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Introduction
The COVID-19 coronavirus, as known as the SARS-CoV-2 
virus, is an extremely contagious disease that mostly affects the 
lungs1,2 since 2019 in the month of December. It has been 
resulted that more than 540.92 million people are newly affected 
while 6.3 million people losing their life in all over the world.3 
According to a World Health Organization (WHO) investiga-
tion, it is estimated that it caused 14.9 million deaths in direct 
and indirect ways between 2020 and 2021.4 The virus has spread 
to nearly every country and has caused widespread social 
upheaval.5 As per that, a history of smoking raises the risk of 
developing COVID-19 with a severe illness and smokers are 
more likely to experience it.6,7 Furthermore, Chinese COVID-
19 patients indicated that 32% of smokers (including current 
and former smokers) had a severe pattern of COVID-19 lung 
disease when they were admitted, compared to 15% of those 
who had never smoked.8 Another research represented that 
tobacco smoking affects and damages the epithelial cell of the 
lungs.9 Because of that, it facilitates the virus entry into the lungs’ 
epithelial cells,10 causing more severe symptoms and increasing 
the risk of death.8,11 Moreover, the ACE2 (angiotensin-convert-
ing enzyme-2) receptor is also highly expressed in this type of 
patients and smoking helps to express the ACE2 receptor.12 
According to a prior study, the main host cell receptor of 
COVID-19 is ACE2 receptor which is essential for the virus to 
enter cells in order to cause infection.13 In addition, the out-
comes of cigarette smoke can be worsen in COVID-19 patients 

by up-regulating the angiotensin-converting enzyme-2 (ACE-
2) receptor that SARS-CoV-2 uses to enter the host cell and 
trigger a “cytokine storm.”14,15 Patients with COVID-19 had 
fewer natural killer (NK) cells, which affect adaptive and innate 
immunity and significantly increase CD8+ T cell expression.16 
Similarly, smokers had a larger percentage of CD8+ T cells and 
fewer circulating NK cells than nonsmokers.14,17 In another 
study, smoking affects the platelet directly and accelerates blood 
coagulation.18,19 Patients with COVID-19 have also been 
reported to have coagulation abnormalities, primarily throm-
botic complications, and the occurrence of venous and arterial 
thrombotic abnormalities in COVID-19 patients who are 
admitted to the intensive care unit (ICU) may climb 31%.20 
Smoking on a regular basis has been shown to facilitate the pro-
gression of COVID-19 and rise the threat of various complica-
tions in COVID-19 patients. Consequently, we have attempted 
to identify shared common gene between COVID-19 and 
smoking. Moreover, there is still a requirement for the relation-
ship between COVID-19 and smoking in bioinformatics analy-
sis that is too important for future research. Finally, our study 
helps us to understand an important advice about the severity of 
COVID-19 patients with a smoking history and a resource for 
pharmaceutical companies wishing to create effective drugs that 
will reduce the number of difficulties for COVID-19 patients 
who were ex-smokers. We created 9 (Differential Expressed 
Common Genes [DEGs], Gene Ontology (GO), Pathways, 
Hub-Protein, Transcription Factor, Gene Interactions, Gene 
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miRNA Interaction, Protein-Drug Interaction, and Protein-
Protein Interaction [PPI]) bioinformatics systems in response to 
these findings to analyze data on gene expression from COVID-
19 patients and people who smoke to better understand their 
association with each other. To understand that deeply, we have 
analyzed above 9 biological systems between COVID-19 and 
smoking in this study. We have depicted our methodology of the 
hypothesis as shown in Figure 1.

Materials and Methods
Dataset employed in this study

The National Center for Biotechnology Information (NCBI)21 
and the Gene Expression Omnibus (GEO) are the sources of 
our data sets.22 We chose the data set based on a number of 
criteria, including sample size (minimum 8), and only one con-
dition control versus case (case vs treatment condition was 
avoided), RNAseq data, and datasets without human creatures. 
The data set chosen was count data, and differential expression 
analysis was performed correctly. Unfavorable formatting and 
datasets that were not relevant to our research goals were 
excluded. At least 2 datasets, particularly relevant to Covid-19 
and smoking, were chosen based on the most appropriate crite-
ria. The datasets with the association numbers GSE152418 and 
GSE76326 were analyzed from RNA-seq human gene expres-
sion datasets. Both have control and case (disease-affected) 
samples, which are both ideal for our study. We assayed the 
datasets which bear the association numbers GSE15241823 and 
GSE7632624 from RNAseq human gene expression datasets. 
Both have control and case (disease-affected) samples, 

individually perfectly suited for this study. The COVID-19 
dataset (GSE152418) contained 6 COVID-19 patients and 3 
control or healthy people using Illumina NOVAseq 6000 (Homo 
sapiens). The Smoking dataset (GSE76326) contained an 
assessment of the immunity of 6 Smoking patients and 3 con-
trol or healthy people using Illumina HiSeq 2000 (Homo sapi-
ens) as shown in Table 1.

Preparation and recognition of genes with 
differential expression

Again from GREIN (it is the most common and unique source 
of GEO RNA-seq data which is a combination of a huge 
number of back and front end data and user-friendly inter-
face.25 Gene Expression Omnibus, we acquired gene regulation 
RNA-sequence datasets. Using the Rstudio DESeq2, genes 
with differential expression (DEGs) of COVID-19 as well as 
smoking-related RNA-Seq count data were found.26 In order 
to standardize the results, the geometric mean of each gene was 
calculated across all samples in DESeq2. Then, DESeq2 auto-
matically filtered out low-expression and outlying genes using 
Cook’s distance. We have filtered the significant DEGs based 
on 2 conditions such as adjusted P-value ⩽ .05 and log2F 
C ⩾ 1. We found common DEGs between COVID-19 and 
smoking by creating a Venn diagram as shown in Figure 2.

Diseasome network

Diseasome is a representation of disease maps, where the dis-
eases are the nodes and the different molecular connections 

Figure 1. Graphical representation of the underlying procedure of this research.
miRNA indicates microRNA;  BMC indicates peripheral blood mononuclear cell;  GSE indicates gene set enrichment.
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between the disease-associated cellular components (CCs) are 
the links. We use InteractiVenn as a bioinformatics computa-
tional tool of Diseasome Network for detecting common gene 
between COVID-19 and smoking. The discovery of such con-
nections between diseases not only aids in our understanding 
of the molecular relationships between various phenotypes, 
which are frequently addressed by various medical sub-disci-
plines but also aids in our understanding of why particular 
groups of diseases co-occur.27 The disease map offers a vibrant 
visual representation that helps in conceptualizing the links 
between genes and diseases.28 Diseasomes show local clusters 
of diseases whose molecular links are well recognized, and they 
also indicate common pathophysiology between diseases by 
using pleiotropic genes.29 A bipartite graph with 2 separate sets 
of nodes is the best way to depict the disease. The illness nodes 

in the first set and the disease gene nodes in the second. If a 
gene’s mutations are linked to a disorder, the disorder and the 
gene are then linked. A bipartite network is one in which, like 
in the diseasome, the linkages always interconnect the 2 nodes 
from 2 distinct groups of nodes. Data from a wide range of 
sources must be integrated because of the complex relationship 
between medications, genes, and diseases. Therefore, there is a 
growing need for new tools to integrate, represent, and visual-
ize heterogeneous biomedical data in order to extract biologi-
cally significant information.30

Gene ontology and molecular pathway 
identif ication

In order to identify functional pathways related to specific dis-
eases, many bioinformatic techniques frequently put a heavy 
emphasis on assessing the significance of a gene set’s similarity 
to other gene sets with observations.31 We used EnrichR gene 
set enrichment analysis to identify the Gene Ontology (GO) 
terms as well as pathways connected to the overlapped DEGs 
for both COVID-19 as well as smokers. The analysis empha-
sizes GOs as well as pathways, which will undoubtedly aid in 
our quest to fully understand the biological processes (BP) that 
involve both conditions.32 The Gene Ontology (GO) project’s 
primary aim is to develop a standard set of gene dictionaries for 
describing gene products across all known species. There are 3 
categories in GO terminology: CC molecular function (MF) 
as well as BP.33 For our study, we only took into account the BP, 
though. Pathways demonstrate their importance in determin-
ing how living things react to stimuli. In the field of life sci-
ences, pathway analysis is usually employed to assist researchers 
to comprehend the molecular mechanisms that underlie the 
elevated biological data. It might also explain how various ill-
nesses or conditions are related to one another.34

Protein-protein interactions analysis and hub-
protein

All BPs depend on networks of protein–protein interactions 
(PPIs), which show the physical contacts, respectively, 2 or 
more biomolecules.35 We also used the STRING database36 as 

Table 1. The summary of the transcriptomic data and analysis.

DISEASE 
NAME

GEO plATfORM TISSUE/
CEllS

GEO 
ACCESSION

RAW 
GENES

CASE 
SAMplES

CONTROl 
SAMplES

SIGNIfICANT Up REG. 
GENES

DOWN 
REG. 
GENES

COVID-19 Illumina NextSeq 
6000(Homo 
sapiens)

pBMC GSE152418 21135 6 3 12379 1942 327

Smoking Illumina HiSeq 
2000(Homo 
sapiens)

Airway 
Basal 
Cells

GSE76326 21178 6 3 466 392 60

Abbreviation: GEO, gene expression omnibus; MHC, major histocompatibility complex;  ER, estrogen receptor; RAW genes, primary genes.
It includes the dataset accession number, sample source, total raw genes, sample number, significant genes.

Figure 2. The gene-expression analysis summary was shown in the 

figure. (A) Venn diagram showing the shared biomarker genes 

respectively COVID-19 as well as smoking. (B) Bubble plot of common 

biomarker genes and their corresponding log2 fold change and adjusted 

Ap-value.
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well as Network Analyst37 to construct PPI networks in 
between proteins of DEGs, which are based on their physical 
interactions with one another. Proteins are represented in these 
networks as nodes, as well as protein interactions, are expressed 
as edges. Protein-protein interaction analysis with topological 
characteristics, such as a degree of interaction greater than 
15 degrees, was used to identify proteins with strong interac-
tions. Highly interacting proteins are known as Hub Proteins.38

Transcription factors analysis and miRNA 
interactions analysis

miRNA is the name of a group of small Biomolecules (21-23 
nucleotides) that control the synthesis of proteins but don’t 
encode any proteins.39 MicroRNAs (miRNAs) are a type of 
non-coding small RNA that can regulate gene expression by 
combining with the 3′-untranslated region (UTR) of a target 
mRNA.40 Gene transcription is regulated by TFs, which are 
modular proteins that bind to the promoter regions of their 
target genes. As a result, TFs have the potential to increase 
both the rate of gene expression and the number of proteins 
made in this way.39 We investigated the interactions between 
DEGs and transcription factors (TFs) and DEGs and micro-
RNAs in order to determine the controlling biomolecule (i.e. 
miRNAs and TFs) that control DEGs of involvement at the 
transcriptional and post-transcriptional level (miRNAs). With 
the help of the JASPAR database, the DEGs-TFs interaction 
was studied41 Utilizing TarBase42 and miRTarBase,43 we used 
miRNA-DEG interactions. Using Cytoscape’s Network44 
Analyzer and Network Analyst37 the topological analysis was 
carried out. The TFs were filtered out of the DEGs-TFs net-
work based on ⩾ 20. The miRNAs were chosen depending on 
the ⩾ 15 from the DEGs-miRNAs network.

Drug–protein interaction

Studying protein–drug interactions is essential to compre-
hending the structural requirements for ligand affinity.45,46 The 
DrugBank47 dataset is also used to construct protein-drug 
interactions. We used this (version 1.0)48 database to find 
potential medications that significantly interact with genes. 
The DSigDB is a free online tool that provides a list of drugs 
and the genes they are meant to target (GSEA). There are cur-
rently 22527 gene sets, which include 17389, in this dataset, by 
using EnrichrR49 web server and DSigDB database, we chose 
the enriched drugs for the DEGs utilizing the statistical crite-
rion, adjusted P-value ⩽ .05.

Result
Evaluation of transcriptomic data for gene 
expression

Both databases were made using prior research that included 
earlier published GWAS results. To study how smoking and 

COVID-19 patients’ genes are expressed, we collected RNA-
Seq data from GREIN or NCBI. Table 1 shows that the 
COVID-19 data came from the “Illumina Next Seq 6000 
(Homo sapiens)” GEO platform, while the smoking data came 
from the “Illumina HiSeq 2000 (Homo sapiens)” platform. 
The RNA-seq data for COVID-19 came from the “Peripheral 
Blood Mononuclear Cells” study, and the RNA-seq data for 
smoking came from the “Airway Basal Cells” study. For 
COVID-19, we’ve chosen the dataset with the GEO accession 
ID GSE15241823 and the Smoking dataset with GEO acces-
sion ID GSE76326.24 Nine samples total—6 for the case and 
3 for the control—were used in COVID-19. After differential 
expression analysis, also known as generated signature data, 
21135 differentially expressed (DE) genes for COVID-19 
were discovered. Then, 2 conditions were taken into account 
for the signature data, including “Log2 Fold-Change” and 
“Adjusted P Value.” Following the application, we identified 
12379 significant genes by applying the criteria that the 
adjusted P value be less than .05 and the abs(LogFC) be higher 
than or equal to 1.0. Of the significant genes, 1942 are up-
regulated and 327 are down-regulated.” However, there are a 
total of 9 samples in the Smoking dataset; 6 of them come from 
the case group (regular smokers), while the other after produc-
ing signature data, we identified 21178 differential expression 
genes. Then, using the same standards as for smoking, we 
found 466 significant genes. Of these, 392 are expressed posi-
tively (up-regulated), and 60 are expressed negatively (down-
regulated). Then, we made a comparison between the 
COVID-19 upregulated genes and the upregulated smoker 
genes. We also compared the genes that were down-regulated 
in both conditions. There are 28 common genes that are upreg-
ulated and 9 common genes that are downregulated between 
COVID-19 and smoking as shown in Figure 3. The most 
important genes that are shared up-regulated are CHPF, 
GP1BB, HIST1H4J, EGFL7, PLXNB3, MPL, JSRP1, 
KLC3, zTOX2, EVA1B, APOE, GAS2L1, NTSR1, CAVIN3, 
IGFALS, ADAMTS7, PITX1, RNF17, BCAR1, NPW, 
HGFAC, TCF19, SPDYE2B, GRIN3B, LMNTD2, 
SLC16A8, CYP2W1, PTGER1. Moreover, the most promi-
nent down-regulated genes shared by COVID-19 and smok-
ing: TIRM27, NFKBIL 1, WDR46, C4A, HLA-DQB1, 
HLA-C, SKIV2L, HLA-DPB1, CARS.

Analyzing the functional associations between 
pathways and gene ontologies

We used KEGG, Reactome, BioCarta, WikiPathway, and 
Elsevier Pathway as our pathway analysis databases for this 
study. Then, using shared DEGs between COVID-19 and 
Smoking, we searched for highly expressed pathways. These 
pathways were then divided into functional groups for analysis 
as shown in Table 2. In all, 345 signaling pathways were ini-
tially associated with both disease and condition. The number 
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of pathways was then reduced by using manual curation. 
Consideration is given to pathways with adjusted P-values 
under .05. Using P-value, we get unique numbers of every gene 
and easily identified them. Consequently, we obtained the 238 
most important signaling pathways. Finally, we organized the 
pathways in ascending order based on the P-value.

Figure 4 shows the top 20 pathways that were connected to 
COVID-19 and smoking status. The GO approach divides 
them into segments using the terms MF, BP, and CC, but we 
only consider the BP database of GO terminologies. Initially, 
436 GO terms were discovered to be shared by smokers and 
COVID-19 patients. The terms with a P-value under 0.05 
were then added as the most important GO terms. Between 
the conditions, 159207 GO terminologies are discovered as the 
most enriched GO terms. The top 20 most important GO 
terms of the BP between COVID-19 and Smoking are sum-
marized in Figure 5. Biological (BP) and cellular processes are 
used in the GO approach.

Protein-protein interactions (PPIs) analysis

We utilized our enriched gene sequences for common diseases 
to generate putative PPI networks by using web-based visuali-
zation techniques. The Cyto-Hubba50 was used to create the 
simplification PPI networks in order to determine the most 
significant hub proteins. Network Analyzer in Cytoscape was 
used to calculate the topological parameters,51 as shown in 
Figure 5. The Maximal Clique Centrality (MCC), as well as 
BottleNeck algorithms, were used in conjunction with the 
CytoHubba plugin in Cytoscape to identify the highly linked 
hub proteins in the PPI network. Although more research is 
required to fully comprehend their roles, these recently discov-
ered hub proteins may prove useful as therapeutic targets. This 
information confirms the inclusion of pertinent functional 
pathways and shows that the PPI subnetwork is present in our 
enriched gene sets. These hub proteins have been identified, 
but more research is needed to fully understand their functions. 
Figures 6A and B show the hub proteins that were discovered 

using the Bottleneck and MCC algorithms as previously men-
tioned. We obtained a total of 34 hub proteins; however, we 
have only reviewed 21 of them, only the top 3 being red, orange, 
and yellow. Using the MCC method, we were able to identify 
17 hub proteins, of which 10 are considered to be the top hub 
proteins.

In addition, using the BottleNeck algorithm, we found 17 
hub proteins in total, with 11 of them being shown as the most 
important (marked as yellow, red, and orange colors). We have 
identified 14 important, distinct hub proteins across both algo-
rithms, and they are as follows: C4A, SKIV2L, HLA-C, 
KRR1, UTP15, HLA—DQB, WDR46, UTP6, BCAR1, 
UTP3, NTSR1, NFKBIL 1, APOE, and NTS. Both algo-
rithms share 7 of these proteins, including C4A, SKIV2L, 
HLA-C, KRR1, UTP15, and HLA-DQB. This information 
shows that the PPI subnetwork is present in our enriched gene 
sets and confirms the presence of relevant functional pathways. 
Although more research is required to fully understand their 
functions, the identified hub proteins may be helpful for treat-
ing STRING51 targets via the network. Table 3 displays a sum-
mary of important hub proteins.

Identif ication of transcriptional and post-
transcriptional regulators of the differentially 
expressed genes

TFs are proteins that regulate genes as well as transcriptional 
expression over all living things. TFs play an important role to 
control gene and transcriptional expression in all living things. 
All cellular processes depend on the activity of transcription 
factors (TFs),52 which is essential. We used Net-workAnalyst 
to analyze TFs and gene-microRNA interactions tools.37 miR-
NAs are non-coding short RNA molecules that control gene 
expression after transcription. By using the ChIP-X53 as well as 
JASPAR54 databases, the TFs-Gene network was created. The 
network of gene-miRNA interactions was created using 
NetworkAnalyst and the TarBase55 and miRTarBase56 data-
bases. Figure 7 visually represents the TF-Gene Interactions 

Figure 3. Up-regulated and Down-regulated genes between COVID-19 patients and smokers are represented separately. (A) Up-reg. (B) Down-reg.
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Table 2. Ontological analysis between COVID-19 and smoking.

CATEGORY GO ID TERM P-VAlUES GENES

GO biological 
process

GO:0051764 Actin crosslink formation .021981327 GAS2l1

GO:0007015 Actin filament organization .032124121 GAS2l1; BCAR1

GO:0090527 Actin filament reorganization .014706953 BCAR1

GO:0045010 Actin nucleation .038158147 TRIM27

GO:0055090 Acylglycerol homeostasis .045264003 ApOE

GO:0046222 Aflatoxin metabolic process .027402792 CYp2W1

GO:0046164 Alcohol catabolic process .020167647 ApOE

GO:0042982 Amyloid precursor protein metabolic process .032795015 ApOE

GO:0002484 Antigen processing and presentation of 
endogenous peptide antigen via MHC class I
via ER pathway

.012880151 HlA-C

GO:0002486 Antigen processing and presentation of 
endogenous peptide antigen via MHC class I via 
ER pathway, TAp-independent

.012880151 HlA-C

GO:0046222 Aflatoxin metabolic process .027402792 CYp2W1

GO molecular 
function

GO:0008376 Acetylgalactosaminyltransferase activity .048797751 CHpf

GO:0005503 All-trans retinal binding .009216659 CYp2W1

GO:0005503 Cell adhesion mediator activity x .043492342 plXNB3

GO:0047238 Glucuronosyl-N-acetylgalactosaminyl-
proteoglycan 4-beta-N-acetylgalactosaminyltransf
erase
activity

.011050055 CHpf

GO:0016594 Glycine binding .020167647 GRIN3B

GO:0005520 Insulin-like growth factor binding .027402792 IGfAlS

GO:0005520 Ionotropic glutamate receptor
Activity

.031000847 GRIN3B

GO:0050750 low-density lipoprotein particle
Receptor binding

.041717483 ApOE

GO:0032395 MHC class II receptor activity .018350695 HlA-DQB1

GO:0032395 NMDA glutamate receptor activity .014706953 GRIN3B

GO cellular 
component

GO:0042627 Chylomicron .018350695 ApOE

GO:0045334 Clathrin-coated endocytic vesicle 5.19E-04 HlA-DpB1; ApOE;HlA-DQB1

GO:0030669 Clathrin-coated endocytic vesicle
Membrane

2.81E-04 HlA-DpB1; ApOE;HlA-DQB1

GO:0030669 Clathrin-coated vesicle membrane 6.13E-04 HlA-DpB1; ApOE;HlA-DQB1

GO:0030662 Coated vesicle membrane 1.43E-04 HlA-DpB1; HlA-C;HlA-DQB1

GO:0030134 COpII-coated ER to Golgi
transport vesicle

4.18E-04 HlA-DpB1; HlA-C;HlA-DQB1

GO:0030659 Cytoplasmic vesicle membrane .03283621 HlA-DpB1; HlA-C;HlA-DQB1

GO:0030139 Endocytic vesicle .005096004 HlA-DpB1; ApOE;HlA-DQB1

GO:0071682 Endocytic vesicle lumen .038158147 ApOE

GO:0030666 Endocytic vesicle membrane 2.02E-04 HlA-DpB1; HlA-C; ApOE;HlA-
DQB1

Abbreviation: GO, gene ontology ; MHC, major histocompatibility complex; ER, estrogen receptor. TAp, transporter associated with antigen processing; NMDA, N-methyl-
D-aspartate; COpII, cytoplasmic coat protein complex-II.
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and the regulator genes are KLC3, SKIV2L, CHPF, CYP2W1, 
C4A, TFC19, EGFL7, BCAR1, NFKBIL1, PTGER1, 
PLXNB3, GRIN3B, APOE, GAS2L1, GP1BB, PITX1, 
ZBTB33, MAZ, NTSRI, TOX2, GP1BB, HLA-DQBI, 
IGFALS, NKFBIL1, BCAR1, CHPF, HINFP, USF2, 
GATA2, TAFA2A, E2F6, TFA2C, YY1, STAT1, FOXC1, 
STAT3, NFKB1, and RELA were identified as the key regula-
tors of the identified DEGs. Gene interactions involving 
miRNA are shown graphically in Figure 8: C4A, SKIV2L, 

NFKBIL 1, CHPF, GRIN3B, IGFALS, GP1BB, GAS2L1, 
APOE, BCAR1, TRIM27, PLXNB3, EGFL7, NR2F1, 
ZBTB33, SP1, GLIS2, MYNN, MAZ, BCL11B TOX2, 
NFKB, TCF19, CHPF, CYP2W1, NPW, BCAR1, LMNTD2, 
IGFALS, NFIC, USF2, TFAP2A, E2F6, YY1, FOXCI, 
NFKBI, SREBF1, RELA, and GATA2.

Drug-protein interaction

The protein–drug interactions for Smokers as well as a 
COVID-19 side effect and Common Genes are shown graphi-
cally in Figure 9 as follows: GRIN3B. The genes are connected 
to drugs called phenobarbital halothane, orphenadrine, seco-
barbital, atomoxetine, pen-tobarbital, acamprosate, gavestinel, 
tenocyclidine, dehydropiandroseterone, ketabemidone, glycine, 
L-glutamic acid, minacipran, and gabapentin.

Discussion
COVID-19 provides a significant threat to the general people 
while smoking remarkably raises the risk of both COVID-19 
and mortality.57 Mainly, smoking is primarily responsible for 
suffering from acute COVID-19 consequences.7 COVID-19 
sufferers who smoke regularly are in danger of developing vari-
ous complications or diseases. So, in our study, we use several 
bioinformatics methods to discover genetic links between 

Figure 4. Top 20 pathways are represented using a bubble plot that are associated with both conditions in transcriptomic analysis.

Figure 5. The figure illustrates the protein-protein interactions between 

COVID-19 and smoking.
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COVID-19 and smoking. Furthermore, our predicted medica-
tions can be considered to treat COVID-19 patients with a 
smoking history and doctors will encourage their patients to 
abstain from smoking. Undoubtedly, this will reduce the risk 
that people would develop COVID-19 or other complications 
brought on by smoking in COVID-19 patients. The bioinfor-
matics method helps us to understand the mechanisms of 
underlying diseases.

COVID-19 patients have C4A (Complement Component 
4A) accumulation in the lung tissue58,59 and due to active 
smoking brain, C4A explication can be raised.60 C4A, which 
are wide immunologic activators, are known to encourage a 
number of immune processes, such as immune cell chemotaxis 
as well as NETosis, reactive oxygen species, also the production 
of cytokines, inflammasomes, and eicosanoids. These immune 
processes are playing an important role in a number of respira-
tory damages in COVID-19 patients.61 SKIV2L genes were 
observed to have significant associations with the presence of 
RPD, and the RPD rate was higher among patients with a his-
tory of smoking.62 It illustrated that SKIV2L included in the 
RNA exosome-activating SKI complex, limits baseline type I 
IFN accounts, which all are instigated by RNA sensors in cir-
cumstances where SKIV2L is deficient. Moreover, SARS-
CoV-2 replication is restricted by pharmacological prohibition 
of the SKI intricate.63 It has been proposed that the enzymatic 
SKI complex subunit, SKIV2L, controls the IFN reactions by 
modulating RIG-I, which may indicate COVID-19 patient 
mortality.64 Patients succumb to COVID-19 quickly because 
there aren’t any early IFN responses against SARS-CoV-2.65

At first, we focused on 5 different pathways namely, the 
endothelial cell adhesion pathway, ER-phagosome pathway, 

neuroactive ligand-receptor interaction pathway, intestinal 
immune network pathway, and human cytomegalovirus infec-
tion pathway. In the endothelial cell, raised manifestation 
adhesion molecules are connected to COVID-19 patients.66 
Two types of infection that causes severe acute respiratory syn-
drome can trigger the release of cytokines, activating the 
endothelial cells pathway. This could result in vascular changes, 
which are endothelial dysfunction, pyroptosis, and thrombosis 
usually mentioned to COVID-19.67 And in the vascular cell, 
patients with coronary heart disease who smoke experience 
higher plasma levels of adhesion molecule-1.68 Furthermore, 
phagosome pathways, besides inflammasomes, were discovered 
in the lung infected by SARS-CoV-2.69,70 ER-phagosome 
pathway protein-binding AU-rich elements control mRNA 
stability in COVID-19 patients71 as well as the phagosomal 
pathway was enriched in smokers.72 Moreover, the KEGG-
neuroactive ligand-receptor interconnection pathway demon-
strated momentous relations with lung cancer related to 
smoking.73 In addition, in COVID-19 patients, the neuroac-
tive ligand-receptor interaction pathway is one of the impor-
tant pathways of 5 remarkably high-regulated pathways.74 
According to molecular docking, 2 protein of coronavirus had 
a good affinity for the neuroactive ligand-receptor intercon-
nection pathway.75 Notably, the symptoms of COVID-19, 
which can be controlled by the calcium signaling pathway and 
neuroactive ligand-receptor interaction pathway, include myal-
gias, headaches, and abdominal pain.76 COVID-19 sufferers 
could grow severe signs, namely high pathway, “intestinal-
immune-network” for IgA production, and “T-cell-receptor 
signaling pathway.”77 The immune systems of COVID-19 
patients’ oral cavity and intestinal tract are controlled by serum 

Figure 6. Hub proteins are identified using 2 different cyto-hubba algorithms called MCC and bottleneck to demonstrate the association between 

COVID-19 and smoking. (A) Bottleneck. (B) MCC.
MCC indicates maximal clique centrality.
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IgA and secretory (s-)IgA.78 The effect of smoking produces 
the small intestine’s mucosal IgA antibody. It was found that 
genes highly connected with the immune-network involved in 
IgA-production signaling pathways included in the end part of 
the tiny intestine after exposure to cigarette smoke.79 And 
KEGG-pathway-enrichment easily concluded in 156 path-
ways associated with COVID-19, and the human cytomegalo-
virus infection pathway is one of them.80 Human 
cytomegalovirus infection pathways are related to the regula-
tion of inflammation of COVID-19 patients.81 Also, smokers 
have a higher tendency to be infected by human cytomegalovi-
rus infection pathway.82

In the hub-protein interaction, we have validated total of 7 
proteins with previous literature named WDR46, C4A, APOE, 
HLA-C, HLA-DQB1, BCAR1, and NTS. Smoking and 
WDR46 interaction may be responsible for impacting young 

people’s lung development, which may affect the development 
of lung cancer in adults.83 Moreover, lungs from severe 
Significant C4a deposits were found in COVID-19 patients, 
which may indicate that complement plays a role in lung dam-
age.84 In COVID-19 patients with severe there is strong 
immunohistochemical staining for C4a as well as C3, and also 
MAC that colocalizes with SARS-CoV-2 nucleocapsid pro-
tein.85 As well as, smoking expands the declaration of the C4A 
gene.60 We also discover that smoking expands the declaration 
of the C4A in the brain. It’s interesting to note that smoking is 
linked to diffuse as well as epidemiological evidence, and also 
dose-dependent cortical thinning suggests that smoking 
increases the risk of developing schizophrenia.60

According to previous the sensitivity and also cruelty of 
COVID-19 are associated with a number of genetic variables, 
including APOE.86 In the case category, APOE-associated 

Table 3. Summary of COVID-19 and smoking hub proteins identified by the algorithms of MCC and bottleneck.

pROTEIN SYMBOl DESCRIpTION fEATURES

C4A Complement Component 4A (Rodgers Blood 
Group)

It results in the contraction of smooth muscle, and an increase 
in vascular permeability, as well as the histamine released 
from mast cells and basophilic leukocytes.

SKIV2l Helicase SKI2W Diseases associated with SKIV2l include Trichohepatoenteric 
Syndrome 2 and Trichohepatoenteric Syndrome 1

HlA-C Class I, C, Major Histocompatibility Complex infection with SARS-CoV-2 and Class I MHC-mediated 
antigen production process as well as presentation are 2 
examples of its related processes.

KRR1 KRR1 Small Subunit processome Component 
Homolog 2

Diseases associated with KRR1 include Duodenum Adenoma 
and Colorectal Cancer, Hereditary Nonpolyposis, Type 7

UTp15 UTp15 Small Subunit processome 
Component

Diseases associated with UTp15 include North American 
Indian Childhood Cirrhosis and Basilar Artery Occlusion.

HlA -DQB Major histocompatibility complex, class II, DQ 
beta 1

they form a functional protein complex called an antigen-
binding DQ?? Heterodimer

WDR46 WD Repeat Domain 46 WDR46 is linked to conditions such as asthma, nasal polyps, 
as well as aspirin intolerance.

UTp6 Small Subunit processome Component Interstitial keratitis and Chromosome 17Q11.2 Removal 
Syndrome were also 2 conditions connected to UTp6.

BCAR1 BCAR1 Scaffold protein, Cas family Member Diseases associated with BCAR1 include Estrogen 
Resistance and Cerebral Hypoxia

UTp3 UTp3 Small Subunit processome Component Manufacturing of Capped Intron-Containing pre-mRNA and 
rRNA processing in the Nucleus and Cytoplasm are 2 
pathways that overlap with it.

NTSR1 Neurotensin Receptor 1 Diseases associated with NTSR1 include Suprasellar 
Meningioma and Neurilemmoma Of The fifth Cranial Nerve

NfKBIl 1 GeneCards Symbol: NfKBIl1 Diseases associated with NfKBIl1 include Rheumatoid 
Arthritis and Arthritis.

ApOE Apolipoprotein E It is necessary for the regular breakdown of the components 
of triglyceride-rich lipoproteins and binds to a particular liver 
and peripheral tissue receptor

NTS Neurotensin Diseases associated with NTS include Dumping Syndrome 
and Duodenogastric Reflux

Abbreviations: MMC, maximal clique centrality; mRNA, messenger RNA; rRNA, ribosomal RNA.
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Figure 7. Tf-gene interactions showed using 2 different algorithms called ChEA and Jaspar to illustrate the linking between COVID-19 and smoking. (A) 

Encode. (B) JASpAR.
miRNA indicates microRNA.

Figure 8. Gene miRNA is identified between COVID-19 and smoking using 2 different algorithms called TarBase and MirTarBase. (A) Tar-Base. (B) 

Mir-Tar-Base.
miRNA indicates microRNA.
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comorbidities were danger factors for intense COVID-19. 
Another in vitro research discovered that SARS-CoV-2 endo-
cytic entry was increased in cholesterol-loaded cells using the 
cholesterol transport protein APOE.86 The Apoe-isoform-
dependent effect may aid in describing the elevated risk for 
severe COVID-19. By applying health data and also genetic 
data from the Biobank of the United Kingdom, current research 
has demonstrated where the Apoe E4/4 genotype grows the 
danger for intense COVID-19, in comparison to the ApoE3/3 
genotype, independent of preexisting comorbidities, including 
cardiovascular diseases, type 2 diabetes as well as dementia, this 
suggests an association between ApoE4 and COVID-19.87 
Also, the genotype of APOE e4 may potentially be related to 
smoking cessation.88 APOE genes are used in developing the 
danger of ischemic heart disease highly related to the active 
smokers.89 In addition, HLA-C loci are crucial in controlling 

how severe COVID-19 disease is clinically.90 HLA-C carriers 
are more likely to experience COVID-19’s severe clinical 
course. After Comparing with other HLA-alleles, it was high-
lighted that HLA-C has lower predicted binding sites for per-
tinent SARS-CoV-2 peptides.91 HLA-C was remarkably 
linked to COVID-19 patients’ most severe disease, necessitat-
ing admission to an ICU.92 And passive smoking and HLA 
DQB1 positive were risk factors for narcolepsy.93 We postu-
lated that let-7c-ADRB1-HLA-DQB1-AS1 interconnec-
tions are important in the development of smoking-related 
chronic obstructive pulmonary disease (COPD).94 In people 
with the HLA DQB1 gene, passive smoking may raise the risk 
of progressing narcolepsy.95 In COVID-19 patients, NTS may 
contribute to the severe aggravation of pulmonary edema, and 
microvascular clotting.96 There are different kinds of 
chemokines and cytokines are attracted NTs which also raised 

Figure 9. The figure shows the protein drug interaction between COVID-19 and smoking using protein drug interaction algorithm.
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in infections of SARS-CoV-2, recommending a potential role 
for NTs in the defense opposed to SARS-CoV-2. In contrast, 
SARS-CoV-2 can circumlocutorily activate the development 
of neutrophil extracellular traps (NETs) in COVID-19 by 
inducing CS and also down-regulating ACE2, which prevents 
NTs-infiltrations.97 BCAR1 is associated with cigarette smok-
ing and lung cancer.98 In cases of adenocarcinoma or squamous 
carcinoma in former or current smokers, BCAR1-mRNA lev-
els predicted a worse prognosis. Breast cancer with high 
BCAR1 levels has a poor prognosis and is more likely to 
relapse.99 In addition, lung cancer patients with upregulated 
BCAR1 had a worse prognosis and had a big risk of distant 
metastasis, lymph node metastasis, and chemotherapy 
resistance.100

For drug-protein interaction, by previous literature, we were 
able to validate a total of 7 drugs, namely halothane, atomoxe-
tine, acamprosate, glycin, minalcipran, gabapentin, and dehy-
droepiandrosterone (DHEA). halothane is a volatile anesthetic 
agent. The antiviral effect of volatile agents is one of the most 
significant effects when considering the possibility that they can 
treat COVID-19 acute respiratory distress syndrome (ARDS). 
Exposure to halothane at a concentration of 2.2% mildly inhib-
ited the replication of many animal viruses.101 Where halothane 
inhibits the dimerization of the SARS-COV-2 encoded nucle-
ocapsid protein.102 Patients with attention deficit hyperactivity 
disorder (ADHD) who take non-stimulant medications (such 
as viloxazine, as well as atomoxetine, also clonidine, and guanfa-
cine), have a cancer diagnosis or were in palliative care at all 
point before their index the COVID-19 virus.103 Atomoxetine 
is, according to previous literature, remarkable growth in pulse 
as well as in blood pressure (BP).104 In addition, COVID-19 
patients typically take atomoxetine 10 mg once a day to treat 
their depression as well as attention deficit disorder, and the 
dose was gradually increased to 40 mg.105 According to research, 
sodium acamprosate had a strongly prohibited task as opposed 
to 3CLpro from SARS-CoV-1, exposing an inhibition amount 
of more than 85%.106 As well as, acamprosate, a modulator of 
human GABRA1 protein, is in Phase IV as a part of the com-
bination drug acamprosate and escitalopram as components of 
treatment for alcohol abuse.107 The US Food and Drug 
Administration (FDA) granted acamprosate permission in the 
United States in 2004 for the therapy of alcoholism. Both 
metabotropic glutamate receptors and N-methyl-d-aspartic 
acid channels are affected by acamprosate.108 The use of acam-
prosate calcium can be resisted SARS coronavirus.106 In another 
research, glycine is a non-essential amino acid that is being 
studied as a positive mitigator of cell damage and proinflamma-
tory storms in COVID-19 patients. Two possible medications, 
glycine as well as pyridoxal, target the pathogenesis-related bio-
markers of COVID-19 that we identified.109 The elevated 
thrombotic risk linked to COVID-19 may be practically 
reduced by high-dose glycine.110 Potential interactions between 
COVID-19 treatments, milnacipran and vortioxetine, will be 

deemed less risky.111 Using the L1000FWD web-based appli-
cation, analysis of medications possibly helpful for treating 
COVID-19 patients who also have T2D was done on the 35 
high-regulated and 14 low-regulated genes shared by COVID-
19 infected pancreas organoids and Type-2 Diabetes islets. 
Vemurafenib, milnacipran, and abstain-analog were the 3 lead-
ing medications with the highest anti-similar signal.112 In this 
select group of patients with chronic persistent pain for a year or 
longer after knee arthroplasty, milnacipran reported decreased 
pain and some indications of functional development, demon-
strating the necessity for well-powered investigations.113 In 
2013, discernible difference in efficacy and tolerability.114 
Milnacipran has been demonstrated to improve transmission in 
the descending pain pathways, reducing pain intensity and stiff-
ness and enhancing function.115 We utilized 50 mg of tramadol, 
100 mg of gabapentin every night, 30 mg of duloxetine twice a 
day, and ketorolac as needed to treat pain in a clinical trial. The 
patients who are suffering from COVID-19” pain crisis” had 
resolved by week 4, but still had acute pain scored as 4-6/10. 
The patient experienced ongoing myalgia as well as numbness, 
tingling, and weakness. We retained the dose of duloxetine at 
30 mg 2 times daily while raising gabapentin to 200 mg every 
night. By week 6, the patient’s neuropathic discomfort had dis-
appeared.116 The gabapentin dosage was raised to 400 mg per 
night. Moreover, a second negative result came from the SARS-
Cov-2 test. Though gabapentin is used in COVID-19 patients, 
gabapentin increases the risk of kidney injury in COVID-19 
patients. So, adjust the gabapentin dose based on renal func-
tion.116 As information from the previous study, DHEA sulfate 
has a function in COVID-19 prognosis, and therapy 117 and 
DHEA is used to treat ARDS in COVID-19 sufferers.118 signs 
of COVID-19 that are severe seem to be more likely in people 
with higher levels of circulating androgens. To see if low serum 
testosterone levels have an impact on COVID-19 infections 
and their severity. Dehydroepiandrosterone is being used as a 
booster of COVID-19 treatment.119 Considering the COVID-
19 epidemic, DHEA is a potent inhibitor of glucose-6-phos-
phate dehydrogenase (G6PD), because it has been demonstrated 
that a decrease in G6PD activity makes human cells more sus-
ceptible to coronavirus 229E infections.117 And, DHEA, a rec-
ognized antiviral drug, levels play an important role in newborns’ 
defense against COV-19.120 A sigma-1 receptor agonist, 
DHEA, is a testosterone precursor. Dehydroepiandrosterone, 
the substances for the sigma-1 and sigma-2 receptors, were 
effective inhibitors of SARS-CoV-2 replication.121 Furthermore, 
DHEA may counteract the anti-inflammatory effects of gluco-
corticoids used to treat severe COVID-19 complications.122 
Dehydroepiandrosterone immune response mechanism, which 
could provide new therapeutic insights for the subset of 
COVID-19 patients who experience cutaneous manifesta-
tions.123 All of our results have been validated against the schol-
arly literature as much as feasible. For this reason, there is hush 
opportunity for more in vivo and in vitro level research as it was 
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not possible. A physician may advise current smokers to quit 
based on these results to reduce the severity danger of COVID-
19. It’s possible that the pharmaceutical industry, using the 
resulting chemical molecule, may create medications to treat 
people with COVID-19 with a smoking history. It is important 
to emphasize that the smaller sample sizes of the datasets are a 
drawback of our research. This analysis didn’t take into consid-
eration age, sex, race, or any other possibly relevant factors. 
Therefore, additional validation is required to carefully examine 
the biological remarkable of the problem as indicated in this 
work as shown in Table 4.

Conclusion
In this study, we used several bioinformatics approaches to 
learn more about the connection between smoking and the 
intensity of COVID-19. The transcriptomic analysis of our 
study revealed 37 shared molecular marker DEGs between 
T2D and smokers. Whereas 7 genes (WDR46, C4A, APOE, 
HLA-C, HLA-DQB1, BCAR1, and NTS) are validated using 
previous studies. Signaling pathways such as the Endothelial 
Cell adhesion pathway, ER-phagosome pathway, neuroactive 
ligand-receptor interaction pathway, intestinal immune net-
work pathway, and human cytomegalovirus infection pathway 
is also verified using published literature. Also, we have vali-
dated 7 drugs named halothane, atomoxetine, acamprosate, 
glycin, minalcipran, gabapentin, and DHEA. There are several 
surprising new findings that open up possibilities for investiga-
tion. Finally, our research recommends that smokers should 
abort smoking to reduce the terrible impact of COVID-19. 
However, using our study based on drug prediction results, it 
would be possible to invent new drugs for COVID-19 patients 
with a smoking history.
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