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Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive
tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that
inflammatory response promotes tumor progression, enhances angiogenesis, and causes
local immunosuppression. Herein, we aim to develop an inflammatory related prognostic
signature, and found it could be used to predict gemcitabine response in PDAC.

Methods: PDAC cohorts with mRNA expression profiles and clinical information were
systematically collected from the four public databases. An inflammatory response related
genes (IRRGs) prognostic signature was constructed by LASSO regression analysis.
Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal
component analysis, and univariate and multivariate Cox analyses were carried out to
evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine
response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database,
pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine
sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed
differences in frequencies of gene mutations, infiltration of immune cells, as well as
biological functions between different subgroups divided by the prognostic signature.

Results:We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and
BTG2) signature which divided the PDAC patients into low- and high-risk groups.
Prognostic value of the signature was validated in 11 PDAC cohorts consisting of
1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs
signature and clinicopathologic factors of PDAC patients was constructed. The risk
score showed positive correlation with gemcitabine resistance. Two drugs (BMS-
536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC
patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and
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CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and
macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while
the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and
macrophages M1 cells.

Conclusion: We constructed and validated an IRRGs signature that could be used to
predict the prognosis and gemcitabine response of patients with PDAC, as well as two
drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.

Keywords: pancreatic ductal adenocarcinoma, inflammatory response, gene signature, tumor microenvironment,
gemcitabine response, gene mutation

INTRODUCTION

Pancreatic cancer is a devastating digestive system malignant
tumor characterized by limited treatment success and dismal
prognosis. It accounts for 466,003 deaths in 185 countries in
2020 and is the seventh leading cause of death from cancer in
both genders (Sung et al., 2021). It has been estimated that
pancreatic cancer will surpass breast cancer as the third leading
cause of cancer death after lung and colorectal cancers by 2025
in the European Union (Ferlay et al., 2016) and become the
second most common cause of cancer-related death in the
United States to the year 2040 (Rahib et al., 2021). Pancreatic
ductal adenocarcinoma (PDAC), a type of pancreatic exocrine
tumor, accounts for more than 90% of all pancreatic cancer
(Grossberg et al., 2020). Despite progress in our understanding
of pathogenesis of PDAC, the actual 5-year survival rate of this
disease is below 5%, which has not improved over the past
decades (Bengtsson et al., 2020). In the clinical setting, the
prognostic prediction of PDAC mainly depends on tumor stage
classified by the TNM staging system. However, this system is
limited by the lack of consideration of the tumor biological
heterogeneity at the molecular level. As such, it is imperative to
explore novel signatures to predict prognostic and offer
individualized treatment modalities for PDAC patients.

Inflammation has been regarded as a significant protective
response that plays a pivotal role during regeneration of tissue
injuries (Karin and Clevers, 2016). However, sustained
inflammatory stimuli could result in chronic inflammation and
impaired tissue regeneration (Hibino et al., 2021). This process is
also associated with the development of a spectrum of diseases,
such as cardiovascular disease, neurodegenerative disorders, and
various types of cancer (Furman et al., 2019). Researchers noted
the link between cancer and inflammation as early as 1863
(Balkwill and Mantovani, 2001). Tumor-promoting
inflammation had been one of the newly added hallmarks of
cancer (Hanahan and Weinberg, 2011). That inflammation
provides a tumor-supportive microenvironment to stimulate
tumor formation, growth, progression, and metastasis has been
demonstrated in multiple studies (Wang and DuBois, 2015).
Previous evidence also revealed that inflammatory responses
play important roles at different stages of cancer development
(Grivennikov et al., 2010). Furthermore, clinical and laboratory
research suggested that use of anti-inflammatory agents is a
promising approach for cancer prevention and treatment

(Zappavigna et al., 2020). Blockade of inflammatory cytokine
IL-6 could modulate immunological features of PDAC and
enhance the efficacy of anti-PD-L1 therapy (Mace et al.,
2018). Additionally, biomarkers of inflammatory response
have been demonstrated with prognostic value in multiple
cancers. C-reactive protein has been proved as a prognostic
indicator for survival of patients with pancreatic cancer, as well
as other types of cancer (Szkandera et al., 2014). High
neutrophil-lymphocyte ratio and high platelet-lymphocyte
ratio are important predictors of poor survival in patients
with resectable PDAC (Ye and Bai, 2018). Several recent
studies have demonstrated that inflammatory response
related genes (IRRGs) could be used to predict the prognosis
of hepatocellular carcinoma, transitional bladder cancer, and
low-grade glioma (Han et al., 2021; Lin et al., 2021; Xie et al.,
2021). However, the relationship between IRRGs and the
prognosis of PDAC patients still needs to be clarified.

Herein, we systematically collected PDAC cohorts with gene
expression data and clinical information from TCGA, ICGC,
ArrayExpress, and GEO databases. Subsequently, an IRRGs
signature for risk stratification of PDAC patients was
constructed and validated. A nomogram which had high
predictive value was constructed. We identified potential drugs
for the treatment of high-risk patients since they were more likely
resistant to gemcitabine. Finally, we compared the difference of
TP53, KRAS, and CDNA2A mutations, infiltration of immune
cells, as well as biological function between high- and low-risk
groups. The flow chart of this work is shown in Figure 1.

MATERIALS AND METHODS

Collection of PDAC Cohorts with Clinical
and Gene Expression Data
Clinical and gene expression data of patients who had a
pathological diagnosis of PDAC were systematically
collected from TCGA, ICGC, GEO, and ArrayExpress
databases. Patients who survived less than 60 days were
removed from the cohorts, as these deaths might be a
sequela of post-surgical complication, cardiovascular disease,
and mortality other than cancer. As a result, a total of 11
PDAC cohorts contained 1337 PDAC patients were obtained.
Detailed clinical information of the 11 cohorts are presented in
Supplementary Table S1.
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Identification of Overall Survival-Related
IRRGs
The IRRGs were collected from the “Hallmark inflammatory
response” and “GOBP inflammatory response” gene sets in the
Molecular Signatures database (MSigDB) (http://www.gsea-
msigdb.org/) (Subramanian et al., 2005; Liberzon et al., 2015).
To identify IRRGs associated with patients’ overall survival (OS)
in E-TMAB-6134 and PACA-AU cohorts, the univariate Cox
regression analysis was carried out with a p-value threshold of 0.
001 by using the R package “survival.” The R package
“VennDiagram” was then used to screen intersecting genes,
which were selected as OS-related IRRGs. In order to
determine which OS-related IRRGs may play a role in PDAC
development, we then compared their expression levels between
tumor and paired adjacent tissue in two GEO cohorts (GSE15471
and GSE16515). Taken together, genes with HR <1 and decreased
expression in tumor or genes with HR >1 and increased
expression in tumor were used as candidates for the signature
construction.

Establishment and Validation of a
Prognostic IRRGs Signature
The LASSO regression analysis (Tibshirani, 1997), which was
designed for variable selection and shrinkage, was conducted
by using the R package “glmnet” to construct an IRRGs
prognostic signature. In LASSO, variables with a regression
coefficient equal to zero after the shrinkage process are
excluded from the model. A tuning parameter lambda (λ)
controls the amount of shrinkage, with increased shrinkage
for higher λ values. An optimal λ was chosen when the partial
likelihood deviance reached its lowest, which was based on
the 10-fold cross-validation. The risk score of the signature
for each patient was calculated as follows:

Risk score � ∑
n

i�1
(Expipβi)

where n represents the number of prognostic genes, Expi
represents the expression value of gene i, and βi represents the
regression coefficient of gene i.

We selected E-MTAB-6134 cohort as a training set because it
contains the largest number of patients among all cohorts. Other
10 cohorts were used as validation sets to validate reliability of the
signature. In each cohort, patients were divided into the high- or
low-risk group according to the median value of the risk score. To
compare the survival difference between high- and low-risk
groups, Kaplan–Meier survival and receiver operating
characteristic (ROC) analyses were conducted by using the R
package “survival” and “timeROC.” We also calculated the time-
varying concordance index (C-index) of our signature and
compared it with six previous published signatures which were
based on glycolysis (Song et al., 2021), ferroptosis (Feng et al.,
2021a), hypoxia (Ding et al., 2021), m6A (Meng et al., 2020),
autophagy (Yu J. et al., 2021), and immune (Mao et al., 2021)
related genes. The information of these six signatures are listed in
Supplementary Table S2. Furthermore, to verify the IRRGs
signature was independent of other clinical variables (tumor
grade, tumor stage, and resection margin) for the OS
prediction, univariate and multivariate Cox regression analyses
were performed in cohorts with clinical variables documented.

Correlation Between Gemcitabine
Response and Risk Score
Gemcitabine response of patients in TCGA-PAAD cohort was
obtained by using R package TCGAbiolinks. Patients’ risk
scores were compared among four types of gemcitabine
response, including complete response (CR), partial

FIGURE 1 | Flow chart of this study.
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response (PR), stable disease (SD), and progressive disease
(PD). Furthermore, risk scores of 808 cancer cell lines in
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang
et al., 2013) were calculated by the IRRGs signature. The
correlation between IC50 value of gemcitabine and risk
score of cancer cell lines was explored.

Identification of Potential Drugs
Expression data of human cancer cell lines (CCLs) were
downloaded from the Broad Institute Cancer Cell Line
Encyclopedia (CCLE) project (https://portals.broadinstitute.
org/ccle/) (Ghandi et al., 2019). Drug sensitivity data of CCLs
were extracted from the Cancer Therapeutics Response Portal
(CTRP v.2.0, https://portals.broadinstitute.org/ctrp) (Rees et al.,
2016). The area under the dose-response curve (AUC) was used
as a measure of drug sensitivity in CTRP, and higher AUC
values indicate decreased sensitivity to drugs. Based on drug
sensitivity and gene expression data from CTRP, drug response
of patients was predicted according to their gene expression
levels by using the R package pRRophetic (Geeleher et al.,
2014). The AUC value of each drug in each patient was
estimated. Additionally, the connectivity map (CMap) analysis
(Subramanian et al., 2017) was also used to predicted potential
small molecule drugs for the treatment of high-risk PDAC
patients.

Comparison of KRAS, TP53, and CDKN2A
Mutations in High- and Low-Risk Patients
Somatic mutations of the KRAS, TP53, and CDKN2A are the
common events in PDAC patients, and KRAS and TP53
mutations have been tightly linked to tumor-promoting
inflammation (Yachida et al., 2012; Uehara and Tanaka, 2018;
Hamarsheh et al., 2020). Thus, we compared the frequencies of
KRAS, TP53, and CDKN2Amutations between high- and low-risk
PDAC patients. The Mutation Annotation Format (MAF) files of
TCGA-PAAD cohort were downloaded from the GDC database
(https://portal.gdc.cancer.gov/). The simple somatic mutation
format files of PACA-AU and PACA-CA cohorts were obtained
from ICGC database (https://dcc.icgc.org/) and converted to MAF
files by using R package “matfools” (Mayakonda et al., 2018).
Likewise, all the MAF files were analyzed by using “matfools”
package. Additionally, we extracted the KRAS, TP53, and
CDKN2A mutation status of patients in E-MTAB-6134 cohort,
which were documented in a clinical information file.

Immune Infiltration Estimations and Gene
Set Enrichment Analysis
Next, to gain insight into the difference in tumor immune
microenvironment between high- and low-risk groups,
CIBERSORT algorithm (https://cibersortx.stanford.edu/)
(Chen et al., 2018) was used to estimate the proportion of
22 immune cells in each sample based on their gene
expression profiles. Then, we quantitatively compared the
infiltration of 22 immune cells between high- and low-risk
groups. The estimate algorithm was also used to calculate

stromal and immune scores of each sample by using R
package estimate. Gene Set Enrichment Analysis (GSEA)
was conducted to explore the biological difference between
high- and low-risk groups. The analysis was performed by
using GSEA software, and false discovery rate (FDR) < 0.25
was regarded as statistically significant according to the
GSEA user guide (Subramanian et al., 2005).

RESULTS

Identification of OS-Related IRRGs
There were 717 and 200 protein coding genes contained in the
“GOBP inflammatory response” and “Hallmark inflammatory
response” gene sets, respectively (Supplementary Tables S3
and S4). After removing the overlapped genes, a total of 841
IRRGs were obtained for further analysis. Univariate Cox
regression analysis showed that there were 34 and 31 genes
significantly (p < 0.001) related to OS of PDAC patients in
E-MATB-6134 and PACA-AU cohorts, respectively
(Supplementary Tables S5 and S6). A total of 11 intersecting
genes were identified by using Venn diagram (Figure 2A).
Subsequently, expression levels of these 11 genes were
compared between tumor and tumor-adjacent tissues in two
GEO cohorts. Taken together, eight genes were selected for
LASSO analysis. Of these, ADM, DCBLD2, EREG, ITGA5,
MIF, MMP14, and TREM1 were associated with poor prognosis
and significantly increased in tumor, while BTG2 was related to
favorable prognosis and decreased in tumor (Figures 2B–E).

Construction of IRRGs Prognostic
Signature
A prognostic signature containing seven IRRGs was
constructed based on the optimal value of penalty lambda
(Supplementary Figures S1A,B). The risk score of each
patient was calculated as follows: risk score � expression
level of ITGA5*0.059 + expression level of TREM1*0.109 +
expression level of EREG*0.132 + expression level of
MIF*0.216 + expression level of ADM*0.204 + expression
level of DCBLD2*0.129-expression level of BTG2*0.098
(Supplementary Figure S1C).

The Kaplan-Meier survival analysis showed that patients in
the high-risk group had significantly unfavorable OS
compared with those in the low-risk group (Figure 3A).
The predictive efficacy of the risk score for OS was further
evaluated by ROC analysis, and the area under the ROC curve
(AUC) was 0.791, 0.688, and 0.678 for 1, 3, and 5-years,
respectively (Figure 3B). Expression levels of the seven
signature genes were significantly different between high- and
low-risk groups (Figure 3C). Patients with a high-risk score had
a higher death probability than those with a low-risk score
(Figure 3D). The high- and low-risk groups displayed different
distributed patterns in a PCA plot (Figure 3E). Correlation analysis
indicated that the seven signature genes were significantly
correlated with each other (Figure 3F).
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FIGURE 2 | Prognostic IRRGs for developing a risk signature were identified. (A) A total of 11 IRRGs were screened out by Venn diagram. (B, C) The hazard ratio
and 95% confidence intervals of 11 IRRGs in E-MTAB-6134 (B) and PACA-AU (C) cohorts. (D, E) Compared expression levels of 11 IRRGs between tumor and paired
adjacent normal tissue in GSE15417 (D) and GSE16515 (E) cohorts.

FIGURE 3 | Performance of the IRRGs prognostic signature in training cohort. (A) Kaplan–Meier curve shows OS differences between the high- and low-risk
groups. (B) ROC curve for 1, 3, and 5-years OS. (C) Expression levels of seven signature genes in high- and low-risk groups. (D) The distribution of survival status. (E)
PCA plot. (F) Correlation of seven signature genes.
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Verification of the IRRGs Prognostic
Signature in 10 PDAC Cohorts
We then verified the reliability and capability of the IRRGs
signature in 10 PDAC cohorts. Kaplan-Meier survival analysis
showed the high-risk group had a significantly worse
prognosis compared to the low-risk group in all 10 cohorts
(Figures 4A–J).

We conducted ROC analysis for 1, 3, and 4-years OS in the 10
validation cohorts to further validate the reliability of the
signature. The AUC for 1, 3, and 4-years OS in the 10 PDAC

cohorts were greater than 0.600 (Figures 5A–J). Notably, the
AUC of ROC curve for 4-years OS reached 0.847, 0.829, and 0.817
in GSE71729, GSE79668, and GSE85916 cohorts, respectively.
The C-index of our signature was greater than 0.600 at different
survival times except for in the TCGA-PAAD cohort
(Supplementary Figure S2). Additionally, compared with six
previously published gene signatures, our IRRGs signature had
the highest C-index in 9 of 11 PDAC cohorts.

We also explored whether our signature could be used for
prediction of other important survival outcomes, including

FIGURE 4 | Kaplan–Meier curves show OS differences between the high- and low-risk groups in 10 PDAC cohorts. (A) PACA-AU cohort. (B) TCGA-PAAD cohort.
(C) GSE71729 cohort. (D) PACA-CA cohort. (E) GSE21501 cohort. (F) E-MTAB-6830 cohort. (G) GSE85916 cohort. (H) GSE62452 cohort. (I) GSE57495 cohort. (J)
GSE79668 cohort.

FIGURE 5 | ROC curves for 1, 3, and 4-years OS in the 10 validation cohorts. (A) PACA-AU cohort. (B) TCGA-PAAD cohort. (C)GSE71729 cohort. (D) PACA-CA
cohort. (E) GSE21501 cohort. (F) E-MTAB-6830 cohort. (G) GSE85916 cohort. (H) GSE62452 cohort. (I) GSE57495 cohort. (J) GSE79668 cohort.
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disease-free survival (DFS), disease-free interval (DFI),
disease-specific survival (DSS), and progression-free interval
(PFI). Kaplan-Meier survival analysis showed the patients with
high-risk had a significantly worse DFS than their low-risk
counterparts in the E-MTAB-6134 cohort (Figure 6A). In the
PACA-AU and PACA-CA cohorts, patients with high-risk had
a significantly worse DFI than those with low-risk (Figures
6B,C). In the TCGA-PAAD cohort, patients with high-risk
had a significantly worse DFI and DSS than those with low-risk
(Figures 6D,E). However, there were no significant differences
in DFI between two groups in TCGA-PAAD cohort
(Figure 6F).

Prognostic Value of the IRRGs Signature
Was Independent of Resection Margin,
Tumor Stage, and Grade
In the univariate Cox analyses, high-risk was significantly
correlated with poor OS (E-MTAB-6134 cohort: HR � 2.506,
95% CI � 1.842–3.411, p < 0.001; PACA-AU cohort: HR �
2.240, 95% CI � 1.597–3.143, p < 0.001; TCGA-PAAD cohort:
HR � 1.651, 95% CI � 1.058–2.577, p � 0.027; PACA-CA
cohort: HR � 2.080, 95% CI � 1.340–3.229, p � 0.001) (Figures
7A–D). The multivariate Cox analyses indicated that high-risk
was a hazardous factor for OS after correcting for other
significant clinical factors (E-MTAB-6134 cohort: HR � 2.499,
95% CI � 1.829–3.415, p < 0.001; PACA-AU cohort: HR � 2.048,
95% CI � 1.441–2.910, p < 0.001; PACA-CA cohort: HR � 1.897,
95% CI � 1.261–2.960, p � 0.005) (Figures 7E–G). ROC analyses

showed that the signature had good predictive accuracy in OS of
PDAC patients than other clinical variables (Figures 7H–K).

Based on the multivariate analysis results of E-MTAB-6134
cohort, we established a nomogram which could further
improve survival predictive ability for PDAC patients. A
total of four factors were integrated in the nomogram to
predict the OS of PDAC patients (Figure 8A). The total
points were calculated by adding up the corresponding
points of each factor. The calibration curve suggested that
the nomogram that predicted the survival rate was close to the
actual situation for the 1-, 3-, and 5-year survival (Figure 8B).
The time-varying AUC and C-index plots indicated that the
predictive ability of the nomogram was better than that of any
single factor (Figures 8C,D).

Gemcitabine Response and Risk Score
We conducted a subgroup analysis of 62 patients treated with
gemcitabine in TCGA-PAAD cohort. As shown in Figure 9A,
patients presented a CR had significantly lower risk score
compared with those presented a PD. The survival analyses
showed that patients in the high-risk group had significantly
poor OS, DSS, DFI, and PFI as compared with those in the low-
risk group (Figures 9B–E). By analyzing gene expression and
drug sensitivity data in the GDSC database, we revealed a
significant positive association between cancer cells’ risk score
and gemcitabine IC50, indicating that patients with higher risk
score were more likely to be resistant to gemcitabine (Figures
9F,G). We unutilized the R package pRRophetic, which had a
built-in ridge regression model, to predict the drug response of

FIGURE 6 | Performance of the IRRGs signature in the aspect of DFS, DFI, DSS, and PFI. (A) DFS difference in high- and low-risk patients in E-MTAB-6134 cohort.
(B,C) DFI differences in high- and low-risk patients in PACA-AU (B) and PACA-CA (C) cohorts. (D–F) DSS (D), PFI (E), and DFI (F) differences in high- and low-risk
patients in TCGA-PAAD cohort.
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patients in E-MTAB-6134 cohort based on their gene
expression profiles. The estimated AUC value of each
compound in each sample was obtained. As a result, a total
of 354 compounds and their estimated AUC value of each
patient in E-MTAB-6134 cohort were yielded and listed in
Supplementary Table S7. We found that there was
significantly positive correlation between risk score and
AUC value of gemcitabine (Figure 9H).

Identification of Potential Drugs for Patients
with High-Risk Score
We further analyze the results in Supplementary Table S6 to
identify potential drugs for patients with a high-risk score.
Correlation analysis between AUC value and risk score was
conducted to pick compounds with negative correlation
coefficient (R < −0.3). Differential analysis was then carried
out between high- and low-risk groups to select compounds
with lower AUC values in the high-risk group (p < 0.001 and
meanhigh/meanlow < 0.98). Collectively, these two analyses yielded
six compounds (simvastatin, dasatinib, pluripotin, fluvastatin,

BMS-536924, curcumin) (Figures 10A,B). Furthermore, there
were 23 up-regulated and 34 down-regulated genes in the high-
risk group as compared with the low-risk group in E-MTAB-6134
cohort (Figure 10C). The CMap analysis was then used to
identify compounds of which gene expression patterns were
oppositional to the expression patterns of the high-risk group
(i.e., gene expression increased in the high-risk group tend to be
decreased by the perturbagen of certain compounds). We found
that BMS-536924 and dasatinib had CMap scores <−87
(Figure 10D), indicating that these two drugs had great
potential for the treatment of high-risk patients.

Frequencies of TP53, KRAS, and CDKN2A
Mutations in High- and Low-Risk Groups
We found that KRASmutation had the most frequency in PACA-
AU, PACA-CA, and E-MTAB-6134 cohorts, while TP53
mutation was the most common in TCGA-PAAD cohort
(Figures 11A–C). The frequency of KRAS mutation were
significantly higher in the high-risk group in all four cohorts,
while the frequency of TP53 mutation was significantly higher in
the high-risk group in E-MTAB-6134 and TCGA-PAAD cohorts.

FIGURE 7 | Comparison of IRRGs prognostic signature and other clinical variables. (A–D) Univariate Cox regression analyses of the IRRGs signature and other
clinical variables. (E–G) Multivariate Cox regression analyses of the IRRGs signature. (H–K) Compared the predictive accuracy of risk score and other clinical
characteristics for 1-year OS by ROC curve.
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FIGURE 8 | Establishment of a nomogram predicting the OS for PDAC patients. (A) The nomogram was built based on tumor grade, resection margin, N stage,
and risk. (B) Calibration curves of the nomogram. (C) Time-varying AUC of the nomogram and four single factors. (D) Time-varying C-index of the nomogram and four
single factors.

FIGURE 9 | Relationship between gemcitabine response and risk score. (A) Relationship between risk score and response to gemcitabine in TCGA cohort. (B–E)
Kaplan–Meier curve of OS (B), DSS (C), DFI (D), and PFI (E) for high- and low-risk patients treated with gemcitabine. (F, G) Relationship between cells’ risk score and
gemcitabine IC50 in 808 cancer cells (F) and 29 PDAC cells (G) in GDSC database. (H) Relationship between risk score and estimated AUC value of gemcitabine
calculated by the pRRophetic algorithm.
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However, the frequency of CDKN2A mutation was significantly
higher in the high-risk group only in E-MTAB-6134 cohort. We
next conducted a pooled analysis to compare the overall
frequencies of TP53, KRAS, and CDKN2A mutations between
the high- and low-risk groups in four cohorts. We found that
frequencies of TP53, KRAS, and CDKN2A mutations were
significantly higher in the high-risk group compared with the
low-risk group (KRAS: OR � 4.47, 95% CI � 2.71–7.39, p < 0.001;
TP53: OR � 2.27, 95% CI � 1.60–3.20, p < 0.001; CDKN2A:
OR � 1.95, 95% CI � 1.24–3.09, p < 0.001) (Figures 11D–F).

Immune Infiltration Estimations and GSEA
Analyses
Based on the CIBERSORT algorithm, we compared the
proportion of 22 types of immune cells between high- and
low-risk groups. As shown in Figure 12A, CD8+ T, naïve B,
plasma, and macrophages M1 cells were significantly higher in
the low-risk groups, while macrophages M0, neutrophils, and
macrophages M2 cells were more likely higher in the high-risk
groups. Next, we used ESTIMATE algorithm to calculate stromal
and immune scores of each tumor sample. We found that the
immune scores were significantly negative correlation with risk
scores in TCGA-PAAD, E-MTAB-6134, GSE71729, and PACA-

AU cohorts, while the stromal scores were significantly positive
correlation with risk scores in E-MTAB-6134 and PACA-CA
cohorts (Figure 12B). We also explored the correlation of risk
scores and expression of 11 well-documented immune
checkpoints. We found that expression levels of immune
checkpoints were significantly positive correlation with risk
scores in most cohorts except for TIGIT and CTLA4
(Figure 12C). Notably, CD73 and CD276 were extremely
positive correlation with risk scores in all 11 cohorts. GSEA
analysis indicated that most of the 50 hallmark gene sets were
upregulated in high-risk groups although there were some
differences among the 11 cohorts (Supplementary Figure S3).
Especially, the glycolysis and hypoxia gene sets were significantly
upregulated in the high-risk groups compared with low-risk
groups in 10 cohorts.

DISCUSSION

With the development of high throughput sequencing
technology, there has been an increasing interest in
constructing gene signatures to predict the prognosis of
patients with PDAC and other malignant tumors. Previously,
several valuable PDAC prognostic signatures have been

FIGURE 10 | Identification of promising therapeutic drugs for high-risk patients. (A) Correlation analysis of estimated AUC value of six compounds and risk score.
(B) Comparison of estimated AUC value of six compounds between high- and low-risk groups. (C) Volcano plot of differential expression genes between high- and low-
risk groups. (D) Clinical and experimental evidence of six compounds in the treatment of PDAC and their CMap scores.
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constructed by using bioinformatics analysis. For example,
signatures based on glycolysis, m6A, ferroptosis, immune, and
extracellular vesicle predict 1-year OS for PDAC with AUC at
0.805, 0.736, 0.81, 0.755, and 0.640, respectively, which were
similar to our study (Xu et al., 2020; Chen et al., 2021; Song et al.,
2021; Xu et al., 2021; Yuan et al., 2021). However, the number of
patients included in the abovementioned studies ranged from 183
to 441 and were relatively low. As described in their publications,
the applicability of these signatures warrants further validation in
larger PDAC cohorts. In the present work, we developed and
validated an IRRGs signature for prognostic risk stratification and
prediction based on 11 PDAC cohorts including 1337 PDAC
patients. The prognosis of the high-risk group was significantly
worse than its low-risk group counterpart. The AUC for OS was

greater than 0.600 in all 11 PDAC cohorts, highlighting the good
performance and accuracy of our signature. Furthermore,
compared with six previous published gene signatures, our
IRRGs signature had the highest C-index in 9 of 11 PDAC
cohorts.

Our signature consisted of seven IRRGs, including ITGA5,
TREM1, EREG, ADM, MIF, DCBLD2, and BTG2. It has been
reported that ITGA5 overexpression was inversely correlated
with OS of PDAC patients, and inhibition of ITGA5
potentiated the cytotoxicity of gemcitabine (Kuninty et al.,
2019). Preclinical study showed that blockade of TREM1
specifically suppresses key cytokines and thereby inhibited
tumor growth in human pancreatic cancer xenografts and
prolonged the survival of mice (Shen and Sigalov, 2017). An

FIGURE 11 | Comparison of KRAS, TP53, and CDKN2A mutations between high- and low-risk groups. (A–C) Frequencies and types of KRAS, TP53, and
CDKN2Amutations in PACA-AU (A), PACA-CA (B), and TCGA-PAAD (C) cohorts. (D–F) Pooled analysis to compare the overall frequencies of KRAS (D), TP53 (E), and
CDKN2A (F) mutations between high- and low-risk groups.
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experimental study has suggested that EREG contributed to the
progression of pancreatic cancer (Zhu et al., 2000). The serum
level of adrenomedullin, a peptide hormone encoded by the ADM
gene, was significantly increased in patients with PDAC
compared to chronic pancreatitis and healthy individuals
(Keleg et al., 2007). Knockdown of ADM in pancreatic tumor-
bearing mice significantly inhibited the recruitment of
myelomonocytic cells and tumor angiogenesis (Xu et al.,
2016). Multiple studies have documented that elevated MIF
expression was associated with increased tumor aggressiveness,
reduced sensitivity to gemcitabine, and worse survival in PDAC
patients (Wen et al., 2021). Additionally, a previous study has
identified DCBLD2 as a prognostic and diagnostic biomarker in
PDAC (Feng et al., 2021b). However, the AUC values of
DCBLD2 for 1-year OS prediction in their publication were
0.708, 0.753, and 0.690 in MTAB-6134, PACA-AU, and
TCGA-PAAD cohorts, respectively, which were lower than
the values in our study. Besides, the AUC values of DCBLD2
for OS prediction in other PDAC cohorts have not been
reported in their publication, indicating that the predictive
performance of DCBLD2 as a single-gene prognostic indictor
needs to be further verified. Furthermore, in line with
previous studies that reported BTG2 as a tumor suppressor
involved in multiple biological processes of cancer (Mao et al.,
2015), our study identified BTG2 as a prognostic protection
gene in PDAC. Existing literature have also revealed that
miR-27a promoted PDAC cell growth and migration via
directly targeted BTG2 (Frampton et al., 2014; Shang et al.,
2020).

Gemcitabine has been the cornerstone of PDAC treatment in
all stages and gemcitabine resistance is currently the main
problem of chemotherapy for PDAC patients. Our study
found that high-risk PDAC patients had significantly low
response rate to gemcitabine than low-risk patients, indicating
that our signature may be used for predicting gemcitabine
response of PDAC patients. We identified two agents that
might have potential therapeutic implications for high-risk
patients who might be resistant to gemcitabine. BMS-536924,
a small molecule inhibitor of the IGF-1 receptor, has been
confirmed in preclinical study to have a broad spectrum of
antitumor activity in vitro and in vivo (Huang et al., 2009).
Studies also have revealed that IGF1R contributed to tumor
growth and gemcitabine resistance in PDAC (Tian et al., 2013;
Subramani et al., 2014). Clinical trials showed that anti-IGRF1R
antibody combination with gemcitabine was associated with
improvement in OS as compared with gemcitabine
combination with erlotinib, indicating that anti-IGRF1R might
be a promising treatment strategy for PDAC patients (Abdel-
Wahab et al., 2018). Preclinical studies have documented that
dasatinib inhibits tumor growth and metastasis in mouse models
of PDAC (Morton et al., 2010; Nagaraj et al., 2010).
Unfortunately, dasatinib as monotherapy or combination
therapy have failed to demonstrate clinical benefit in patients
with PDAC (Garcia-Sampedro et al., 2021). Nevertheless, clinical
trials evaluating the efficacy of dasatinib for PDAC treatment are
still ongoing (NCT01652976 and NCT02465060). Our work
might provide new insights into improving therapeutic effect
of dasatinib by selecting potential dasatinib-responsive patients.

FIGURE 12 | Comparison of tumor immune microenvironment between high- and low-risk groups. (A) Infiltration of 22 types of immune cells between high- and
low-risk groups was compared. (B) Correlation of risk scores and ESTIMATE, stromal, and immune scores. (C) Correlation of risk scores and expression levels of 11
immune checkpoints. *p < 0.05, **p < 0.01, ***p < 0.001.
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Furthermore, we aimed to explain the reason of differences in
prognosis between high- and low-risk groups from the views of
gene mutation and immune cell infiltration. It has been generally
accepted that KRAS, TP53, and CDKN2A were three of the most
frequently mutated genes in PDAC patients (Cicenas et al., 2017).
A study has reported that the OS of PDAC patients without TP53
and KRAS mutations was more than twice as long as that of
patients with TP53 and KRAS mutations (Masetti et al., 2018).
Additionally, PDAC patients without TP53 mutation were
disease-free for 1.51 times longer than those with TP53
mutation (Li et al., 2019). Patients without CDKN2A mutation
had significantly increased OS compared to those with CDKN2A
mutations, indicating that CDKN2A mutation was an
independent negative prognostic OS indicator for PDAC
patients. We found that the frequencies of KRAS, TP53, and
CDKN2A mutations in high-risk patients with poor prognosis
were significantly higher than that in low-risk patients, which
were in accord with previous studies.

Inflammation induces an immunosuppressive tumor
microenvironment and thereby drives tumor growth, progression,
andmetastasis (Greten and Grivennikov, 2019).We revealed that the
high-risk group had increased infiltration of macrophages M0,
neutrophils, and macrophages M2 cells, while the low-risk group
had increased infiltration of CD8+ T, naïve B, plasma, and
macrophages M1 cells. A study has reported that CD8+ T cells
infiltration was associated with longer survival in PDAC patients
(Hou et al., 2019). Similarly, a high number of CD8+ lymphocytes in
tumor samples was significantly associated with longer DFS and OS
of PDAC patients (Lohneis et al., 2017). Neutrophil cells, the most
abundant leukocytes in the circulation, play an important role in
inflammation and immune responses (Rosales, 2018). CD8+ T
lymphocytes could be suppressed by tumor-induced neutrophil
cells, and inhibition of neutrophils accumulation by lorlatinib
attenuates PDAC growth (Coffelt et al., 2015; Nielsen et al., 2021).
Evidence came from previous studies showed that higher
intratumoral B cells density was associated with good prognosis in
multiple cancers including PDAC (Fridman et al., 2020).
Additionally, we found the expressions of two immune
checkpoints, CD276 and CD73, were significantly positively
associated with risk scores in all 11 PDAC cohorts, while
expressions of TIGIT and CTLA4 were negatively related to risk
scores. CD276 has been reported to promote tumor progression by
inhibiting the functions of NK and CD8+ T cells, and its expression
levels were associated with poor prognosis in multiple cancers (Zang
et al., 2007; Crispen et al., 2008; Zhang et al., 2009; Lee et al., 2017;
Inamura et al., 2018).Meanwhile, a recent preclinical study has found
that targeting CD276 by CAR-T cells effectively inhibited PDAC
tumor growth in vitro and in vivo (Du et al., 2019), suggesting the
potential efficacy in a selected subgroup of PDAC patients.
Furthermore, CD73 has emerged as an attractive therapeutic
target for immunotherapy and has been reported to promote
gemcitabine resistance in PDAC cells (Harvey et al., 2020; Yu X.
et al., 2021).

The GSEA analysis indicated that hypoxia and glycolysis
pathways were upregulated in the high-risk group. Recent
studies have documented that hypoxia and glycolysis-related
gene signatures were associated with tumor

microenvironment and might be used to predict the
prognosis of PDAC patients (Ding et al., 2021; Song et al.,
2021). Hypoxia has been considered as an indicator of the
inflamed tumor microenvironment and leads to activation of
tumor-promoting inflammatory responses (Triner and Shah,
2016). The associations among inflammation, hypoxia, and
glycolysis have been well documented in previous studies. On
one hand, inflammatory cells tend to switch their metabolism
toward glycolysis to meet their high energetic demand (Soto-
Heredero et al., 2020); on the other hand, hypoxia inducible
factor-1α induces an increased expression of glycolytic enzymes,
which contributes to maintaining bioenergetic homeostasis during
hypoxia (Kierans and Taylor, 2021).

We recognized several limitations in this study. First, we
only selected IRRGs from two gene sets, which might neglect
other important prognostic IRRGs not included in these two
sets. Second, the correlation of gemcitabine response and our
signature should be further validated in more PDAC patients.
Third, all the conclusions in this study were drawn from in
silico analyses, and further experimental or clinical validations
to increase the evidence level of our findings were needed.
Thus, we will design multicenter prospective clinical trials
with large sample sizes for further verification in future work.

CONCLUSION

In conclusion, we developed and verified a signature
containing seven IRRGs to predict the survival outcome of
patients with PDAC. Further analysis indicated that the
signature could be used to predict responses of PDAC
patients to gemcitabine treatment. We also combined the
IRRGs signature with traditional clinicopathological
features to construct a nomogram with more accurate
survival predictive ability. For patients with high-risk
scores, our study provided them with potential therapeutic
drugs, which might effectively improve their prognosis.
Nevertheless, further prospective studies on the large, well-
performed PDAC cohorts are needed to validate the stability
of our IRRGs signature and to increase its evidence level.
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