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ABSTRACT Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a
major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-
M-15 extended-spectrum �-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographi-
cal and temporal origin of the ST131 ancestor. Here, we developed a framework for the reanalysis of publically available genomes
from different countries and used this data set to reconstruct the evolutionary steps that led to the emergence of FQR ST131.
Using Bayesian estimation, we show that point mutations in chromosomal genes that confer FQR coincide with the first clinical
use of fluoroquinolone in 1986 and illustrate the impact of this pivotal event on the rapid population expansion of ST131 world-
wide from an apparent origin in North America. Furthermore, we identify virulence factor acquisition events that predate the
development of FQR, suggesting that the gain of virulence-associated genes followed by the tandem development of antibiotic
resistance primed the successful global dissemination of ST131.

IMPORTANCE Escherichia coli sequence type 131 (ST131) is a recently emerged and globally disseminated multidrug-resistant
clone frequently associated with human urinary tract and bloodstream infections. In this study, we have used two large publi-
cally available genomic data sets to define a number of critical steps in the evolution of this important pathogen. We show that
resistance to fluoroquinolones, a class of broad-spectrum antibiotic used extensively in human medicine and veterinary practice,
developed in ST131 soon after the introduction of these antibiotics in the United States, most likely in North America. We also
mapped the acquisition of several fitness and virulence determinants by ST131 and demonstrate these events occurred prior to
the development of fluoroquinolone resistance. Thus, ST131 has emerged by stealth, first acquiring genes associated with an in-
creased capacity to cause human infection, and then gaining a resistance armory that has driven its massive population expan-
sion across the globe.
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Escherichia coli sequence type 131 (ST131) is a recently emerged
multidrug-resistant clone associated with urinary tract and

bloodstream infections. E. coli ST131 was originally identified due to
its strong association with the CTX-M-15-type extended-spectrum-
�-lactamase (ESBL) allele (1), and is now the predominant
fluoroquinolone-resistant (FQR) E. coli clone worldwide (2–4).

ST131 belongs to subgroup 1 from E. coli phylogroup B2, with
most strains of serotype O25b:H4 (1–4). Two previous genomic
studies have explored the ST131 clonal structure (2, 5) and iden-
tified a globally dominant FQR sublineage defined as clade C (2),
or H30-R (5). Two additional well-supported ST131 sublineages,
referred to as clades A and B, have also been described (2). Each of
these clades contains a defined marker allele for the type 1 fimbriae
fimH adhesin: H41 in clade A, H22 in clade B, and H30 in clade C
(6). Further analysis of clade C/H30-R ST131 identified a smaller

subset of strains containing the blaCTX-M-15 ESBL allele referred to
as clade C2, or H30-Rx (2, 5). The ST131 strain EC958 is a refer-
ence FQR clade C strain that has been well characterized at the
genomic and phenotypic level (3, 7–12).

Several early studies demonstrated variation in the comple-
ment of virulence genes in ST131, with only a few virulence factors
consistently identified in all strains (1, 4, 13–15). Our comprehen-
sive analysis of 95 E. coli ST131 genomes revealed that the viru-
lence and mobile genetic element (MGE) profile was in fact con-
sistent with the phylogenetic structure of the ST131 lineage, with
clade C strains sharing a generally conserved set of genes. In con-
trast, the plasmid profile of ST131 is highly disparate, with multi-
ple different replicons found in closely related strains and multiple
genomic contexts for the clade C2-defining blaCTX-M-15 ESBL gene
(16, 17).
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Despite its successful dissemination globally, little information
is available about evolution and emergence of ST131. Two recent
independent genomic studies demonstrated that ST131 emerged
from a single ancestor and that most strains belong to clade
C/H30-R (2, 5). Notably, we found that recombination accounted
for the majority of variation within the ST131 lineage, and recom-
bination events were associated with the positions of MGEs (2).
However, despite the number of isolates in both studies, neither
resolved the geographical or temporal origin of the ST131 an-
cestor. In contrast, studies of other large sets of bacteria with
geographical or temporal separation have determined accurate
dates of divergence of important clades using statistical analy-
ses such as the Bayesian framework implemented in BEAST
(Bayesian Evolutionary Analysis by Sampling Trees) (18). For
example, Glaser identified tetracycline resistance as the major
driver of diversification among the global population of group
B streptococci (19). Similarly, a large study of methicillin-
resistant Staphylococcus aureus (MRSA) was able to date the
emergence of an FQR clade to the mid-1980s (20). These stud-
ies motivated us to combine data sets from our geographically
diverse previous study (2) and from the temporally diverse
study by Price et al. (5) to investigate the evolution of ST131
with the highest possible resolution.

RESULTS AND DISCUSSION
Curation of a high-quality ST131 genome sequence data set. We
first sought to obtain a high-quality set of data to carry out our
analyses. A total of 199 draft Illumina paired-end E. coli ST131
genomes were retrieved from public read data repositories (see
Data Set S1 in the supplemental material). Initial phylogenetic
analyses of de novo and reference-guided assemblies of all 199
E. coli ST131 genomes indicated that several draft genomes were of
low quality. Suboptimal genome data quality could interfere with
subsequent phylogenetic analyses and may invalidate conclusions
drawn from tree topologies. To ensure that only high-quality se-
quences were included in our analyses, we removed 14 genome
data sets that were determined to be outliers according to at least
one of our assembly or mapping metrics, including number of
uncalled bases, number of scaffolds, and assembled genome size

(see Fig. S1 in the supplemental material). This quality control
(QC) filter is broadly applicable to reanalyzing public genomic
data from multiple sources.

Phylogenomic analysis of ST131. We next carried out phylo-
genetic reconstruction using our combined data set of 185 Illu-
mina paired-end sequences, which represented strains from hu-
mans (n � 167), animals (n � 15), and other sources (n � 3)
isolated from the United States, Canada, New Zealand, Australia,
Spain, India, Portugal, Korea, and the United Kingdom between
1967 and 2011 (Fig. 1; see Data Set S1 in the supplemental mate-
rial). Sequence read mapping of these 185 high-quality ST131 ge-
nomes (and simulated reads from the SE15, EC958, and JJ1886
complete genomes) to the ST131 clade C reference genome E. coli
EC958 defined 21,373 substitution single nucleotide polymorphisms
(SNPs) that were used to create an unrooted maximum likelihood
(ML) phylogeny (see Fig. S2A in the supplemental material). An
independent phylogenetic tree produced by the kSNP alignment-
free method was consistent with the overall topology of the ML
trees (see Fig. S3 in the supplemental material). Using a Bayesian
modeling algorithm, we identified 204 nonoverlapping segments
encompassing 1.542 Mb and containing 15,902 substitution SNPs
that were introduced into the ST131 lineage by recombination
(see Fig. S4 and Data Set S1 in the supplemental material). The
length of recombinant sequence is higher than previously re-
ported (2) as the larger data set increases the probability that one
strain will have a recombinant fragment not encountered before.
The length of the nonrecombinant core ST131 genome is 0.19 Mb
less than previously reported (2), encompassing 69.4% of the
EC958 chromosome, or approximately 3.55 Mb. However, the
proportion of SNPs introduced by recombination (74.4%) is con-
sistent with our previous study and highlights the important role
recombination has played in shaping the ST131 lineage (2). Ex-
clusion of these recombinant SNPs from phylogenetic analyses
reduced the number of SNPs to 5,471 and resulted in a tree that
maintained the original overall topology, albeit with substantially
reduced branch lengths and some major within-clade reclustering
of strains (see Fig. S2B). Consistent results were achieved using an
independent method of recombination detection and removal in-
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FIG 1 Geographical diversity of the combined data set across clades and time. (A) Stacked histogram showing the number of strains in clades A, B, C1, and C2
according to their country of origin. The color scheme is shown in the legend on the left along with abbreviated country names. (B) Box-and-whisker plot
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dicating that our tree topologies are not biased by the chosen
methodology (see Fig. S5 in the supplemental material).

Extending our phylogenomic analyses to include isolates from
two large international collections provided a far greater resolu-
tion of the evolution within the ST131 lineage (Fig. 2). The global
phylogeny of E. coli ST131 separated the strains into three distinct
lineages (clades A, B, and C). Congruent with our previous work,
strains in clade C were characterized by the fimH30 allele and the
FQR-conferring alleles gyrA1AB and parC1aAB (Fig. 2). Notable
exceptions were strains JJ2643 and U004 in clade C, which contain
the fimH35 allele. This appeared to be due to a recombination
event encompassing fimH in these strains and highlights why we
have retained a neutral nomenclature (i.e., A, B, and C) for our
clade classifications. Likewise, the CTX-M-15 allele is not ubiqui-
tous in all clade C2 strains, making this a more scalable classifica-

tion than the H30-Rx designation originally suggested by Price et
al. (5) (Fig. 2). In addition to harboring CTX-M-15 genes, clade
C2 strains contain more resistance genes in total compared with
other ST131 clades (Fig. 3), consistent with colocalization of mul-
tiple plasmid-encoded resistance genes (see Data Set S1 in the
supplemental material). Although the context of multidrug resis-
tance cassettes can be resolved in some cases from draft genome data
from ST131 isolates or transformants (16, 17), the full complexity of
plasmid-mediated resistance in ST131 requires the generation of
more complete genomes as per EC958 and JJ1886 (7, 21).

A combined data set enables greater resolution of ST131 sub-
clades. The combined ST131 data set enabled greater resolution of
the differences between clade B and C strains. We previously
showed that clade C strains can be further segregated into two
distinct subclades, C1 and C2 (2). Our new analysis defined five
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discrete subclades in clade B (B1 to B5), each with distinct reper-
toires of selected marker genes fimH, parC, and gyrA (Fig. 2).
Intriguingly, we found that seven strains originating from the
United States could be classified as “intermediate” on the basis of
their SNP pattern (Tables 1 and 2). These strains showed progres-
sive acquisition of clade C-defining point mutations, with the
three isolates closer to clade B (classified B0) and four isolates
closer to clade C (classified C0) illustrating the precise evolution-
ary events leading to the emergence of clade C (Fig. 4).

Strains from the five clade B sublineages varied in their parC
and gyrA allelic profile, with the vast majority of clade B strains
containing allele combinations that are not associated with fluo-
roquinolone resistance. Additionally, while all strains from sub-
clades B2 and B5 are associated with the United States, and B1 with
Spain, strains within subclades B3 and B4 have a more diverse
geographic origin. Each subclade showed a distinctive recombina-
tion profile (see Fig. S4 and S5 in the supplemental material) and
MGE repertoire (see Fig. S6 in the supplemental material), indic-
ative of independent evolutionary trajectories. In contrast, we
found that the prevalence of virulence genes is largely conserved
across all B subclades, with the absence of several uropathogenic
E. coli (UPEC)-specific genes apparent in clade B3 (see Fig. S7 in
the supplemental material). By comparison, our investigation of
clade C MGEs and other regions of interest (as originally defined
in the clade C reference strain EC958) showed a high degree of
conservation across clade C, with the exception of the prophage
Phi6, the capsule loci, and genomic island GI-selC (see Fig. S8 in
the supplemental material). For example, GI-selC is only found in
a geographically homogeneous cluster of clade C strains that in-
clude EC958 and excludes the reference strain JJ1886 (Fig. 2; see
Fig. S6). Despite the general conservation of gene content within
clade C genomes, it is apparent that genomic islands are hot spots
for insertions, deletions (indels), and genome rearrangement (see

Fig. S6 and Data Set S1 in the supplemental material). EC958
GI-pheV has several small indels relative to JJ1886 GI-pheV, and
we have previously shown that the CMY-23 �-lactamase gene that
confers resistance to third-generation cephalosporins has inserted
within the EC958 GI-leuX, whereas the JJ1886 GI-leuX element
has a large duplication relative to EC958 (12) (see Data Set S1).

Temporal analysis of ST131 identifies major divergence
dates. Our initial studies of ST131 strains collected between 2001
and 2011 showed insufficient temporal depth to robustly date the
emergence of clade C (2). By including 91 more strains from Price
et al. (5), including 8 that predated 2000 (Fig. 1), we anticipated
that we would be able to resolve this question using existing public
data alone. We generated a linear regression of the genetic distance
from the root to tip against time for the 172 ST131 isolates within
clades B and C using Path-O-Gen (22). This analysis revealed a
positive correlation (R2 � 0.3233, P � 0.0001) confirming the
molecular clock-like signal (see Fig. S8 in the supplemental mate-
rial). To accurately estimate the date of divergence of clade C from
clade B we employed BEAST (18). BEAST analysis rejected the
strict clock and favored the uncorrelated log-normal clock model
in combination with a Bayesian skyline population model (see
Data Set S1 in the supplemental material). A mutation rate of
4.39 � 10�7 SNPs per site per year (95% highest posterior density
[HPD], 3.58 � 10�7 to 5.23 � 10�7) was calculated, consistent
with other large-scale phylogenomic analyses of the E. coli/Shigella
lineage (6.0 � 10�7 SNPs per site per year [95% HPD, 5.2 � 10�7

to 6.7 � 10�7]) (23) (see Fig. S9 in the supplemental material).
Based on this approach, we could estimate the divergence of the
last common ancestor of clade B and C strains to have occurred
between 1930 and 1958 (Fig. 4A), consistent with the Path-O-Gen
prediction (see Fig. S8a). We could estimate the divergence of
clade C from clade B to have occurred in 1980 (95% HPD, 1973 to
1986), which was slightly earlier than the Path-O-Gen prediction
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(see Fig. S8a). Importantly, we identified that further diversifica-
tion of clade C2 from clade C1 dated to 1987 (95% HPD, 1983 to
1992), subsequent to all clade C1 and C2 strains acquiring
gyrA1AB and parC1aAB alleles imparting elevated FQR (Fig. 4A
and 4B). Bayesian skyline plots show a relatively constant popula-
tion size over several decades, followed by a short recent expan-
sion occurring in the late 1990s and early 2000s and subsequent
stabilization (Fig. 4C). Interestingly, this pattern is consistent with
the introduction of FQ for clinical use in 1986 (24) and the sub-
sequent stabilization may reflect the improved stewardship of FQ
(or its removal from general use). A similar phenomenon was
observed for FQR among the members of the MRSA ST22 global
phylogeny (20). Remarkably, an identical date was identified in a
recent preprint report using 81 ST131 genomes from Price et al.
(5), supplemented with ~100 newly sequenced ST131 genomes
from more geographically dispersed strains (17), highlighting the
value of careful analysis of existing data sets. Although acquisition
of the CTX-M-15 gene within clade C2 may be a major factor in
the diversification of C1 and C2, it is worth emphasizing that this
alone does not explain the success of ST131 given that the popu-
lation expansion identified in our study encompasses both clade
C1 and clade C2 strains.

Phylogeography of ST131. To investigate the geographical
context underlining the expansion of the multidrug-resistant
ST131 O25b:H4 clone from clades B to C, we performed a discrete
phylogeographical analysis as implemented in BEAST on the 172
ST131 isolates within clades B and C that included a variety of
geographic sources (Fig. 1A) and dates (Fig. 1B). To reduce sam-
pling biases due to the high number of strains isolated from
United States, Canada, United Kingdom, and Spain, we per-
formed independent analyses on 10 randomly subsampled data
sets containing 85 strains each (see Data Set S1 in the supplemen-
tal material). Under Bayesian stochastic search variable selection
(BSSVS) and symmetric diffusion models, results systematically
supported the United States (74.31%; standard deviation [SD],
12.1%) as the most likely origin of clades B and C (Fig. 5A). The
origin of clade C (C0, C1, and C2) was predicted to be associated
with either the United States (51.83%; SD, 35.5%) or Canada
(45.59%; SD, 36.1%), over all of North America (Fig. 5B). These
results are consistent with the observation that the oldest reported
ST131 strain was isolated in the United States in 1967 (5), as well as
an independent BEAST analysis using a partly overlapping data set
(17). Although our resampling approach has minimized bias in

strain origin, a data set with greater diversity of strains from dif-
ferent geographical regions and pre-2000 isolation dates would be
necessary to rule out a different origin (e.g., current data sets are
underrepresented in South America, Africa, and many European
and Asian countries). A greater number of strains would also help
identify local outbreaks or clusters: with the exception of GI-selC
carrying clade C strains from the United Kingdom, which cluster
phylogenetically (Fig. 2), we did not observe other significant geo-
graphic clustering using this data set alone.

Intermediate strains reveal key MGE acquisitions that define
clade C. Overall, excluding intermediate B0 and C0 strains, clade
C differs from clade B by only 42 substitution SNPs (Tables 1 and
2). This list included the majority of the 70 clade C-defining SNPs
reported in our earlier study (2), but was not identical due to the
greater number of recombinant regions identified and removed in
the present study. Closer examination of the recombination anal-
ysis identified intermediate patterns of recombination, primarily
clustered around known MGEs, indicative of stepwise evolution
among these intermediate strains (see Fig. S4 and S5 in the sup-
plemental material). Most notably, we could trace the acquisition
of GI-pheV and GI-leuX genomic islands to the most recent com-
mon ancestor of the C0 strains (C001, JJ2244, G213, and CD306),
several years before the acquisition of the FQR mutations that
define clade C (Fig. 4). The pheV genomic island acquired by clade
C ST131 strains is known to carry the autotransporter genes
agn-43 and sat, the ferric aerobactin biosynthesis gene cluster
(iucABCD), and its cognate ferrisiderophore receptor gene iutA
(3, 7). The clade-defining fimH30 allele was acquired by recombi-
nation (25), possibly in conjunction with the acquisition of the
nearby GI-leuX island; the same time point is also predicted for the
acquisition of the ISEc55 insertion sequence within the fimB re-
combinase gene that we have previously shown to affect the ex-
pression of type 1 fimbriae (3, 7). Thus, close scrutiny of these
“intermediate” genomes enabled us to trace the acquisition of
virulence-associated genes in ST131, which appears to have
primed this clone for success prior to the acquisition of FQR mu-
tations in the late 1980s. Further molecular analysis is required to
determine the contribution of these elements to ST131 coloniza-
tion/fitness in the gastrointestinal and urinary tracts. Notably, the
role of virulence in the success of this clone may have been un-
derappreciated in a recent report as these particular strains were
distributed throughout clades B and C despite their inconsistent
parC, gyrA, and fimH alleles (17). The B0 and C0 strains were also

TABLE 2 Clade-specific SNPs identified between clades C1 and C2

SNP position
in EC958

SNP in cladea:

Impactb Locus tag Codon Gene Product

C0

C1 C2C001 JJ2244 G213 CD306

426936 C C C C C T V¡A EC958_0513 295 sbmA Peptide antibiotic transporter SbmA
737849 G G G G G A
2838072 G G G G G A Syn EC958_2841 190 iscS Cysteine desulfurase
2878095 C C C C C T E¡G EC958_2875 229 lepA GTP-binding elongation factor LepA
3710995 C C C C C T Syn EC958_4822 302 acrF Acriflavine resistance protein F
3905668 C C C C C T S¡P EC958_3870 451 nikA Nickel-binding periplasmic protein
4100042 C C C C T C
4397873 G G G G A G S¡N EC958_4314 395 rmuC DNA recombination protein RmuC
a Boldface indicates clade C1 specific, and italic indicates clade C2 specific.
b Impact of SNP in bold relative to ST131 clade C2 strain EC958. Syn, synonymous change; non-synonymous changes to protein-coding genes are shown by single letter amino acid
codes (EC958 sequence on left, SNP impact on right); blank lines indicate SNP in intergenic region.
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FIG 4 Evolutionary scenario of the emergence of ST131 clades (B and C) A time-calibrated phylogeny was reconstructed using BEAST 2.0 based on 3,779-bp
nonrecombinant SNPs for the 172 clade B and C strains. Of all combinations tested (see the summary of BEAST analysis results in Data Set S1 in the supplemental
material), the one combining the GTR substitution model, a constant relaxed clock model, and the Bayesian skyline population tree model was preferred. (A)
Maximum clade credibility tree colored according to clade origin as shown on the right with B in orange, intermediate B0 and C0 in pink, C1 in light green, and
C2 in dark green. The x axis indicates emergence time estimates of the corresponding strains. Major evolutionary events are also indicated by an arrow pointing
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dispersed in our tree that includes recombinant regions (see
Fig. S2A in the supplemental material), suggesting that differences
in recombination removal may account for these discrepancies.
However, we cannot rule out differences in phylogeny due to the
particular set of genomes analyzed. Future studies combining
more publicly available genome datasets will help to further reveal
the precise evolutionary trajectory taken by the globally dissemi-
nated ST131 clone.

Conclusions. Overall, our work highlights how careful reanal-
ysis of publicly available genomic data sets from heterogeneous
sources can greatly improve the resolution of evolutionary his-
tory. Here, we have characterized the evolution of ST131 with
unprecedented detail, from the acquisition of prophages and
modification of the O antigen region ca. 1946, to the acquisition of
GI-pheV, GI-leuX, fimH30, and ISEc55 around 1980, several years
before the acquisition of mutations in gyrA and parC that led to
FQR and the acquisition of the clade C2-defining CTX-M-15
ESBL gene. Whereas the development of FQR was accompanied
by a large surge in the ST131 population globally, we propose that
the acquisition of virulence factors by ST131 was a necessary pre-
cursor to this success. These events describe the “perfect storm”
for the evolution of a multidrug-resistant pathogen: the acquisi-
tion of virulence-associated genes followed by the development of
antibiotic resistance.

MATERIALS AND METHODS
Genome data. Two E. coli ST131 strain data sets from previously pub-
lished work were used in this study, under the designations data set_1 and
data set_2 (2, 5). Strain names, sources, and available strain metadata are
summarized in Data Set S1 in the supplemental material. Data set_1 com-
prised Illumina 101-bp paired-end genome sequence data from 95 ST131
strains isolated from 2000 to 2011, mostly in Europe and Oceania (2)
(study accession no. ERP001354 and ERP004358). Data set_2 comprised
Illumina 101-bp (76 samples), 76-bp (19 samples), and 50-bp (10 sam-
ples) paired-end whole-genome sequence data from 105 ST131 strains
isolated from 1967 to 2011, mostly in North America (5) (study accession

no. SRP027327). Additionally, reference strains of 11 published complete
genomes were also used: namely, E. coli ST131 strains SE15, JJ1886, and
EC958 plus non-ST131 B2 phylogenetic group E. coli strains CFT073,
UTI89, E2348, ED1a, 536, S88, and APEC-01 and non-ST131 D phyloge-
netic group E. coli strain UMN026 (see Data Set S1). E. coli strain NA114
was excluded from the analysis due to poor assembly quality (2, 7, 26). To
integrate reference genome data into our phylogenomic analyses, error-
free 101-bp paired-end Illumina reads were simulated to 60� coverage
with an insert size of 340 � 40 bp as previously described (2).

Quality control, de novo genome assembly, and variant detection.
Quality control (QC) was performed for all raw read data sets. Briefly, raw
reads were analyzed using PRINSEQ v0.20.3 (27) and trimmed with a
mean base pair quality score (Q) of �20 and a read length of �70% of the
original read length. Additionally, it was necessary to correct 35 sets of raw
read data from data set_2 that had heterogeneous Illumina encoding
and/or erroneous paired-end length encoding (see Data Set S1 in the
supplemental material). QC and assembly metrics for data set_1 have
been previously reported by Petty et al. (2). Lastly, contaminant searches
were performed for each sample using Kraken on a subset of 100,000
randomly chosen reads (28).

Quality-filtered Illumina paired-end reads were assembled de novo
using Velvet v1.2.07 (29) with k-mer ranges of 45 to 85 for 101-bp reads,
29 to 61 for 76-bp reads, and 29 to 47 for 50-bp reads. An optimal k-mer
value for each assembly was selected on the basis of best assembly metrics,
including N50 (i.e., 50% of bases are incorporated in contigs of this length
or above), number and size of contigs, number and continuity of uncalled
bases, and peak coverage. Contigs that were �200 bp at an optimal k-mer
were then ordered against E. coli EC958 (7) using Mauve v2.3.1 (30). QC
and assembly statistics for data set_2 are summarized in the supplemental
material.

Quality-filtered Illumina reads for data set_1 and data set_2, as well as
error-free simulated reads of complete genomes, were mapped on the
reference strain EC958 using SHRIMP v2.0 (31). Nesoni v0.108 (32) was
used to call and annotate substitution-only SNPs, with a consensus cutoff
and majority cutoff of 0.90 and 0.70, respectively. SNPs were also deter-
mined in parallel using the reference-free k-mer-based approach devel-
oped in kSNP v2.0 (33). Default parameters as well as a k-mer value of 19

Figure Legend Continued

confer resistance to fluoroquinolone, for which the first introduction is indicated in the bottom timeline by a red arrowhead. (B) Unrooted phylogenetic tree built
on the same 3,779-bp nonrecombinant set of SNPs using maximum likelihood (ML). Branch support was performed by 1,000 bootstrap replicates. Intermediate
strain names and predicted acquisition of fimH30 are indicated on the tree. (C) The Bayesian skyline plot illustrates the predicted demographic changes of the
ST131 clade B and C population since the mid-1940s. The black curve indicates the effective population size (Ne), with 95% confidence intervals shown in blue.
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BEAST analyses of randomly subsampled data to limit bias related to overrepresentation of some locations. The mean probabilities of the geographic locations
of the MRCA for (A) clades B and C and (B) clade C are shown as a box-and-whiskers plot colored according to country using the scheme as described in Fig. 1.
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selected as the optimal value predicted by the kSNP-associated Kchooser
script were applied.

Exclusion of suboptimal genome data sets. We devised a statistical
approach that excluded outliers based on several non-Gaussian metrics
that could be determined from mapped and assembled Illumina genome
data (see Data Set S1 in the supplemental material). Specifically we exam-
ined five metrics: (i) sequence coverage, (ii) number of unmapped bases
(in the mapping reference EC958 genome), (iii) number of uncalled bases
due to low coverage or mixed-base calls), (iv) the number of scaffolds that
were �200 bp, and (v) estimated genome size. Metrics i, ii, and iii were
based on read mapping data, and metrics iv and v were based on assem-
blies. Suboptimal genomes were discriminated quantitatively on the basis
of metrics iii, iv, and v, and a total of 14 outliers were identified (based on
upper and lower cutoffs at the quartile 3 � 1.5 interquartile range and the
quartile 1 to 1.5 interquartile range cutoffs, respectively). Metric i did not
identify any outliers with low sequence coverage, and outliers with high
sequence coverage were not omitted, whereas metric ii did not discrimi-
nate any outliers. This additional QC process resulted in the exclusion of
genome data from the following strains: CD301, CD436, JJ1901, JJ1996,
JJ2007, JJ2041, JJ2050, JJ2243, JJ2441, JJ2555, MH17102, QU300, QUC02,
and ZH193. The R scripts used are available on github at https://github-
.com/BeatsonLab-MicrobialGenomics/ST131_200_Rscripts. A final data
set of 188 ST131 genomes, comprising 185 strains from data set_1 and
data set_2 combined, as well as three complete genomes of EC958, JJ1886,
and SE15) were chosen for further study after excluding the 14 genomes
with suboptimal data quality.

Recombination detection. To avoid distortion of the phylogenetic
signal caused by SNPs acquired through recombination, we used the
Bayesian clustering algorithm BRATNextGen (34) to detect recombinant
regions among the combined data set. Similar to our previous work (2),
we used as an input an SNP-based multiple-genome alignment composed
of each strain-specific pseudogenome built by integrating the SNPs pre-
dicted for each strain to the reference genome of EC958. To help with the
identification of underlying clusters of strains, BRATNextGen initially
computes a hierarchical clustering tree relative to the proportion of an-
cestral sequences shared between all strains. A segregation cutoff of 0.12
was then specified to separate each previously identified ST131 clade
(clades A, B, and C) and non-ST131 strains into distinct clusters. Recom-
bination was then evaluated within and between each cluster with the
convergence approximated using 20 iterations of the learning algorithm.
Significance was estimated using 100 permutations with a statistical sig-
nificance threshold of 0.05. Using the same initial data set, recombination
analysis was also carried out using Gubbins (35), an independent method
of recombination detection.

Phylogenetic analysis. SNPs identified through reference-based map-
ping for the 188 ST131 strains were used to build phylogenies using max-
imum likelihood (ML), prior to and after removal of SNPs associated with
recombinant regions. Phylogenetic trees were generated with RAxML
v7.2.8 (36) using the general time-reversible (GTR) GAMMA model of
among-site rate variation (ASRV), and validated using 1,000 bootstrap
repetitions to assess nodal support. Additionally, reference-free k-mer-
based phylogenetic trees were constructed using kSNP v2.0 with default
parameters (33) and genome assemblies as an input. A k-mer value of 19
was selected as the optimal value predicted by the kSNP-associated
Kchooser script. All trees were then viewed using Figtree v1.4.0 (37) or
EvolView (38), and further compared using the Tanglegram algorithm of
Dendroscope v3.2.10 (39), which generates two rectangular phylograms
to allow comparison of bifurcating trees.

Bayesian temporal and geographical analysis. Preliminary estima-
tion of the underlying temporal signal of our data was obtained by per-
forming a regression analysis between the root-to-tip genetic distance
extracted from the recombination-free maximum likelihood tree, the iso-
lation year, and lineage information for each sequence, as implemented in
Path-O-Gen v1.4 (22). To further investigate the divergence of clade C
from clade B, we performed a temporal analysis on the 3,779-bp nonre-

combinant SNPs of the 172 clade B and C strains using BEAST 2.0 (18), a
Bayesian phylogenetic inference software, which can estimate the dating
of emergence of distinct lineages. We compared multiple combinations of
the molecular clock model (strict, constant relaxed log normal, and expo-
nential relaxed log normal), substitution model (Hasegawa, Kishino, and
Yano [HKY] model and GTR), and population size change model (coales-
cent constant, exponential growth, Bayesian skyline, and extended Bayes-
ian skyline). Markov chain Monte Carlo (MCMC) generations for each
analysis were conducted in triplicate for 100 million steps, sampling every
1,000 steps, to ensure convergence. Replicate analyses were then com-
bined with LogCombiner, with a 10% burn-in. The GTR nucleotide sub-
stitution model was preferred over the HKY model, and was used with
four discrete gamma-distributed rate categories and a default gamma
prior distribution of 1. The uncorrelated log normal clock model consis-
tently gave better support based on the Bayes factor and Akaike’s infor-
mation criterion-based (AICM) analyses, compared to a strict clock
model. The Bayesian skyline population tree model was chosen as the
best-fitting tree model. Maximum clade credibility (MCC) trees reporting
mean values with a posterior probability limit set at 0.5 were then created
using TreeAnnotator.

In order to adequately investigate the biogeographical history of our
ST131 collection, we evaluated potential bias in the geographical origin of
strains, which could negatively impact our predictions. Statistical signifi-
cance of the geographical origin distribution in clade B, C1, and C2 was
assessed by chi-square test with Bonferroni correction for multiple com-
parisons. Overrepresented countries were randomly subsampled down to
15 representative sequences, while countries with fewer than 5 represen-
tatives had to be excluded from the analysis (South Korea and Portugal).
Overall, we constructed 10 independent randomly subsampled data sets
with 85 isolates representing 7 countries, each with 5 to 15 representative
sequences. Reconstruction of possible ancestral geographical states was
then performed using BEAST 1.8.2 on each subsampled data set. In addi-
tion to the previous parameters selected for the temporal analysis, a sym-
metric substitution model, a Bayesian stochastic search variable selection
(BSSVS) model, and a strict clock for discrete locations were chosen for
the phylogeographical analysis. MCMC generations were conducted for
100,000,000 steps, sampling every 10,000 steps. MCC trees were then gen-
erated using TreeAnnotator for each run with a posterior probability limit
set at 0.5. Location posterior probabilities of the most recent common
ancestor (MRCA) were then collated for clades B and C and for clade C
only.

Genomic comparisons and in silico genotyping. Comparative
genomic analyses were conducted using a combination of tools, namely,
Artemis, Artemis Comparison Tool (40), and Mauve (30). Graphical rep-
resentations showing the presence, absence, or variation of mobile genetic
elements (MGEs) or other regions of interest, virulence factor genes, and
antibiotic resistance genes were carried out using BLASTn and read-
mapping information as implemented in the SeqFindR visualization tool
(41). Regions of interest previously described in the genome of ST131
reference strain EC958 (2, 7) and virulence factors, including autotrans-
porters, fimbriae, iron uptake, toxins, UPEC-specific genes, and other
virulence genes, were screened in all ST131 strains with SeqFindR using a
cutoff of �95% nucleotide identity over the whole length compared to the
assembly or the consensus generated from mapping. Additionally, the
prevalence of antibiotic resistance-associated genes was also investigated
using Srst2 (42) against the ARGannot database, with a minimum depth
of 15� read coverage.
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