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Can lithium enhance the extent of axon regeneration 
and neurological recovery following peripheral nerve 
trauma?

Damien P. Kuffler* 

Abstract  
The clinical “gold standard” technique for attempting to restore function to nerves with 
a gap is to bridge the gap with sensory autografts. However, autografts induce good to 
excellent recovery only across short nerve gaps, in young patients, and when repairs are 
performed a short time post nerve trauma. Even under the best of conditions, < 50% 
of patients recover good recovery. Although many alternative techniques have been 
tested, none is as effective as autografts. Therefore, alternative techniques are required 
that increase the percentage of patients who recover function and the extent of their 
recovery. This paper examines the actions of lithium, and how it appears to trigger all 
the cellular and molecular events required to promote axon regeneration, and how both 
in animal models and clinically, lithium administration enhances both the extent of axon 
regeneration and neurological recovery. The paper proposes more extensive clinical 
testing of lithium for its ability and reliability to increase the extent of axon regeneration 
and functional recovery. 
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Introduction 
Sensory autografts are the clinical “gold standard” technique 
for repairing nerves with a gap (Houschyar et al., 2016; Hoben 
et al., 2018; Kornfeld et al., 2019; Pan et al., 2020). However, 
they lead to good to excellent functional recovery only for 
gaps < 3–5 cm (Terzis and Kokkalis, 2008; Karabeg et al., 2009; 
Hoben et al., 2018; Pan et al., 2020), repairs performed < 3–5 
months post-trauma (Matejcik and Penzesova, 2006; Terzis 
and Kokkalis, 2008), and patients < 20–25 years old (Matejcik 
and Penzesova, 2006; Terzis and Kokkalis, 2008; Karabeg et al., 
2009). Further, even under the best conditions, less than 50% 
of patients recover good to excellent functional recovery. As 
the values of any two or all three of these variables increase, 
recovery is generally limited to none (Ruijs et al., 2005; Terzis 
and Kokkalis, 2008; Grinsell and Keating, 2014). Although 
many alternative techniques have been tested, none is more 
effective than autografts, and the rate of functional recovery 
has not improved in about 70 years (Sunderland, 1951; Ruijs 
et al., 2005). Therefore, novel techniques are required that 
increase the percentage of patients who recover and the 
extent of their recovery. 

A good candidate for increasing the extent of functional 
neurological recovery must: (a) activate a complex cascade 
of coordinated neuron gene expression, (b) promote the 
translation of local proteins in axons and their anterograde 
transport along the axon, (c) trigger the assembly of 
cytoskeleton and membranes within the nerve growth cone, 
and (d) activate a cascade of Schwann cell events. One 
compound that meets these criteria is lithium. 

Search Strategy and Selection Criteria 
Animal model and clinical studies published in English 
from 1980 to August 2021 were searched on the Google 
Scholar and PubMed using the following keywords: lithium, 
axon regeneration, neurological recovery, recovery of 
function, nerve trauma, Schwann cells, nerve repair, nerve 
gaps, anastomosis, allografts, nerve crush, nerve conduits, 
autologous nerve grafts, sensory nerve grafts, nerve gap 
length. 

Lithium-General Background
Lithium has a 50-year history of use as the principal drug 
for treating depression, especially bipolar and depressive 
mood disorders (Pies, 2002; Gould et al., 2004). Lithium is 
also effective in treating neurodegenerative disorders such 
as Huntington (Senatorov et al., 2004; Raja et al., 2015), 
Alzheimer ’s (Matsunaga et al., 2015), and Parkinson’s 
diseases (Moors et al., 2017), amyotrophic lateral sclerosis 
(van Eijk et al., 2017), and experimental autoimmune 
encephalomyelitis (De Sarno et al., 2008). Additional roles 
of lithium include increasing cerebral blood flow (Zhong et 
al., 2006), and when administered immediately following a 
transient ischemic brain injury, it provides neuroprotection 
and improved neurological outcomes (Silachev et al., 2015). 
Lithium exerts an anti-inflammatory effect on the cerebral 
tissue (Basselin et al., 2007), acts as an anti-oxidant (Jornada 
et al., 2011), supports protein homeostasis, neurogenesis, 
synapse maintenance, and has anti-apoptotic properties 
(Chuang, 2005). Of greatest relevance to this review, lithium 
activates phosphoinositide 3-kinase (PI3K) (Dong et al., 2014), 
regulates the activity of glycogen synthase kinase-3 (GSK3) 
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(Wada, 2009; Costemale-Lacoste et al., 2016), the expression 
of c-Jun (Chen et al., 2003), and Bcl-2 (Manji et al., 2000; 
Dwivedi and Zhang, 2014), and promotes angiogenesis (Liu et 
al., 2019). 

Lithium in Central Nervous System and 
Peripheral Nervous System Injuries 
Following mouse optic nerve (Cho and Chen, 2008) and rat 
spinal cord injuries, the injection of lithium enhances axon 
regeneration (Yick et al., 2004; Su et al., 2014; Zhang et al., 
2018b) and the extent of functional recovery (Fu et al., 2014; 
Zhang et al., 2018a). In a rat model, lithium administration 
improves functional motor recovery after ventral root avulsion 
and reimplantation (Fang et al., 2016). Also, in rats, injecting 
lithium into a conduit bridging sciatic nerve gaps increases 
Schwann cell density significantly, and the distance axons 
regenerate across the gap (Lin et al., 2013). Following a 
mouse facial nerve crush, lithium administration stimulates 
the expression of myelin genes, restores myelin structure, and 
accelerates the recovery of whisker movements vs. control 
animals (Makoukji et al., 2012; Chen et al., 2016). Thus, 
lithium administration induces a significant increase in axon 
regeneration and functional recovery. 

Lithium and the Phosphoinositide 3-Kinase/
Glycogen Synthase Kinase-3 Pathways
Clinically, the administration of lithium at physiological doses 
activates PI3K (Dong et al., 2014) while inhibiting GSK3 (Zhang 
et al., 2003). This is by phosphorylating GSK3α on its Ser 21 
and Ser 9 sites (Hur and Zhou, 2010; Eldar-Finkelman and 
Martinez, 2011), the primary mechanism of GSK3 inactivation 
(Seira and Del Rio, 2014). This activation controls a host of 
cytoskeletal, microtubule, and microtubule-based motor- and 
the actin-based motor proteins that coordinate microtubule 
assembly at the growth cone leading to axon extension (Hur et 
al., 2011). While most of these proteins are GSK3 substrates, 
some contain conserved GSK3 sites. Thus, GSK3 is a major 
growth cone regulatory molecule by controlling local axon 
assembly and axon regeneration (Zhou and Snider, 2005; Hur 
et al., 2011). 

Lithium-induced PI3K activity is the same as that activated by 
nerve injury. However, lithium can both promote and inhibit 
axon regeneration (Diekmann and Fischer, 2015). Although 
these are opposite outcomes, they are explained by the data 
coming from studies with significant differences. Among 
these are comparing the analysis of axon regeneration in the 
peripheral nervous system vs. the central nervous system, 
data from in vitro studies on different cell types derived from 
different animal models, and cells from animals of different 
ages (Eldar-Finkelman and Martinez, 2011; Wang et al., 2012). 
Other significant differences include comparing the effects of 
the same GSK3 inhibitors at different concentrations (Hur and 
Zhou, 2010; Eldar-Finkelman and Martinez, 2011), the effects 
of different GSK3 inhibitors (Eldar-Finkelman and Martinez, 
2011; Beurel et al., 2015), which induce varying degrees of 
GSK3 inactivation (Kim et al., 2006; Hur and Zhou, 2010), 
drugs that act on one, the other, or both GSK3 isoforms (Eldar-
Finkelman and Martinez, 2011; Beurel et al., 2015), and drugs 
that phosphorylate substrates at different molecular locations 
(Conde and Caceres, 2009; Eldar-Finkelman and Martinez, 
2011). Therefore, GSK3 regulates the transcription of diverse 
genes, which affect both axonal transport and cytoskeletal 
dynamics, which, in turn, regulate axon regeneration. Each of 
these issues is discussed in greater detail by Diekmann and 
Fisher, 2015 (Diekmann and Fischer, 2015). 

Following sciatic nerve injury, the inhibition of GSK3 in the 
neuron cell body increases the extent of axon regeneration 
and functional recovery (Gobrecht et al., 2014; Diekmann and 

Fischer, 2015; Huang et al., 2019). This is via the induction 
of the neuronal transcription-dependent axon regeneration 
program (Smad1), c-Jun, and cAMP response element-binding 
protein (CREB) (Saijilafu et al., 2013; Gobrecht et al., 2016). 
This, in turn, increases the extent of sciatic nerve axons and 
functional recovery (Diekmann and Fischer, 2015; Huang et 
al., 2019). Conversely, depleting Smad1 in adult mice prevents 
axon regeneration (Saijilafu et al., 2013). 

Inhibiting GSK3 at the peripheral nerve growth cone also 
enhances the extent of axon regeneration (Conde and 
Caceres, 2009). Suppressing, but not blocking, GSK3 activity 
in growth cones by the local application of a GSK3 suppressor 
induces local cytoskeletal assembly, axon elongation (Saijilafu 
et al., 2013), and increased axon branching (Nagai et al., 
2016). Thus, GSK3-mediated phosphorylation of microtubule-
associated protein 1B reduces microtubule detyrosination, 
which resulting in axon regeneration by promoting the 
assembly of growth cone cytoskeletal microtubule-binding 
proteins and stabilizing growth cone microtubules (Gobrecht 
et al., 2014, 2016; Liz et al., 2014).

Physiologically, Schwann cell differentiation is induced by 
nerve injury-induced Schwann cell loss of axon contact and 
injury-activated PI3K and GSK3 inactivation. This differentiation 
involves changes in gene transcription, biochemistry, 
morphology (Qian et al., 2018; Wang et al., 2019; Zhang 
et al., 2019), proliferation, and the release of cell adhesion 
molecules and neurotrophic factors (Kim et al., 2000; Yang et 
al., 2008; Jessen and Mirsky, 2016; Wong et al., 2017; Jessen 
and Arthur-Farraj, 2019; Jessen and Mirsky, 2019). These 
Schwann cells phagocytize the degenerating axon and myelin 
sheath debris to clear the distal nerve pathway, which allows 
for axon regeneration (Napoli et al., 2012; Smith et al., 2013; 
Jessen and Mirsky, 2016; Clements et al., 2017; Cunningham 
et al., 2020).

Lithium participates in this process by inhibiting GSK-3, leading 
to increasing levels of Schwann cells β-catenin by preventing 
β-catenin degradation while also provoking β-catenin nuclear 
localization (Chen et al., 2016). This drives β-catenin to bind to 
T-cell factor/lymphoid-enhancer factor response elements in 
myelin genes leading to Schwann cell differentiation (Makoukji 
et al., 2012; Chen et al., 2016). Similarly, lithium induces 
Schwann cell proliferation, and their expression and release of 
cell adhesion molecules, and neurotrophic and other factors 
that promote further Schwann cell proliferation and axon 
myelination (Arthur-Farraj et al., 2012; Jessen and Mirsky, 
2016; Gu et al., 2020). The enhanced proliferation is promoted 
by the Schwann cell intracellular signal transduction pathway, 
which increases their expression and phosphorylation of CREB 
(Grimes and Jope, 2001). Simultaneously, lithium suppresses 
Schwann cell migration by suppressing tau protein levels 
(Lei et al., 2017; Yi et al., 2019). Although lithium can inhibit 
Schwann cell proliferation and differentiation in vitro (Pinero 
et al., 2017), this action may be due to those studies involving 
the administration of lithium together with cAMP, or cAMP 
analogs, which alters lithium’s influences on Schwann cells. 

The administration of lithium at the time of a nerve crush 
suppresses GSK3. Simultaneously lithium induces Schwann 
cells to upregulate the remyelination transcription factors 
Oct6 and Sox10 (Makoukji et al., 2012; Fang et al., 2016), their 
expression of peripheral myelin-related genes, and levels of 
myelin protein zero and peripheral myelin protein 22 (Makoukji 
et al., 2012). Thus, the oral administration of lithium to mice at 
the time of a sciatic nerve injury leads to the almost complete 
elimination of myelin and axon debris after one week, while 
in control animals, phagocytosis is only just being initiated 
(Chen et al., 2016). Lithium also induces myelination (Ogata et 
al., 2004), while increasing the rate of axon myelination and 
myelin thickness (Chen et al., 2016; Fang et al., 2016). This 
directly increases the rate of axon regeneration and the extent 
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of functional recovery (Kidd et al., 2013; Chen et al., 2016; Ji 
et al., 2019).

Lithium and c-Jun Pathway
c-Jun is a regulator of the Schwann cell injury response and 
controls their gene expression, structure, and function related 
to their promotion of axon regeneration (Arthur-Farraj et al., 
2012; Jessen and Mirsky, 2016). Both peripheral nerve injury 
(Hongisto et al., 2003; Arthur-Farraj et al., 2012) and lithium 
administration (De Felipe and Hunt, 1994; Shy et al., 1996) 
induce an immediate and massive Schwann cell expression of 
c-Jun. This leads to the cascade of changes discussed above, 
whereby Schwann cells promote axon regeneration and 
functional recovery (da Silva et al., 2014). 

Nerve injury-induced c-Jun expression is required to prime 
neurons for axon outgrowth (Jenkins et al., 1993; Raivich et 
al., 2004). Thus, in mice, the administration of lithium and its 
induction of c-Jun following facial nerve injury increases the 
extent of axon regeneration (Herdegen et al., 1997; Raivich et 
al., 2004). Conversely, c-Jun knockdown in adult significantly 
reduces axon regeneration (Raivich et al., 2004; Saijilafu et al., 
2011). 

Nerve injury-induced elevation of c-Jun expression in 
peripheral sensory and motor neurons is long-lasting, and 
its level only decreases after the axons reinnervate their 
targets (de Felipe et al., 1993; Herdegen et al., 1993; Leah 
et al., 1993). This suggests that the loss of a target-derived 
factor underlies injury-induced c-Jun expression and that 
c-Jun remains expressed as long as that factor is not available 
(Kenney and Kocsis, 1998). A potential target-derived factor 
for dorsal root ganglion neurons is nerve growth factor (Gold 
et al., 1993). These data suggest that the on-going expression 
of lithium-induced c-Jun expression maintains axons in a 
regenerative state.

Lithium and Bcl-2  
The protoncogene Bcl-2, which is present throughout the 
peripheral nervous system (Merry et al., 1994), is best known 
as an apoptosis-suppressor gene involved in inhibiting or 
inducing cell death (Hardwick and Soane, 2013). However, it 
also plays critical roles in cell physiology related to neuronal 
activity, autophagy, calcium handling, mitochondrial dynamics 
and energetics, and other processes of normal healthy cells. 
The extent of sciatic nerve axon regeneration in mice deficient 
in Bcl-2 is significantly reduced (Kotulska et al., 2005). 

Bcl‐2 stimulates axon regeneration by increasing intracellular 
Ca2+ signaling and activating both CREB and extracellular‐
regulated-kinase (Jiao et al., 2005). For injured neurons 
expressing Bcl-2, axotomy decreases endoplasmic reticulum 
Ca2+ uptake and storage and induces Ca2+ influx, which leads 
to a larger intracellular Ca2+ response than is seen in control 
neurons. Thus, Bcl‐2 supports axon regeneration through the 
endoplasmic reticulum Ca2+ regulation (Jiao et al., 2005).

For cultured mouse retinal ganglion cells, the administration 
of lithium induces a large long-term increase in the Bcl-
2 expression (Manji and Chen, 2002), which is associated 
with promoting neuron survival and inducing neurite 
outgrowth (Huang et al., 2003). Thus, lithium promotes axon 
regeneration by inducing Bcl-2 expression.

Lithium Induces Angiogenesis 
Axons fail to regenerate across nerve gaps (> 5 cm in length) 
bridged with a sensory nerve graft because such long grafts 
fail to become vascularized (Sondell et al., 1999; Vargel, 
2009; Hoben et al., 2015). Similarly, with increasing patient 
age, fewer axons regenerate across nerve grafts of increasing 
length due to an age-related decrease in nerve injury-induced 

angiogenesis (Gunin et al., 2014). However, axons successfully 
across longer nerve grafts in rats (Kanaya et al., 1992) and 
clinically (Doi et al., 1992), when the grafts are vascularized 
(Campodonico et al., 2020). The role of vascularization in 
promoting axon regeneration is seen by more extensive axon 
regeneration developing across nerve grafts treated with 
vascular endothelial growth factor (Pereira Lopes et al., 2011; 
Hoyng et al., 2014). 

Lithium induces angiogenesis in vivo (Li et al., 2019; Liu et 
al., 2019) via activation of the Wnt/(beta)-catenin pathway 
(Zeilbeck et al., 2014). This suggests that lithium administration 
might increase sensory nerve graft vascularization leading to 
more extensive axon regeneration and functional recovery.

Lithium: Adverse Indications
The effects of lithium administration for treating depression 
have been well studied for more than 50 years (Gould et al., 
2004). More recently, it has been studied for treatment of 
neurodegenerative disorders (Matsunaga et al., 2015; Raja 
et al., 2015; Moors et al., 2017), for its anti-inflammatory 
(Basselin et al., 2007), and anti-oxidant (Machado-Vieira et al., 
2007; Jornada et al., 2011) effects, and its ability to promote 
angiogenesis (Liu et al., 2019) and axon regeneration (Fu et al., 
2014; Su et al., 2014; Fang et al., 2016; Zhang et al., 2018b). 
However, there is little evidence for concern about adverse 
indications, especially for relatively short-termed lithium 
administration, as would be required for promoting peripheral 
axon regeneration and restoring function. 

Conclusions
Lithium triggers almost all of the essential cellular and 
molecular mechanisms required to initiate and promote 
axon regeneration and enhance neurological recovery. At 
physiological doses, lithium induces axon regeneration 
in animal models and clinically (Zhang et al., 2003; Eldar-
Finkelman and Martinez, 2011; Dong et al., 2014) while being 
free from adverse indications. Therefore, more extensive 
studies are required to determine whether the administration 
of lithium enhances the extent of axon regeneration and 
neurological recovery. 
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