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ABSTRACT: Center line slope (CLS) analysis in 2D infrared spectroscopy has been
extensively used to extract frequency−frequency correlation functions of vibrational
transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure
of electronic gap fluctuations. The two domains, infrared and electronic, possess
differences: In the infrared, the frequency fluctuations are classical, often slow and
Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by
underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in
non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes
and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find
that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity
to one dimension. In this way, CLS provides a highly sensitive measure of model
parameters describing electronic−vibrational and electronic−solvent interaction.

1. INTRODUCTION

Ultrafast laser technology1 in the last two decades progressed to
the point where heterodyne-detected four wave mixing (FWM)
experiments can fully characterize the third-order optical
response.2 In such experiments, three excitation pulses,
separated by two time delays t1 and t2, induce a coherent
signal in a molecular sample, which is emitted during signal
time t3. Such FWM signals are best displayed as ω1 vs ω3
correlation plots between absorption events during the
coherence time t1 and signal emissions during time t3. Such
plots are called two-dimensional (2D) optical spectra3−5 in
close analogy to 2D methods used throughout the NMR
community.6 2D optical spectroscopy, first developed in the
infrared (IR) domain,7−10 has been brought to the visible11 and
other domains12−16 over the past decade.
Analysis of 2D spectrograms is focused either on peak

intensity and position or on the peak shape, where peak
intensity and position are usually much simpler to interpret. For
instance, at short waiting times t2 ≈ 0 cross peak intensities bear
information on the relative angle between the involved
transition dipole moments. 2D IR was thus used to elucidate
molecular17 or protein18,19 structure, as well as chemical
exchange.20,21 Similarly, the evolution of cross peak magnitudes
are instrumental for tracking excitation and relaxation pathways
in multichromophoric systems such as natural22,23 and artificial
light harvesting complexes.24

Line shapes of individual peaks in 2D spectra are related to
fluctuations of transition frequencies as caused by spectral
diffusion processes.25 In some instances, peak shapes reflect
molecular structure or energy deactivation networks,26 but
more typically, 2D line shapes are heavily influenced by the
environment of the probed molecular system. Although peak
positions and intensities are explained quantitatively, detailed

calculations of 2D line shapes are relatively costly and
comparison between simulation and experiment is often left
to visual inspection. This rationalizes the need for a simple
quantitative characterization of 2D line shapes in the electronic
domain. Ideally, such measures would allow for a simple
parametrization of standard microscopic models of spectral
diffusion. Moreover, these measures should also be well-defined
for more complicated line shapes, i.e., for atypical parameter
regimes or microscopic models.
There are two limiting cases for 2D peak shapes: (i) Fast and

homogeneous spectral fluctuations induce Lorentzian star-like
profiles, as typically found in 2D NMR. And (ii) slow Gaussian
spectral diffusion produces characteristic 2D IR Gaussian peaks,
the contours of which are approximately elliptic.27 Elongation
of such elliptic peaks along the diagonal is a measure for
inhomogeneous disorder and its waiting time (t2) evolution
shows the extent of relaxation during spectral diffusion
processes described by the frequency−frequency correlation
function (FFCF). Several measures of 2D peaks have been
introduced to characterize spectral diffusion,28 such as contour
eccentricity, nodal lines of the dispersive part of the spectrum
or center lines slopes (CLS) of the absorptive parts.29

The ratio of a peak’s diagonal ΔD and antidiagonal ΔAD

width is connected to the FFCF for Gaussian line shapes.30

This measure is useful when the diagonal elongation is caused
predominantly by static disorder. However, the concept has no
reasonable extension beyond the very limit of slow Gaussian
spectral diffusion, which is not always obeyed for electronic
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spectra and it is also difficult to identify if the 2D spectrum has
deviated from a Gaussian line shape.
The nodal line in the dispersive spectrum is a rather

phenomenological concept.31 Nodal line dynamics reflect the
relaxation of the line shape and can thus be used to infer
relaxation time scales. However, we have no analytical
expression relating the nodal line slope to other model
parameters.
In contrast, the center line (CL) as obtained by maximization

of a 2D signal along the ω1 axis at fixed waiting times t2 is a
more robust concept. For slow, approximately Gaussian,32

spectral diffusion, typical for vibrational spectra measured in the
IR domain, the CL is linear and its slope manifests the
frequency−frequency correlation function (FFCF).29 In such a
scenario, the dynamics of a Gaussian coordinate is entirely
defined by the FFCF, and thus spectral diffusion is completely
characterized by the dependence of CLS on the waiting time t2.
Dynamics of electronic transitions are often different.

Intermediate time scales of spectral diffusion, significant bath
reorganization effects such as Stokes shift and vibrational
progression of electronic spectra induce complex, non-Gaussian
line shapes. Consequently, the CL becomes nonlinear.
However, we will demonstrate that it still carries information
about dynamics and helps with parametrization of a spectral
diffusion model.
In the present paper we will analyze the CLS concept in the

context of 2D electronic spectroscopy (2D ES). After
explaining all factors influencing CLS in 2D ES, we apply our
findings on experimental data of zinc−phthalocyanine
(ZnPc),33 where the main diagonal peak shows different
sections with linear or curved CL, a behavior rather dissimilar
from that for the paradigmatic IR or NMR 2D spectra.
The paper is organized as follows. In section 2 we interpret

2D IR spectra as dynamical maps of a diffusive coordinate and
review the concept of CLS. In section 3 we introduce spin−
boson dynamics as a convenient model of Gaussian fluctuations
of electronic transitions. It will be related to the stochastic
picture of section 2 for a certain parametric limit. We will show
how more general parametrization allows us to analyze CLS in
the presence of typical phenomena for the electronic domain
such as Stokes shift. We will also discuss limitations imposed by
the spin−boson model and investigate the effects of non-
Gaussian spectral diffusion in section 4. In section 5 we apply
our models to experimental electronic 2D spectra of ZnPc. In
section 6, we conclude by evaluating CLS analysis as a tool for
parametrizing dynamics of electronic transitions.

2. CENTER LINE SLOPE OF GAUSSIAN 2D IR LINE
SHAPES

We start this section with a short review of 2D spectroscopy. In
FWM experiments, three short laser pulses impinge upon the
sample at time delays t1 and t2 and the resultant third-order
signal field generated at a delay t3 is mixed with a local oscillator
field. Consider a two-level chromophore, whose transition
frequency ω(t) undergoes stochastic spectral fluctuations. The
signal is a function of the three time intervals and reads25

= ⟨ ⟩ω τ τ ω τ τ± ∫ − ∫ ′ ′+
+ +

R t t t( , , ) e eR N; 3 2 1
i ( )d i ( )dt

t t
t t t

0
1

1 2
1 2 3

(1)

e+i corresponds to the so-called rephasing signal (R) and e−i to
the nonrephasing signal (N). Angular brackets ⟨ ⟩ represent
averaging over realizations of the stochastic process ω(t).
Equation 1 shows clearly why ω3, t2, ω1 is the standard domain
for 2D spectroscopy. We will focus on the real part of the
spectrum, e.g.,
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The total (absorptive) signal R combines rephasing and
nonrephasing contributions35

ω ω ω ω ω ω= − +R t R t R t( , , ) 2{ ( , , ) ( , , )}R N3 2 1 3 2 1 3 2 1 (3)

In the infrared, spectral diffusion is typically a slow process
leading to stable transition frequencies ω1 and ω3 during the t1
a n d t 3 i n t e r v a l s . We c a n t h e n a p p r o x im a t e
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t
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total signal (eq 3) is then interpreted as two-time joint
densities36 of ω(t)

ω ω ω ω δ ω ω δ ω ω≈ = ⟨ − − ⟩R t t t( , , ) ( , , ) ( ( )) ( (0))3 2 1 3 1 2 3 2 1
(4)

Spectral fluctuations are most often of Gaussian type and
entirely characterized by the two-point correlation function32,37

ω ω= ⟨Δ̃ Δ̃ ⟩t t( ) ( ) (0) , where Δ̃ω(t) ≡ ω(t) − ⟨ω(t)⟩.
Substituting the standard prescription for two-point joint
density of a Gaussian process with vanishing mean ⟨ω(t)⟩ =
0 into eq 4 yields
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Figure 1. Center lines BCL (black) and FCL (red) for Gaussian 2D line shapes (eq 5) with = Δ −Λt( ) e t2 , and Δ/Λ = 4000. Waiting time increases
from left to right Λt2 = 0.01, 1, 10. Throughout the text, 2D plots are normalized to maximal value and for Figures 1, 3, 4, 7−9 contour lines are
plotted at 5% steps, and the same color scale applies.
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The Gaussian line shape Rg delivers elliptical contours as shown
in Figure 1 for several waiting times t2. Line shapes develop
from highly eccentric contours at short waiting times t2 ≈ 0
(left panel) to the circular limiting case for t2 → ∞ (right
panel) and depend on the extent of relaxation given by t( )2 .
The obvious task is to extract the correlation function t( )
from the experimental 2D line shapes.
The black curve in each panel of Figure 1 depicts the center

line29 ω1
BCL(ω3). It was obtained by finding position ω1

BCL of
maximal signal R(ω3,t2,ω1) along axis ω1 at given ω3

ω ω ω ω ω≥R t t R t( , , ( ; )) ( , , )3 2 1
BCL

3 2 3 2 1

As far as we consider the 2D line shape to be a joint
probabilistic density of a classical stochastic variable as in eq 4,
ω1

BCL(ω3) is the most probable value of ω(t) at t = 0 given that
the frequency at a later time t = t2 is ω3. The center line thus
represents backward-time evolution and we abbreviate this
center line as BCL (backward-time center line). The BCL line
of a Gaussian peak (eq 5) is linear because

ω ω
ω

ω ω
∂

∂
= ⇒ =

ω ω=

R t
t

( , , )
0 (0) ( )

g
3 2 1

1
1
BCL

2 3

1 1
BCL

with a slope given by the inverse of the normalized correlation
function ≡C t t( ) ( )/ (0)
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Alternatively, one can search for the maximal signal along the
ω3 axis.34 The associated red line ω3

FCL(ω1) (Figure 1)
represents a typical spectral diffusion trajectory ω(t), which
starts from ω(0) = ω1 and has the most probable position ω(t2)
= ω3

FCL(ω1) after waiting time t2. Hence, ω3
FCL(ω1) represents

the ordinary time-forward picture of a stochastic process and
will be abbreviated FCL (forward-time center line). For a
Gaussian peak (eq 5), FCL is again linear with a slope given
directly by the normalized correlation function C(t)
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The symmetry between BCL and FCL evident from
comparing eqs 6 and 7 has a fundamental background. The
joint density of equilibrium stochastic processes is subjected to
the microscopic time reversibility

ω ω ω ω=t t( , , ) ( , , )3 1 2 1 3 2 (8)

The line shapes are symmetric along the diagonal, BCL can be
deduced from FCL and vice versa because they are axial images;
FCL and BCL carry similar information in this case, as
illustrated in Figure 1. Experimentally, it is inequivalent to
determine the BCL and FCL, as ω3 is typically measured
directly in frequency domain via spectrally dispersed detection,
whereas ω1 is obtained in postprocessing from time-domain
data. Routinely produced 2D spectra has often better resolved
BCL. Equation 8 then provides a meaningful relation between
experimentally accessible BCL and the ordinary forward-time
picture of FCL. Beyond the assumptions underlying eq 4,
however, the BCL and FCL may become dissimilar, so we
continue to discuss both of them throughout this paper.

Here we note that the Gaussian joint density (eq 5) forms
the backbone of most experimental line shape measures of the
FFCF. For instance, the ratio of a peak’s diagonal ΔD and
antidiagonal width ΔAD within the limit of eq 5 is connected to
C(t) as

Δ
Δ

= −
+

C t
C t

1 ( )
1 ( )

AD

D (9)

For Gaussian line shapes C(t) can thus be extracted similarly
well from BCLS, FCLS or the eccentricity ΔAD/ΔD. However,
eccentricity is limited to elliptical contours and cannot be easily
generalized beyond Gaussian line shapes. In contrast, FCL and
BCL allow the detection of non-Gausianities by deviations from
linearity. In the following, we develop a theoretical framework
for BCLS and FCLS, going beyond the limit of Gaussian line
shapes.

3. SPECTRAL FEATURES OF ELECTRONIC
TRANSITIONS

We now turn to 2D spectroscopy in the electronic domain.
Although modulation of vibrational transition frequencies
originates in the solvent and with few exceptions38 can be
considered classical, electronic transitions in molecular systems
incorporate a more complex modulation of vibrations and show
clear signatures of quantum behavior (e.g., Stokes shift).
We start with reinterpreting the transition frequency in eq 1

from the classical diffusive variable to a quantum coordinate
ω(t) → ωeg + Q̂(t) and introduce the standard dynamical
model of an electronic transition. Electronic transitions in
molecules are always modulated by vibrations. By approximat-
ing them by a set of harmonic oscillators

∑̂ =
̂

+ Ω ̂H
p

m
m x

2
1
2g

j

j

j
j j j

2
2 2

(10)

which are eventually displaced in the electronic excited state

ω̂ = ℏ + ∑ + Ω ̂ + −
̂

H m x d d[( ) ]j

p

m j j j j je eg 2
1
2

2 2 2j

j

2

, we adopted

the spin−boson Hamiltonian, which is well documented in
literature.39 Thus, each electronic level is accompanied by a
handful of vibrational states forming a band, and there is a
number of transitions between them which are overlapping and
merge into a single peak (or few peaks) at room temperature.
We thus understand the electronic 2D line shape as a map of a
transition between a single electronic ground and excited level
with the transition (gap) frequency dynamically modulated by
vibrations. Within the standard Condon approximation40,41 the
transition frequency represents the difference between ground
and excited state surfaces, i.e., ℏQ̂ = Ĥe − Ĥg − ℏωeg =
∑jmjΩj

2djxĵ. Its time profile is found by switching into the Dirac
picture Q̂(t) = eiĤgt/ℏQ̂e−iĤgt/ℏ. It represents quantum Gaussian
fluctuations at arbitrary time scales around the mean of the
transition frequency ωeg.
In this quantum case the excited and the ground state

dynamics are different and the total 2D signal of a single
transition is defined by four Liouville space pathways depicted
in Figure 2.

ω ω ω ω ω ω

ω ω ω ω
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where ground state bleaching diagrams (GSB) propagate within
the electronic ground state during waiting time t2, and
stimulated emission diagrams (SE) through the excited state.
As in the classical case, all properties of quantum Gaussian

noise are described by the FFCF, which is now a complex-
valued quantity

≡
̂ ̂ β

βℏ

− ̂

− ̂t
Q t Q

( )
Tr[ ( ) (0)e ]

Tr e

H

H

g

g (12)

obeying the fluctuation−dissipation relation between its real
t( ) and imaginary ′ t( ) components (see eq 47 for Fourier

transform conventions)

ω βω ω′ = ℏ⎜ ⎟⎛
⎝

⎞
⎠( ) tanh

2
( )

(13)

where β is the Boltzmann factor, i.e., the inverse temperature β
= 1/kT. At high-temperatures ℏβω → 0 the real part
dominates, corresponding to the classical case of eq 5. Spin−
boson dynamics are solvable and the third-order response
function can be calculated exactly using the second cumulant
(eqs 42−45) that is reviewed in Appendix A.
We next address several phenomena typical for electronic

spectra that are rare for vibrational transitions in the infrared.
First, potential surfaces of electronic ground and excited states
are significantly different, and thus frequencies of emitted
photons are lower than those absorbed. This Stokes shif t
commonly represents a simple displacement between ground
and excited state harmonic potential surfaces. Differences
between these surfaces, however, can be more dramatic. For
instance, differences between the curvature of electronic ground
and excited states induces nonlinear electronic−solvent
coupling that results in non-Gaussian spectral diffusion,42

which will be treated along with anharmonicity of potential
surfaces in the section 4.
In many cases the electronic transition is coupled to

underdamped vibrations that appear as side bands in the
absorption spectrum in a vibronic progression. Moreover, this
coupling modulates both the amplitude and peak shape of the
primary peak as a function of time. This is another
phenomenon which is rarely seen in the infrared.
Last, when the transition frequency is altered rapidly during

t1 and t3, Gaussian frequency fluctuations do not translate into
Gaussian line shapes. Rather the line shapes are motionally
narrowed and the slow fluctuation approximation introduced
above (eq 4) fails. Although motional narrowing is not

unknown in the infrared,29 electronic transitions quite typically
exhibit some of these signatures and thereby limit the use of the
straightforward analysis of section 2.
Analysis within the present section will neglect the

interference between levels of multilevel and multichromo-
phoric systems, namely pathways of excited state absorption
and cascading processes whose complex effects escape simple
classification. Instead, we focus on a single transition between
electronic ground and excited state and the effects of Stokes
shift, finite fluctuation time-scales and vibrational structure on
center lines will be addressed in the coming sections 3.1−3.3.
In the following we will outline quantum-classical corre-

spondence and formally reproduce the classical case of Figure 1.
In principle, the FFCF ℏ t( ) can be chosen arbitrarily, only
bounded by eq 13. The most common spectral diffusion
model2,39,43 (see Appendix A for details) describes overdamped
quantum motion (diffusion) in a harmonic potential at
moderately high temperatures (tanh(ℏβω/2) → ℏβω/2 in eq
13), with relaxation rate Λ, and coupling λ.

λ
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ℏ
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2
i e t
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Model 14 thus refers to Figure 1 with magnitude of fluctuations

λ
β

Δ =
ℏ
22

(15)

The overdamped FFCF of eq 14 is capable of describing both
the Stokes shift and effects of diffusion time scale.
The Gaussian shape of eq 5 will be recovered in the slow

fluctuation limit, which is specified by comparing the relaxation
rate to the magnitude of fluctuations, i.e., Λ ≪ Δ. Following
the procedure of ref 29 (see Appendix A), we approximate eqs
42−45 by
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where g is the auxiliary line broadening function

∫ ∫= ′ ″ ″
′

ℏg t t t t( ) d ( ) d
t t

0 0 (20)

The classical, real valued FFCF implies Im g(̇t) = 0. In this case,
we recover the Gaussian line shape of eq 5 by insertion of eqs
16−19 into eqs 2 and 11. The correspondence between
dynamics generated by the spin−boson Hamiltonian and
classical Gaussian fluctuations is thus established.

Figure 2. Liouville space pathways for the third-order responses of a
two-level chromophore.
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3.1. Effects of Stokes Shift. The Stokes shift is manifested
in SE pathways. Here, the photon emission follows the
evolution during waiting time t2 on the excited state potential
surface. According to the Franck−Condon principle40,41 the
waiting time evolution of Q̂ starts from the ground state
equilibrium. If the excited state equilibrium is different,
microscopic reversibility (eq 8) is violated and the energy is
dissipated, resulting in the Stokes shift. In contrast, the GSB
pathways exhibit similar frequencies of absorbed and emitted
photons. The ground state evolution obeys eq 8 and remains
much closer to the stochastic line shapes of section 2.
Our considerations will be demonstrated in the slow limit

introduced by eqs 16−19. Line shapes of GSB pathways

ω ω ω ω ω ω

ω ω ω ω

≡ + −

= − −

R t R t R t

R t

( , , ) ( , , ) ( , , )
1
2

( , , )

GSB 3 2 1 N;GSB 3 2 1 R;GSB 3 2 1

g
3 eg 2 1 eg (21)

are Gaussians (eq 5) around transition frequency ωeg.
The SE contributions are different due to the factor

e−4i Img(̇t2)t3 in eqs 17 and 19. The Gaussian line shapes defined
by eq 5 are retained, but the peak is shifted along the ω3 axis
below the diagonal by −4 Im g(̇t2):

ω ω ω ω ω ω

ω ω ω ω

≡ + −

= − − ̇ −
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R g t t

( , , ) ( , , ) ( , , )
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2
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g
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(22)

The total 2D signal (eq 11) is thus a combination of the two
shifted Gaussian peaks. The waiting time evolution (Figure 3)
shows two combined effects: (i) correlation loss similar to that
in Figure 1 (i.e., change of contours from elongated ellipse to
circle) and (ii) the development of Stokes shift for SE
contributions. At short times t2 ≈ 0, the Stokes shift Im g(̇t2) is
small with no apparent influence on shape. With increasing t2,
the Stokes shift becomes significant (asymptotically Im g(̇∞)
→ −λ) and deforms the elliptic peak shapes.
We now examine the extent to which the FFCF can be

measured by CLS in the presence of the Stokes shift. Three
distinct regions with different BCLS were uncovered in Figure
3, right panel. For ω3 ≫ ωeg the line shape is dominated by
GSB contribution and the BCLS follows

ω ω

ω ω
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−
= −C t( )
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1
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For ω3 ≪ ωeg − 4 Im g(̇t2), the BCLS follows the SE
contribution and thus
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2

This indicates that FFCF can be measured on the peak’s
periphery. Unfortunately, as will be demonstrated below, the
peripheral BCLS is often distorted by motional narrowing or
anharmonic effects. In the central region the relation between
FFCF and BCLS is complex, because the Taylor expansion
around the peak center suggests

ω ω

ω ω

− − ̇

−

=
− − ̇
− − ̇

g t

t g t t
t t g t

2 Im ( )

(0)[ (0) ( )] 4[Im ( )] ( )
( ){ (0) ( ) 4[Im ( )] (0)}

3 eg 2

1
BCL

eg

2 2
2 2

2 2
2

2
2 2

2 2
2 2

The BCLS is thus inapplicable as a direct measure of the FFCF
in the presence of Stokes shift.
We next turn to the FCLS, maximizing the signal along ω3.

In a typical situation shown in the left and central panels of
Figure 3 GSB and SE contributions are strongly overlapped.
Their sum exhibits only a single maximum, located halfway
between the maxima of GSB and SE signals

ω ω ω ω= − + + ̇C t g t( ) ( ) 2 Im ( )3
FCL

1 eg 2 eg 2

The FCL is linear, shifted by −2 Im g(̇t2) from the diagonal, but
its slope remains unchanged following both the GSB and SE.
We thus conclude that, from a theoretical point of view, the
FCLS is a better measure for the FFCF. For large Stokes shift λ
≈ Δ the SE and GSB peaks start to separate, and the line shape
along ω3 is flat. The global maximum becomes ill defined, as
demonstrated in the right panel of Figure 3 around ω1 = 1.8Δ.
For very large Stokes shift λ ≫ Δ SE and GSB peaks become
separated, and center lines are better considered as local
measures for each observed peak.

3.2. Effects of Rapid Spectral Diffusion. Exact response
functions (eqs 42−45) of the spin−boson model apply to both
slow and fast spectral diffusion. Line shapes in the regime of fast
spectral diffusion Λ ≫ Δ will be analyzed in the Λ → ∞ limit
of eq 14, i.e., approximating the FFCF by

λ
β

λ δ=
ℏ

− Λ Λℏ
⎛
⎝⎜

⎞
⎠⎟t t( )

2
i ( )

The peaks in 2D electronic spectra are Lorentzian in this
limit, with purely vertical (horizontal) BCL (FCL) and no
waiting time dynamics, defined by

Figure 3. Effects of the time dependent (Λt2 = 0.1, 0.5, 1 from left to right) Stokes shift on BCL (black) and FCL (red). Parameters are λ/Δ = 1.5,
ℏβΛ = 0.1.
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1
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3 2 1

2

2

2
3 eg

2 2
1 eg

2

(23)

where Φ ≡ (2λ)/(ℏβΛ) and represents the rate of pure
dephasing.
Finite fluctuation time scales shall be treated numerically, Δ/

Λ is varied in Figure 4. Contours in the intermediate regime Λ
∼ Δ change significantly from the edges to the center of the
peak. The edges of a peak at ω − ωeg ≫ Λ reflect deviations far
from equilibrium, where relaxation is fast and the contours
assume star-like structures (eq 23) of fast (homogeneous)
processes. The BCL is then aligned almost vertically to the ω3
axis, even for slow spectral diffusion shown in the right panel of
Figure 4. Near the center of the peak at ω − ωeg ≪ min(λ,Δ),
the relaxation is slow and the Gaussian structures of eq 5 can be
observed, with elliptic contours and with a BCL and FCL closer
to the diagonal representing FFCF along with eqs 6 and 7 in
Figure 1. The BCLS is sensitive to waiting time t2 primarily in
the central region where the BCLS can be deduced. Note that
time scale effects do not modify time-reversal symmetry; line
shapes with insignificant Stokes shift Im g(̇t) ≈ 0 obey a
symmetry relation similar to eq 8 beyond the slow fluctuation
limit.44 The FCL thus still approximates a mirror image of the
BCL.
The form of eq 23, with dephasing rate Φ as the only line

shape-determining parameter, is reminiscent of effects of

spontaneous emission on line shapes. Indeed, radiative
dephasing Γ can be accounted for by adding a Gaussian
coordinate with δ= ΓΓ t t( ) ( ) to the correlation function.
Numerical modeling of radiative dephasing is thus easily
accomplished. However, the relation between CLS and FFCF
(eq 6 or 7) becomes less straightforward.29 Because the
radiative rate Γ is often known, one can speculate that 2D
spectra could be more easily interpreted, when the effect of Γ
on line shapes is removed by post processing of the 2D data in
the time domain, i.e., by multiplying the response function by
eΓ(t1+t3). Solving practical difficulties of such a procedure is,
however, left for future work.

3.3. Effects of Underdamped Vibrations. Electronic
transitions are often modulated by underdamped vibra-
tions.23,33,45−47 Vibrations appear in the absorption spectrum
as additional displaced peaks, referred to as vibrational
(vibronic) progression. In 2D, besides a rich dynamical peak
structure, vibrations also induce waiting time oscillatory
dynamics of the principal peak, which will be the focus of
this section.
We separate the environmental effects on an electronic

transition into a solvent-related response RS and a vibrational
response RV, e.g.,

=R t t t R t t t R t t t( , , ) ( , , ) ( , , )N,SE
T

3 2 1 N,SE
S

3 2 1 N,SE
V

3 2 1 (24)

and similarly for the other pathways of Figure 2. For the solvent
response,48,49 we assume the Gaussian line shapes of the slow

Figure 4. Interpolating from slow bath (Δ/Λ = 10, left panel) to fast bath limit (Δ/Λ = 0.5 in the right panel) at waiting time Λt2 = 0.5, with ℏβΛ =
0.001.

Figure 5. Waiting time evolution of center lines for a vibrationally modulated transition as described in eq 25 in the parametric regime consistent
with eq 26. Top panel: evolution of BCLS for a vibrationally modulated two-level system at the solvent relaxation time scale Λ−1. The rephasing,
nonrephasing, and total absorptive signal are shown in blue, red, and black, respectively. Bottom panel: the same at the vibrational relaxation time
scale Ω−1. Other parameters are Δ/Λ = 100, γ/Λ = 3.75, Δ/Ω = 0.1, λV/Ω = 0.0025, ℏβΩ = 0.01. Simulations were carried out using the full
cumulant solution eqs 24, 25, 50, and 42−45.
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diffusion limit eq 16−19, i.e., RS ≡ R determined by the FFCF
of eq 14. The response of an underdamped vibration RV can
still be calculated in the framework of the spin−boson
Hamiltonian; i.e., we can use the cumulant expressions eqs
42−45, but with the FFCF of a weakly damped harmonic
oscillator (see Appendix B) approximated by

λ β λ= Ω ℏ Ω Ω − Ω Ωγ γ
ℏ

− −⎜ ⎟⎛
⎝

⎞
⎠t t t( ) 2 coth

2
e cos( ) 2i e sin( )t tV

V V

(25)

where Ω is the vibrational frequency, λV is vibrational coupling,
and γ ≪ Ω is the damping rate. Equations 14, 24, and 25 fully
define the model and were used to simulate the results shown
in Figures 5 and 6. For a better understanding, we will analyze
some important limits of this model.
Simulated 2D electronic spectra depend on parametrization.

We adopt a regime related to experiments on ZnPc,33 where
the principal peak at (ωeg, ωeg) is spectrally resolved (Ω > Δ,
λV) from peaks in the vibronic progression at (ωeg ± nΩ, ωeg ±
mΩ). We can then expand the response function in powers of
λV/Ω and neglect components oscillating in t1 and t3 intervals
∝ sin(Ωt1,3), cos(Ωt1,3) . The only harmonic variation relevant
for the principal peak occurs during the waiting time interval
∼cosΩt2, sinΩt2.
To first order in λV/Ω, using eqs 42−45 and 49, we thus

approximate
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We next use eq 24 and combine the vibrational contribution
with the solvent response RS in the slow Λ ≪ Δ limit as
expressed in eqs 16−19. Transformation into the frequency
domain eq 2 is made with the use of the convolution theorem.
For example, the nonrephasing contribution is a convolution of
Gaussian line shape (eq 5) with the Fourier image of the
characteristic function of the t1, t3 > 0 quadrant
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where p.v. stands for the (Cauchy) principal value. After
summing R and N signals and taking the real part (eqs 2 and
3), we obtain for GSB responses
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where ω̃i = ωi − (ωeg − 2λV). The SE response functions read

Figure 6. Damping rate γ retrieved by different measures. Exponential decays appear as straight lines in the linear-log scale. Black line: vibrational
decay (to be retrieved) e−γt2. Black dots: BCLS. Blue dots: BCLS with correction factor t2

3/2 as explained in the text. Green dashed line: peak volume
of principal (DP1) peak. Red dashed line: peak volume of DP2 peak (diagonal peak representing first vibration). Parameters are Δ/Λ = 100, γ/Λ =
2.5, Δ/Ω = 0.1, λV/Ω = 0.0025, ℏβΩ = 0.01. Oscillatory amplitudes were retrieved from the difference between consecutive local maxima and
minima along t2, followed by normalization at γt2 = 0.52 to e−γt2.
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with ω̃1 = ω1 − (ωeg − 2λV) and ω̊3 = ω3 − (ωeg + 4 Im g(̇t2) −
2λV). The standard Gaussian solvent line shape of absorptive
nature represented by the first line in eq 26 is modulated by the
second, harmonic term ∝ cos(Ωt2) of dispersive nature. The
∝ sin(Ωt2) terms cancel in the total signal, when the solvent
Stokes shift vanishes, Im g(̇t2) → 0, rendering it negligible in
most realistic cases.
The numerical simulations based on full cumulant

expressions (eqs 42−45) are shown in Figure 5. Line shapes
of the principal peak are similar to those in Figure 4, but the
BCLS, FCLS is oscillating with the waiting time t2. In Figure 5
the BCLS of total, rephasing and nonrephasing signals were
extracted from the central (linear) area of the peak. We noted
three significant dynamical time scales: (i) the overall trend of
BCLS represents solvent relaxation on a Λ−1 time scale (Figure
5, top panel), (ii) vibrational oscillations of the BCLS on a Ω−1

time scale mainly derive from the nonrephasing part of signal
which are (iii) damped away with a rate of γ−1. In the present
simulation we separated time scales in a realistic parametric
regime of Ω≫ γ > Λ (i.e., underdamped vibration, damped still
before the solvent is relaxed). We shall next analyze the BCLS
quantitatively and discuss the possibility of extracting Ω, γ, Λ,
λV, λ, etc. from experiments.
The effects of the oscillatory ∝ cos (Ωt2) term on BCL are

complicated, but they can be circumvented by averaging the
signal over a period of 2π/Ω. The solvent FFCF can thus be
measured by averaging the BCLS over the period
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from which the solvent parameters λ, Λ can be deduced
according to section 2.
The relation between the oscillations of the BCLS and the

vibrational FFCF t( )V is complicated. We can straightfor-
wardly measure the vibrational frequency Ω. In certain
parametric regimes, an exponential decay of oscillatory
amplitude may be observed and attributed to vibrational
damping γ. Our simulations show (bottom panel of Figure 5),
however, that such an approach for determining γ works
surprisingly poorly at early t2 times where the peaks are narrow
and the BCL (FCL) is almost static. The oscillations first
increase before being damped.
We have addressed this behavior in Appendix C, eq 52,

where line shapes were analyzed around the peak center.
Neglecting solvent Stokes shift, the BCLS has been
approximated by
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(27)

and FCLS as its axial image. At short times, C(t2) ∼ 1 − Λt2,
the magnitude of oscillations is modulated by a singular
prefactor ∝ t2

3/2, which thwarts direct extraction of γ using a
simple fit of an exponential form e−γt2. Instead, using the form
of eq 27, one can substantially improve the experimental
determination of γ.
In Figure 6 we compare methods for deducing γ out of the

2D spectrum. One approach is based on CLS analysis. In
particular, we will study oscillations of BCLS and its correction
obtained by multiplying BCLS by t−3/2 to eliminate the singular
factor ∝ t3/2 (eq 27), as just disscused. The other approach is
based on measuring peak volumes in electronic 2D spectra. In
particular, we measured the oscillations of the volume of the
principal peak (DP1) and for the first diagonal peak of the
vibrational progression (DP2).50 Oscillatory amplitudes shown
at Figure 6 were defined as the difference between consecutive
local maximum and minimum of the BCLS oscillatory curve of
Figure 5. The same definition applies for the corrected BCLS
and the peak volumes. A typical result is shown in Figure 6 in
the semilog scale, where the exponential decays are linear lines.
The exponential damping e−γt is plotted for comparison. We
conclude that the peak volume of the higher lying diagonal
peak DP2 and the corrected BCLS reproduce the correct decay
rate, whereas the untreated CLS and the volume of DP1 fail to
do so. We note that differences between the DP1 and DP2
peaks is due to the constructive (destructive) interference of R
and N signals for DP2 (DP1).50 The CLS correction factor
retrieved from eq 27 has been shown to be essential for
extracting the correct decay rate. We note that the need of the
correction factor can be lesser beyond the slow fluctuation
limit.
We also investigated the role of the parametric regime (λV ≪

Ω, Λ ≪ Δ, γ ≪ Ω, Im g ̇ ≈ 0) used in our analysis. We
compared eqs 26 and 27 with the full simulations used in
Figures 5 and 6. We found that the quadratic term (λV/Ω)2
should not be completely neglected in real situations (whenever
the vibronic modulation is apparent), so one should not rely on
eqs 26 and 27 quantitatively. However, all the features
discussed above, such as the amplitude of CLS oscillations,
their damping, and the short time t3/2 modulation, are kept
beyond the linear regime and are in fact even more clearly
pronounced. Our analysis is thus qualitatively correct even far
beyond formal validity.

4. ANHARMONIC SPECTRAL DIFFUSION AND
NONLINEAR ELECTRONIC−VIBRATIONAL
COUPLING

The elementary understanding of 2D line shapes outlined by eq
4 suggests additional explanations for the emergence of atypical
(nonlinear) CL such as observed in ZnPc. A linear CL is a
direct consequence of harmonic potential surfaces within the
spin−boson model. Non-Gaussian spectral diffusion will result
in a curved CL.51 A simple example would be diffusion on an
anharmonic surface. Another example emerges when the
transition frequency is a nonlinear function of a harmonic
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coordinate. Both cases generalize beyond the spin−boson
Hamiltonian, where a full quantum-mechanical treatment is
difficult, and researchers mostly approximate by calculating few
higher cumulants.42 Truncating cumulant expansions, however,
tends to distort line shapes heavily. We thus prefer to
approximate the 2D line shape by a joint distribution of
electronic transition frequencies (eq 28) following a classical
diffusive coordinate Q.
4.1. Classical Diffusive Coordinate on Potential

Surfaces. A two-level system modulated by a classical diffusive
anharmonic coordinate should be analyzed by means of
stochastic quantum dynamics (SQD), which has been
elaborated in detail elsewhere.52−54 To bring SQD to finite
temperatures, the ground state ℏVg (GSB diagram) and the
excited state ℏVe (SE diagram) state potential surfaces for the
spectral diffusion are allowed to be different. This modification
of classical SQD was introduced by ref 55 and, for harmonic
surfaces, it is equivalent to the Kubo−Tanimura hierarchy.56,57

Within the slow diffusion limit (eq 4) the GSB can be
approximated as a joint probability of transition frequency
following equilibrium spectral diffusion on the ground state
potential surface

ω ω ω ω=t t( , , ) ( , , )GSB 3 2 1 g 3 1 2 (28)

The SE contribution is represented by a joint distribution of
transition frequencies following nonequilibrium spectral
diffusion on the excited state potential

ω ω ω ω=t t( , , ) ( , , )SE 3 2 1 e 3 1 2 (29)

The diffusion of a classical coordinate Q on the potential
surface is described by a Smoluchowski equation58
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where β is reciprocal temperature, and D the diffusion constant.
The potential surface ℏVi is different for the electronic ground
Vg and excited states Ve. Diffusion can be equivalently modeled
by an asymmetric random walk59 with step length ΔDt2 ,
sampling time tΔ and probabilities to step forward
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Coordinate Q is not changed during excitation (Franck−
Condon principle). The Smoluchowski equation (eq 30) thus
should be solved with the initial condition
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which is the ground state Boltzmann distribution for both GSB
and SE diagrams. For the same reason, the Franck−Condon
principle, the transition frequency ω ≡ ω(Q) reflects gap
between electronic ground and excited state

ω = −Q V Q V Q( ) ( ) ( )e g (32)

The joint distribution of the Q coordinates ′Q Q t( , , )i
Q

should be transformed into frequency joint distributions
ω ω′ t( , , )i using
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4.2. Relation to Overdamped Quantum Brownian
Motion. In the simplest case the Q coordinate is linear to the
fluctuations of the transition frequency and can be rescaled to
represent them directly

ω ω ω≡ − = − −Q V Q V Q( ) ( )eg e g eg (34)

Equation 33 then reads ω ω ω ω ω ω′ = − ′−t t( , , ) ( , , )i i
Q

eg eg .
The overdamped Brownian oscillator correlation function (eq
14) used corresponds to diffusion on harmonic potential
surfaces
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where α is the force constant related to coupling in eq 14 by λ
= 1/(2α). The joint distribution (eq 30) for the GSB is a
Gaussian
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with FFCF =
βα

βα
ℏ

− ℏt( ) e1
2

2 Dt and obeys eq 8. Correspond-

ence to Figure 1 is established with Λ ≡ 2ℏβαD and Δ2 ≡ 1/
(2ℏβα).
The maximum of the Gaussian packet (eq 36) Qg(t) started

from Qg(t=0) = Q(0) and approaches the center of potential at
Q = 0 as Qg(t) = e−2ℏβαDtQ(0). This shows directly that the
FCL is linear with the slope e−2ℏβαDt. The time-reversal
symmetry (eq 8) guarantees for the 2D line shape axial
symmetry along the diagonal RGSB(ω1,t2,ω3) = RGSB(ω3,t2,ω1).
The BCLS thus assumes the slope e2ℏβαDt, in perfect agreement
with the results of section 2. Similar analysis of diffusion on
excited state surface recovers line shapes of SE pathway.

4.3. Spectral Difussion in Anharmonic Potential. We
next discuss CL in the presence of the anharmonic potential
surfaces. As the additional effect of Stokes shift would not affect
our conclusions on anharmonic spectral diffusion, we adopt the
high temperature limit where the Stokes shift becomes much

smaller than the peak width λ Δ = →β
α

ℏ/ 0
2

and thus RSE ≈
RGSB in the following simulations. We start with a simple form
of an anharmonic potential
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g
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(37)

The above potential is in part harmonic, but the linear back
force has different force constants α± for positive and negative
Q. Far from the center, the line shapes are approximately
Gaussian and related to Figure 1 by mapping Λ± = 2α±ℏβD
and Δ± = βαℏ ±1/ 2 for low (−) and (+) high frequencies,
respectively. FCL follows a typical trajectory Q(t) =
e−2α+ℏβDtQ(0) for Q ≫ 0, and Q(t) = e−2α−ℏβDtQ(0) for Q ≪
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0, where D is the diffusion constant. Figure 7 shows simulation
results of the diffusion model outlined by eqs 30, 31, and 37
with the predicted asymptotic properties, i.e., a CL with two
linear sections and a transition region around ω ∼ ωeg.
Similar behavior can be observed in Figure 8 for a more

realistic and smooth form of anharmonicity, which is achieved
after adding a cubic term to the harmonic ground state
potential

α α= +V Q Qg
2

3
3

(38)

The curvature of BCL is proportional to α3 and evolves with
waiting time. We thus conclude that spectral diffusion in an
anharmonic potential is represented by a curved CL in
electronic 2D spectra.
4.4. Nonlinear Electronic−Vibrational Coupling. We

shall now analyze the CL when the ground and excited state
surfaces are harmonic but have a different curvature αe ≠ αg

α α
α

ω
α
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e e
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The transition frequency in the Condon approximation (eq 32)

becomes a nonlinear function of the harmonic coordinate Q

ω ω α α− = − +Q Q( )eg e g
2

(40)

The Q-coordinate during diffusion on both excited and ground

state is Gaussian, however, the transition frequency is not. A

nonlinear transformation, eq 40, between Gaussian Q and non-

Gaussian ω distributions must be simulated with full use of the

general rule, eq 33. The resulting 2D spectra are shown in

Figure 9, where we observe a moderate curvature of the CL that

is t2 dependent and ∝ αe − αg proportional. We note that in

this model the CL is visually only moderately curved unless

differences between αe and αg are rather large (>10%).
These results can be understood by an elementary analysis of

the model. The diffusive motion of the Gaussian coordinate Q

still follows Qg(t) = e−2αgℏβDtQg(0) in the ground state (eq 36).

The initial position Q(0) shall be obtained from inverting eq 40

Figure 7.Waiting time evolution of a 2D-signal for a potential that is harmonic in parts, eq 37, shown at times Λ−t2 = 0.1, 0.4, 0.8 for parameters α+/
α− = Λ+/Λ− = 0.2. We used βαΔ = ℏ− −1/ 2 .

Figure 8. Waiting time evolution of a 2D-signal for a cubic anharmonic potential, eq 38, at Λt2 = 0.1, 0.4, and 0.8. The extent of anharmonicity is

characterized by the ratio of harmonic and cubic terms at the equilibrium half-width α βαℏ/ 23
3 = 3.75. Parameters Λ and Δ were defined by eq 36.

Figure 9. Effect of nonlinear coupling (eq 39) when the ground and excited electronic potentials have different curvatures αg/αe = Λg/Λe = 1.03.
Line shapes are shown at Λet2 = 0.2, 0.5, 1.0. The ground state width is defined as α βΔ = ℏ1/ 2 gg . The shift between ground and excited state is

characterized by 1/(2αe) = 1.46Δg.
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where we assumed 4(ω − ωeg)(αe − αg) < 1. In the present
subsection ≈ stands for Taylor expansion to second order in
ω(0) − ωeg.
The maxima of Q and ω distributions may be slightly

different due to the Jacobian in eq 33, but the difference is
usually small and we shall neglect it for the present analysis.
The frequency evolution in ground state is then
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and the FCL is represented by graphing ω(0) vs ωg(t). The
BCL can be obtained by axial symmetry (eq 8).
The joint probability for SE pathways (eq 30) is
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The center of this Gaussian distribution approaches the excited
state potential minimum as
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The evolution of transition frequency reads
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GSB and SE line shapes are usually similar, being only slightly
shifted along ω3. We can thus conclude that CL of eq 39 are
curved ∝ αe − αg, which was confirmed by the full simulation
shown in Figure 9.

5. CENTER LINE OF 2D SPECTRA OF
ZINC−PHTHALOCYANINE

As a simple test case for the methodology developed in the
previous sections, we analyze the 2D spectra of zinc−
phthalocyanine (ZnPc). ZnPc is a rigid, planar, and square
symmetric (D4h) molecule (see Figure 10 for its molecular
structure). The absorption spectrum (bottom panel) shows a
narrow electronic transition at 14 850 cm−1.60 Peaks of lower
intensity shifted by Ωa ≈ 700 cm−1 and Ωb ≈ 1600 cm−1 are
readily identified as vibronic side bands.61

The experimental details of the 2D ES measurements of
ZnPc (Figure 10) have been published previously.33 Briefly,
excitation pulses tunable throughout the visible spectral range
are provided by a home-built noncollinear optical parametric
amplifier,62 pumped by a regenerative titanium-sapphire
amplifier system (RegA 9050, Coherent Inc.) at 200 kHz
repetition rate. Pulse spectra were chosen to overlap with
ZnPc’s absorption spectrum (Figure 10, lower panel) and
compressed to a width of sub-8 fs that was determined using
intensity autocorrelation. The pulses were attenuated by a
neutral density filter to yield 8.5 nJ per excitation pulse at the
sample. This corresponds to a fluence of less than 3.0 × 1014

Figure 10. Bottom right: molecular structure of ZnPc. Top right: level structure of ZnPc. Three electronic levels S0, S1, SN,1 relevant for 2D ES.
Bottom left: absorption spectrum of ZnPc dissolved in benzonitrile (solid blue line). The red line shows the laser pulse spectrum. Top left: 2D
electronic spectrum of ZnPc dissolved in benzonitrile measured at room temperature and t2 = 96 fs. The DP1 peak corresponds to the S0 → S1
electronic transition. DP2 is the first vibrational peak. ESA denotes excited state absorption S1 → SN,1. BCL and FCL are indicated as black and red
lines, respectively.
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photons/cm2 per pulse. The setup employed for 2D ES relies
on a passively phase stabilized setup with a transmission
grating11,63 and has a temporal resolution of 0.67 fs for t1, and
5.3 fs for t2. A detailed description was given in ref 64. The
emerging third-order signal was spectrally resolved in ω3 by a
grating-based spectrograph and recorded with a CCD camera.
At given t1 and t2 delays, spectra were recorded by integration
over approximately 105 shots per spectrum.
Sample circulation was accomplished by a wire-guided drop

jet65 with a flow rate of 20 mL/min and a film thickness of
approximately 180 μm. ZnPc was dissolved in benzonitrile, and
the concentration was set to obtain an optical density of
0.13 OD measured directly in the flowing sample jet. All
measurements were performed under ambient temperatures
(295 K).
An example 2D spectrum is shown at delay time t2 = 96 fs in

Figure 10. The signal has positive and negative features, the
latter indicating excited state absorption (ESA).57 We therefore

consider an energy level structure involving three states, i.e.,
electronic ground, one first excited and one doubly excited
state. Vibrational modes identified in the absorption spectra are
considered as two underdamped harmonic oscillators as
described in section 3.3.
We next analyze the shape and the center line of the principal

peak DP1 of the ZnPc spectrum (Figure 10) using the models
presented in the previous sections. Focusing on the BCL (black
line), the main experimental observations are as follows: (i)
The center line is curved and the slopes within the high and
low frequency regions are somewhat different. (ii) The larger
slope in low frequency periphery can be attributed to motional
narrowing described in sub section 3.2. In the high frequency
periphery no signatures of motional narrowing were apparent
due to interference with other peaks such as the ESA. (iii) The
slope shows fast periodic modulation on time scales similar to
the period of 700 cm−1 vibrational mode, in line with the
discussion of sub section 3.3. (iv) The effect of the Stokes shift

Figure 11. Comparison of experimental (top row) and simulated (bottom row) 2D ES of ZnPc at waiting times t2 = 24−96 fs. Simulations assume a
three-level chromophore modulated by an overdamped solvent mode (eq 14) and two underdamped vibrational modes (eq 25). The color scale is
the same as in Figure 10. Parameters for simulation were retrieved as follows: Ωa = 700 cm−1, Ωb = 1600 cm−1, ωeg = 15000 cm−1. Solvent
parameters: λ = 80 cm−1, Λ = 5 cm−1. Vibrational parameters: λV,a = 40 cm−1, λV,b = 160 cm−1, γa = 10 cm−1, γb = 150 cm−1. Parameters for ESA
pathway (eq 46) ωef = 15300 cm−1, gff = gee. Homogenous dephasing Γ = 30 cm−1. Temperature T = 300 K.

Figure 12. Inverse of BCLS extracted from experimental (black line) and simulated (red line) 2D ES of ZnPc. The slope was measured at the central
part of the DP1 peak. Parameters are the same as in Figure 11.
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on the CLS of DP1, as discussed in section 3.1, is negligible
given its relatively small value of 175 cm−1 and its large
associated time scale of up to 2.5 ps66 compared to 96 fs of our
experiment. And finally (v) Quantum chemical studies suggest
that anharmonicity of the involved potential energy curves is
negligible for ZnPc33,60 and thus anharmonic corrections
discussed in section 4 are not relevant to this discussion.
Thus, we reach a qualitative understanding of ZnPc using the
BCL.
Given the multitude of influencing factors stated above, no

simple expression for BCL of FCL can be given for ZnPc.
Instead, both quantities must be retrieved from modeled
spectra. In an effort to quantitatively describe the experimental
ZnPc spectra, we therefore implemented the spin−boson
model with two underdamped oscillators with V prescribed as
eq 25; ESA contributions were included using eq 46 and
homogeneous dephasing67 as the fast component of relaxation

δ= ΓΓ t( ). The conventional approach to evaluate the quality
of a fit between model and experiment is to visually compare
simulated and measured 2D spectra. Such a qualitative
assessment can be made in Figure 11, where experimental
and simulated 2D spectra of ZnPc are plotted. The
experimental data were collected with a waiting time step of
12 fs from 0 to 96 fs covering two periods of a slower (700
cm−1) vibrational mode with period of 48 fs. Visually, the
experimental and simulated DP1 peak seems quite similar and
the CL also compares well. Slight differences between the CL’s
can be observed in the low frequency periphery of DP1 and are
attributed to the lower stability of CL in peripheral regions as
well as interference from a low energy cross peak in the
simulation that is not present or, at best, not well resolved in
the experimental data. As described, visual inspection of 2D
plots can often be misleading; we thus focus on center lines and
slopes as these lower-dimensional objects are easier to compare.
Figure 12 compares the slopes of BCL for simulated and

experimental data. The BCLS were measured by linear
regression using only the central part of BCL for both
experimental and simulated 2D spectra. It was found that the
central part is more linear than the periphery and thus better
for regression analysis without practical difficulties. For ZnPc,
practical values for the linear region of the BCL slope are for
maxima determined for peak values greater than 0.7−0.8 of the
peak intensity (with respect to DP1 maximum).
The CLS dynamics for ZnPc within the experimental time

window show a dominant oscillatory modulation with the
expected period of 48 fs associated with the underdamped 700
cm−1 mode. The simulation parameters, ωeg, Ωa, and Ωb were
estimated from the absorption spectrum. Global properties of
2D spectra (such as antidiagonal width of peaks) determined
homogeneous rate Γ. Couplings and vibrational relaxation time
scales (λ, λV, γ) were obtained by fitting the BCLS dynamics in
Figure 12. Solvent relaxation was determined to be negligible
(Λ < 5 cm−1) though due to the temporal resolution of the
experiment, this estimate is uncertain. Note that the retrieved
coupling constant of the dominant mode λV,a = 40 cm−1, fitted
form BCLS corresponds to the Huang−Rhys factors

=λ
Ω 0.112

2 a

a

V, , i.e, λV,a = 39.2 cm−1 reported from analysis of

the absorption spectrum.61

Generally, the experimental and simulated BCLS show
similar trends; the discrepancy at early waiting times arguably
result from pulse overlap artifacts that were not included in the

model. We note that moderate changes of the model
parameters had a pronounced effect on BCLS. This is in
contrast to visual control of 2D peaks, where only rather
extreme changes are visually recognizable. Comparison via
CLSs (Figure 12) is thus a better indicator of successful
simulation than comparison of 2D plots.

6. CONCLUSIONS

Here we summarize the merits of CLS analysis of electronic 2D
spectra. Compared to 2D IR spectra, where the CLS is often a
straightforward measure of the FFCF, our interpretation of
typical electronic transition met several obstacles. We analyzed
physical processes and regimes typical for electronic transitions
such as Stokes shift, finite fluctuation time scales, and
anharmonicity of electronic surfaces. These processes result
in non-Gaussian line shapes, where the linear character of the
CL breaks down, and thereby result in a less direct relation
between CLS and FFCF. We still, however, identified specific
regions of the CL, where the FFCF can be extracted in a simple
manner and in other cases connected the geometric character-
istics of the CL with microscopic parametrizations. We also
highlighted differences between BCL and FCL and their
dynamical implications.
To assess the applicability of CL, we analyzed experimental

data of ZnPc, where 2D ES showed atypical curved (or
multilinear) BCLS. We explained this feature using the spin−
boson Hamiltonian in a parametric regime where (i) motional
narrowing affects the low frequency periphery of the peak and
(ii) the high frequency region is affected by interference with
ESA pathways. CLS analysis proved to be a sensitive test for
line shape oscillations originating from underdamped vibra-
tions. These oscillations were superimposed on a slow
exponential decay of CLS caused by solvent spectral diffusion.
This provided a correct measure of vibrational damping and
other parameters that would otherwise be difficult to access.
Although CL analysis of electronic 2D spectra is certainly less
straightforward and less powerful than in the IR, the method
presented here provides a benchmark to estimate the quality of
simulated data. CL analysis in 2D ES thereby helps to
characterize all system parameters, even for electronic
transitions, and serves as a one-dimensional reduction of
complex two-dimensional electronic spectra and thereby
facilitates the quality assessment of simulated data.

■ A. CUMULANT SOLUTION TO SPIN−BOSON
HAMILTONIAN

In this Appendix we review the response for the spin−boson
Hamiltonian, a standard microscopic representation of
quantum Gaussian fluctuation. Its optical response functions
of all orders can be calculated exactly using second cumulant.2

Second cumulants are also a common approximation even
beyond the spin−boson model linking their FFCF with
nonlinear response. They were used extensively for describing
a whole class of older spectroscopic techniques for measure-
ment ot the FFCF such as photon echo peak shift.48,49 For the
four Liouville space pathways of Figure 2 these are
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Equations 42−45 are used in simulations. Expanding g to
second order in t1,3, e.g., g(t1 + t2) ≈ g(t2) + g(̇t2) t1 + g(̈t2)t1

2/2
and neglecting the imaginary part of the quadratic terms

̈ = *̈ =g t g t t( ) ( ) ( ) we recover the slow limit and obtain eqs
16−19.
The second cumulant is also used to calculate excited state

absorption required to simulate the ZnPc spectra in section 4
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where ωfe is the transition frequency between single excited S1
and double excited SN,1 levels. The line shape functions gff(t) ≡
∫ 0
t∫ 0

t′⟨Q̂f(t′) Q̂f(t″)⟩ dt″ dt′, depend on the correlation function
of fluctuations of the doubly excited state Qf(t) = ωfg(t) − ωeg
− ωfe. Equation 46 assumes that Q and Qf are uncorrelated
⟨Q̂f(t) Q̂(0)⟩ = 0.

■ B. FFCF OF A QUANTUM GAUSSIAN COORDINATE

The quantum FFCF ℏ t( ) is a complex-valued function with
real t( ) and imaginary ′ t( ) components

= + ′ = * ′ = − ′*ℏ t t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( )

In the main text we implicitly assume that t ≥ 0. For the sake of
defining the Fourier domain of quantum FFCF, we must clarify
conventions used for t < 0. We follow literally the definition eq
12 and get = * −ℏ ℏt t( ) ( ), i .e., = −t t( ) ( ) and

= − −t t( ) ( ).
The frequency domain FFCF ∫ω = ω
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t( ) and ′ t( ), respectively
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In spin−boson Hamiltonian (eq 10) the Q is a linear
combination of harmonic coordinates xî, thus a harmonic
coordinate as well. It is tedious but standard to transform the
Hamiltonian eq 10 into new coordinates, where Q is the first
harmonic coordinate of some mass m, frequency force constant
Ω, etc., which is damped by a set of other harmonic coordinates
(secondary bath). From this picture it is comprehensible that a

damped Brownian oscillator is the standard model for bath
coordinate2
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where γ is damping, and λ coupling. ω( ) is given through eq
13. We use eq 48 in two parametric limits. In the regime of
weak damping γ ≪ Ω, we have FFCF eq 25 and line
broadening function
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In the overdamped Ω2 − ω2 → Ω2 limit at the high
temperatures ℏβΩ ≪ 1 relevant for solvent fluctuations we
have (with substitution Ω2/2γ = Λ) FFCF eq 14 and line
broadening function
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■ C. CENTER LINE SLOPE AROUND PEAK CENTER
Beyond the Gaussian limit of eq 5, the CL can rarely be
expressed in a closed analytical form. Quite often, however, it is
linear in the central region and can be analyzed using certain
limiting procedures. Here we give details of the derivations of
eqs 27.
Integrations in eq 26 cannot be carried out analytically and

the second-order Taylor expansion will be required to
conveniently describe the line shape in the central region. To
reduce the complexity of our task, we first neglect the solvent
Stokes shift, Im g(̇t2) = 0, to get
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Now, we shall expand the nonrephasing RN
g and rephasing RR

g

part of the Gaussian line shape to second order in ω̃1,3. We start
with RN

g and after ∝ω2 expansion, transformation into polar
coordinates t1 = r cos ϕ, t3 = r sin ϕ, and partial integration over
r, we get
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Similarly, for the rephasing line shape
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After substituting into eq 51, we finally arrive at
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(52)

Expanding eq 52 to first order in λV/Ω, we arrive at eq 27 of the
main text. Note that within the approximations made here, the
line shapes are symmetric with respect to the diagonal, and
FCLS is an image of BCLS.
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