the impact of AMD on cerebral
regions is shown in Table 3 and the underlying functions of
specific areas of the cerebrum are shown in Table 4. We could

hypothesize that AMD not only causes changes in cerebral
FC patterns affecting visual pathways, language, cognitive and
memory, but also strengthens internetwork connections via a
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FIGURE 4 | Receiver operating characteristic curve analysis of the mean FC values for the specific cerebral regions. (A) The area under the ROC curve of FC values
were presented as follows: the CPL (0.934, 95% CI: 0.833–1.000), IFG (0.854, 95% CI: 0.730–0.978), SFG (0.831, 95% CI: 0.696–0.966), and IPL (0.806, 95% CI:
0.666–0.945) in left vAI, CPL (0.890, 95% CI: 0.790–0.990) and MCG (0.916, 95% CI: 0.830–1.000) in right vAI. (B) The AUCs of FC values in dAI were as follows:
RTG (0.821, 95% CI: 0.693–0.949) and SPL (0.841, 95% CI: 0.719–0.964) in left dAI, MDL (0.951, 95% CI: 0.886–1.000) and CPL (0.957, 95% CI: 0.899–1.000) in
right dAI. (C) The AUCs of FC values in PI were as follows: CAL (0.980, 95% CI: 0.944–1.000) and IFG (0.834, 95% CI: 0.705–0.962) in left PI, TLM (0.872, 95% CI:
0.758–0.987) in right PI. vAI, ventral anterior insula; dAI, dorsal anterior insula; PI, posterior insula; CPL, cerebellum posterior lobe; IFG, inferior frontal gyrus; SFG,
superior frontal gyrus; IPL, inferior parietal lobule; MCG, middle cingulate gyrus; RTG, rectal gyrus; SPL, superior parietal lobule; MDL, medulla; CAL, cerebellum
anterior lobe; TLM, thalamus.

loss of inhibitory signals that accompany visual stimulation
or contribute to recruitment of new networks to support and
complete visually mediated tasks. Whitson et al. (2015) found
relatively high resting-state FC values in AMD patients in
the IFG, superior temporal gyrus (STG), inferior parietal lobe
(IPL), superior parietal lobe (SPL), supramarginal gyrus (SMG),
supplementary motor area (SMA), and precentral gyrus (preCG).
They also found high connectivity between SMA and SPL as well
as SMA, IPL and IFG which are implicated in motor/visuospatial
function, with strong connectivity within the reference links

and default mode network compared to HCs. Furthermore,
the AMDs showed stronger relationships between connectivity
and memory performance in the inferior and medial temporal
gyri, temporal pole, IFG, SFG, MFG, posterior cingulate cortex,
and medial prefrontal cortex compared to control participants,
while the resting default mode network in the bilateral posterior
cingulate cortex, anterior cingulate cortices, and precuneus were
similar in these groups (Zuo et al., 2020). One study indicates
that AMDs exhibit increased cerebral activation in a widely
distributed cortical network including SPL, IPL, the frontal
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FIGURE 5 | Correlations between the clinical behaviors and FC values in middle cingulate gyrus and thalamus. (A) The anxiety scores showed a positive correlation
with FC values in middle cingulate gyrus (0.8434, 95% CI: 0.6610–0.9317); (B) the depression scores showed a positive correlation with FC values in middle
cingulate gyrus (0.8116, 95% CI: 0.6002–0.9170); (C) the anxiety scores showed a positive correlation with FC values in thalamus (0.9298, 95% CI:
0.8392–0.9702); (D) the depression scores showed a positive correlation with FC values in thalamus (0.8819, 95% CI: 0.7380–0.9491). FC, functional connectivity;
AS, anxiety scores; DS, depression scores.

FIGURE 6 | The mean FC values of cerebrum in AMD participants. Compared with HCs, the AMDs showed abnormal signals in specific cerebral regions as
followed: 1. inferior frontal gyrus (left vAI, t = 4.309; left PI, t = 4.419), 2. superior frontal gyrus (t = 4.122), 3. inferior parietal lobule (t = 3.945), 4. rectal gyrus
(t = 3.986), 5. superior parietal lobule (t = 5.196), 6. cerebellum posterior lobe (left vAI, t = –4.547; right vAI, t = –3.478; right dVI, t = –4.632), 7. middle cingulate
gyrus (t = –3.609), 8. medulla (t = –3.478), 9. cerebellum anterior lobe (t = –3.908), and 10. thalamus (t = –3.875).

eye fields, and the prefrontal cortex (Szlyk and Little, 2009).
These results directly and indirectly support our findings that
the mean FC values in IFG, SFG, IPL, RTG, and SPL are

significantly higher in AMDs than in HCs, suggesting that a
positively FC was correlated with these specific cerebral regions
involved in the regulatory mechanism of AMD to achieve
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TABLE 3 | Current research status of fMRI and AMD in specific cerebral regions.

Author (Y) Average age
(Y)

Number
(P/HC, M/F)

fMRI Objective of cerebrum
function

Cerebral regions

Little et al.,
2008

AMDs, 55–83;
Control, 22–78

18 (6/12, 8/10) Yes Cortical networks underling
oculomotor function

Increased: preFC, intraparietal sulci, FEFs,
supplementary eye fields;
Decreased: visual cortex (MT/V5, V2/V3,
and V1).

Rosengarth
et al., 2013

AMDs, 55–84;
Control, 51–83

16 (9/7, 6/10) Yes Training-related changes in
cerebellum

Increased: fusiform gyrus, ITG, and lateral
occipital cortex;
No differences: visual area (V1, V2, and
V3).

Zuo et al., 2020 AMDs,
75.3 ± 8.9;

Control,
74.5 ± 7.2

83 (42/41,
40/43)

Yes Quantify the strength of
functional connectivity

Increased: ITG, MTG, temporal pole, IFG,
SFG, MFG, PCC, and medial preFC;
No differences: bilateral PCC, ACC, and
precuneus.

Whitson et al.,
2015

AMDs,
79.9 ± 7.5;

Control,
68.3 ± 3.4

23 (7/16, 9/14) Yes Functional connectivity and
phonemic fluency

Increased: left IFG, left STG, bilateral IPL,
right SPL, right SMG, right SMA, and right
precentral gyrus.

Szlyk and Little,
2009

AMDs, 55–83;
Control, 54–78

12 (6/6, 5/7) Yes Cortical networks underling
word recognition and

processing

Increased: supplementary motor regions,
FEFs, IPL and SPL, preFC;
Decreased: SPL and IPL, primary and
secondary visual cortices, FEFs, bilaterally
SPL, supplementary motor regions and eye
fields, and LFG.

Y, year; P, patient; HC, healthy control; M, male; F, female; AMDs, age-related macular degeneration patients; ITG, inferior temporal gyrus; MTG, medial temporal gyrus;
IFG, inferior frontal gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; PCC, posterior cingulate cortex; preFC, prefrontal cortex; ACC, anterior cingulate
cortices; STG, superior temporal gyrus; IPL, inferior parietal lobe; SMG, supramarginal gyrus; FEFs, frontal eye fields; SMA, supplementary motor area; SPL, superior
parietal lobe; LFG, left fusiform gyrus.

TABLE 4 | Alternation of cerebral regions and its potential effects.

Cerebral regions Experimental
results

Cerebral functions Anticipate effects

Cerebellum
posterior lobe

AMDs < HCs Coordinate sensory and motor functions, and participate in
higher cognitive functions

Dyskinesia and difficulty in fine motion

Inferior frontal gyrus AMDs > HCs Involved in language processing and cognitive functions Bipolar disorder

Superior frontal
gyrus

AMDs > HCs Involved in cognitive and motor control, and the execution
of working memory

Parkinson’s disease and motor aphasia

Inferior parietal
lobule

AMDs > HCs Involved in the processing of various sensory, perceptual
and cognitive functions

Gerstmann’s syndrome and Schizophrenia

Middle cingulate
gyrus

AMDs < HCs Manage emotion, cognition, and movement, and integrate
visual information

Affective and cognitive dysfunction, visual
function abnormals

Rectal gyrus AMDs > HCs Decision making, reward processing, planning, and
reasoning

Epilepsy

Superior parietal
lobule

AMDs > HCs Participates in somatosensory and working memory, and
coordinates visual and motor functions

Cortical sensory disorders, such as loss of
position, entity, and recognition

Medulla AMDs < HCs Control all non-conscious daily activities Partial sensory loss, hemiplegia, and
hemianopia

Cerebellum anterior
lobe

AMDs < HCs mediating unconscious proprioception, and regulate
muscular tension

Cerebellar ataxia

Thalamus AMDs < HCs Sensory processing, memory function, emotion, associated
with visual function

Emotional problems, endocrine disease,
and visual dysfunction

adaptability and plasticity in various functions such as vision,
cognition, and memory.

In addition, one study showed significantly increased gray
and white matter in the CPL during a period of oculomotor
training in AMD compared with controls (Rosengarth et al.,
2013), while no difference was found in white matter of the

cingulum hippocampus, cingulate, or the thalamus (Yoshimine
et al., 2018). In addition, volumetric reductions were found in
the optic radiations, lateral geniculate bodies and visual cortex in
AMD patients, as the white matter in frontal lobe was decreased
in AMD but not in juvenile macular degeneration (Hernowo
et al., 2014). The activation with significant clusters showed

Frontiers in Aging Neuroscience | www.frontiersin.org 9 March 2022 | Volume 14 | Article 854758

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-854758 March 18, 2022 Time: 8:30 # 10

Xiao et al. FC Abnormals in AMD

FIGURE 7 | Relationship between FC values and emotional status. The mean FC values presented obvious abnormalities in many specific cerebral regions of AMD
patients in contrast to healthy controls, and AMD patients appear to be more prone to anxiety and depression.

FIGURE 8 | Relationship between FC and clinical manifestation of AMD. The retinal macular is stimulated by a variety of growth factors and inflammatory factors
resulting in neovascularization, hemorrhage, and exudation, further leading to visual impairment and changes in specific cerebral regions.

marked reduction in the parietal lobules in AMD patients (Little
et al., 2008). Since the lateral geniculate body, optic radiation, and
visual cortex are vital parts of the visual pathways, AMD patients
may have changes in these specific areas. Szlyk and Little (2009)
found decreased activation in the left SPL and IPL, primary and
secondary visual cortices, frontal eye fields, bilateral superior
parietal regions, supplementary motor regions, eye fields, and left
fusiform gyrus in AMD patients relative to controls. However,
the results of the present study differ from the above findings

due to differences in race, geographical region, inter-individual
variations and image data processing, but can fully supplement
their research. Previous studies (Hernowo et al., 2014; Prins et al.,
2016a,b) reported reduced cortical volume and abnormality of
white matter in the visual cortex in AMD. The results of these
studies suggest that AMD may cause widespread changes in
cerebral regions and suggest a strong association between AMD
and changes in specific cerebral regions, and their corresponding
major effects, and are further supported by the current work.
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Whether changes in cerebral activity are consequential or
adaptive in AMD and the exact mechanism underpinning them
remains unclear. Apoptosis of retinal nerve cells, especially
in the macular area, could affect changes in cerebral tissue
properties through transsynaptic degeneration in AMD (Haak
et al., 2016; Prins et al., 2016a). This would lead to decreased
visual signaling from the defective macula and behavioral factors
correlated with loss of visually dependent activities, such as social
interaction and reading (Zuo et al., 2020). The frontal lobe,
cingulate gyrus, temporal gyrus, and thalamus are involved in
cognitive, emotional, and memory functions (Critchley et al.,
2004; Seitz et al., 2006; Raichle, 2010; Zhang and Raichle, 2010).
Lesions of these cerebral regions are connected with social and
emotional behavior, and could lead to anxiety and depression.
The AMD group in this study showed significant correlations
between connectivity in cerebral regions and HADS scores,
indicating that anxiety and depression scores are linked with
overall FC values, and that abnormal neural electrical activity
may occur in brain regions associated with emotional activity
(Figure 7). Moreover, AMD may result in specific cerebral
regional changes through a variety of mechanisms, including
the loss of cognitive stimulation (a consequence of sensory
disorder), adaptive restructuring of visual pathways, decreased
feedback regulatory signals from visual cortical regions, or by
increased metabolic demand in specific cerebral regions, which
would present alterations in FC and diminished cognitive ability
(Whitson et al., 2015). These changes may promote functional
cerebral reorganization in the fronto-parietal control networks
(Zhuang et al., 2018) and primary visual cortex (Masuda et al.,
2008) in AMD to improve vision and prognosis. The mechanism
of cerebral regional changes caused by AMD is a complex process
involving many different brain regions and requires more in-
depth and comprehensive research.

Based on the above studies (Table 4 and Figure 8), it could
be suggested that AMD patients have abnormalities in several
cerebral regions. The current study has some limitations. A cross-
sectional and observational approach was adopted in this study,
and the sample size was small, making it difficult to observe the
possible development of cognitive impairment and fMRI changes
associated with AMD, so we have not drawn firm conclusions
about causality of the described relationships. Therefore, an in-
depth, comprehensive and systematic study is needed to elucidate
the mechanisms and correlations of AMD-induced changes
in brain regions.

CONCLUSION

Our study demonstrated abnormal FC values in specific
cerebral regions of AMD patients. These findings can not

only supplement the theoretical basis for research on the
mechanisms of AMD nerve injury and repair process, but
also form a basis for further exploration of the potential
pathophysiological mechanisms of AMD-induced functional
changes in cerebral regions.
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