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Background: Anatomical and functional deficits in the cortico-limbic-cerebellar circuit

are involved in the neurobiology of somatization disorder (SD). The present study was

performed to examine causal connectivity of the cortico-limbic-cerebellar circuit related

to structural deficits in first-episode, drug-naive patients with SD at rest.

Methods: A total of 25 first-episode, drug-naive patients with SD and 28 healthy

controls underwent structural and resting-state functional magnetic resonance imaging.

Voxel-based morphometry and Granger causality analysis (GCA) were used to analyze

the data.

Results: Results showed that patients with SD exhibited decreased gray matter volume

(GMV) in the right cerebellum Crus I, and increased GMV in the left anterior cingulate

cortex (ACC), right middle frontal gyrus (MFG), and left angular gyrus. Causal connectivity

of the cortico-limbic-cerebellar circuit was partly affected by structural alterations in the

patients. Patients with SD showed bidirectional cortico-limbic connectivity abnormalities

and bidirectional cortico-cerebellar and limbic-cerebellar connectivity abnormalities. The

mean GMV of the right MFGwas negatively correlated with the scores of the somatization

subscale of the symptom checklist-90 and persistent error response of the Wisconsin

Card Sorting Test (WCST) in the patients. A negative correlation was observed between

increased driving connectivity from the right MFG to the right fusiform gyrus/cerebellum

IV, V and the scores of the Eysenck Personality Questionnaire extraversion subscale. The

mean GMV of the left ACC was negatively correlated with the WCST number of errors

and persistent error response. Negative correlation was found between the causal effect

from the left ACC to the right middle temporal gyrus and the scores of WCST number of

categories achieved.

Conclusions: Our findings show the partial effects of structural alterations on the

cortico-limbic-cerebellar circuit in first-episode, drug-naive patients with SD. Correlations
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are observed between anatomical alterations or causal effects and clinical variables

in patients with SD, and bear clinical significance. The present study emphasizes the

importance of the cortico-limbic-cerebellar circuit in the neurobiology of SD.

Keywords: somatization disorder, resting-state functional magnetic resonance imaging, voxel-based

morphometry, cortico-limbic-cerebellar, gray matter volume, granger causality analysis

INTRODUCTION

Somatization disorder (SD) is characterized by a history of
various unexplained physical symptoms in many organ systems.
This disorder begins before age of 30 and occurs for many years,
leading to repeated treatment seeking or significant impairment
in social/occupational function (1). Lifetime prevalence of SD
varies from 0.2 to 2% in women and less than 0.2% in men (2).
In the Diagnostic and Statistical Manual of Mental Disorders-
IV (DSM-IV), SD is characterized by multiple, recurring,
affecting many organ systems, with at least four pain symptoms,
two gastrointestinal symptoms, one sexual symptom and one
pseudoneurological symptom. Each of the symptoms cannot be
explained by a general medical condition, or in factitious disorder
or malingering (3). The occurrence of somatization symptoms is
commonly assessed by self-report questionnaires. A large amount
of questionnaires are available to assess self-report somatization
symptoms (4), such as the screen for Somatoform Symptoms
(5), Physical Health Questionnaire-15 (6), and somatization
subscale of the symptom checklist-90 (SCL-90) (7). Among these
questionnaires, the SCL-90 and Physical Health Questionnaire-
15 were deemed as the suitable scales for assessing somatization
symptoms.

Although evidence suggests that dissociation amnesia,
childhood emotional/physical abuse, and unsupportive family
environment are associated with SD (8), its neurobiology
remains unclear. The functional neuroimaging methods
allow us to investigate neural changes in patients with SD
(9–14). For instance, Garcia-Campayo et al. (14) reported
that patients with SD exhibited hypoperfusion in the frontal,
cerebellar, and temporoparietal brain areas under single-
photon-emission computed tomography (SPECT). Moreover,
increased glutamatergic activity in the posterior cingulate
cortex (PCC) was observed in patients with SD by magnetic
resonance spectroscopy techniques (9). By contrast, regional
cerebral hypometabolism in the right precentral gyrus, caudate
nuclei, and left putamen was found in patients with SD by
using positron emission tomography techniques (15). Recently,
abnormal activities in the anterior ventral precuneus, PCC, and
anteromedial thalamus were correlated with the somatization
severity of SD (16). Patients with SD showed increased regional
activity in the bilateral superior medial prefrontal cortex (MPFC)
and decreased regional activity in the left precuneus (12). The
same researchers also found a positive correlation between
increased activity in the bilateral superior MPFC and the
scores of SCL-90 (12), and an increase in the right inferior
temporal gyrus functional connectivity (FC) in patients with
SD (13). Moreover, a variety of literatures reported correlations
between abnormal FC or neural activity within brain areas of

the default-mode network (DMN) and somatization severity
or personality (10, 11, 17, 18). Impaired brain activity has been
shown in patients with SD under an emotional empathy task
by using functional magnetic resonance imaging (fMRI) (19),
such as reduced activity in the bilateral parahippocampal gyrus,
left amygdala, and left superior temporal gyrus, suggesting that
these brain regions are responsible for emotional regulation and
emotional memory.

Limited structural imaging studies have shown that patients
with SD exhibit anatomical alterations, including reduced
pituitary and amygdala volume and increased caudate nucleus
volume (20–22). By contrast, no significant white matter
differences were found between patients with SD and healthy
controls by using diffusion tensor imaging at the corrected level
(23). However, the same study showed that patients with SD had
significantly decreased fractional anisotropy values in the right
cingulate cortex and right inferior fronto-occipital fasciculus
compared with controls at the uncorrected level in the same study
(23), and the fractional anisotropy values of the two brain regions
are correlated with the severity of somatization symptoms.

Furthermore, cerebellar alterations were observed in patients
with SD, such as increased cerebellar-DMN FC (10) and
decreased regional homogeneity in the left cerebellum (24).
In addition, a recent study found that patients with persistent
somatoform pain disorder showed increased FC between the
sensorimotor network and cerebellar network (25). In a study
comparing empathic deficits in patients with somatoform
disorder using fMRI during an empathy task, de Greck et al.
(19) observed lower activity in several brain regions, such as
the bilateral parahippocampal gyrus, left amygdala, left superior
temporal gyrus, left postcentral gyrus, bilateral cerebellum, and
left posterior insula.

The aforementioned studies revealed that the cortico-limbic-
cerebellar circuit may play a crucial role in the neurobiology of
the SD. However, several methodological drawbacks should be
taken into consideration when interpreting these findings. First,
some studies have used structural MRI for data analysis without
combining with fMRI to analyze neural activity or FC in patients
with SD, thus preventing the understanding of the relationship
between anatomical and functional alterations. Second, most
studies have adopted regions of interest (ROI) or independent
component analysis (ICA). The reported results might be affected
by the selection of ROIs or uncertainty of ICA signal separation.
Importantly, the altered information flow of the cortico-limbic-
cerebellar circuit remains unclear based on prior studies.

In the present study, we used voxel-based morphometry
(VBM) to examine whole-brain GMV differences in patients
with SD, and brain areas with abnormal GMV were selected as
seeds. Then, Granger causality analysis (GCA) was employed to
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examine abnormal causal connectivity of the seeds with other
voxels of the entire brain. The GCA method is based on the
predictive value of the current time series Y from the past
value of time series X for reasoning that the causal influence
from X causes Y (26). The Granger effect was assessed by
a signed regression coefficient β (27, 28). Here, we aimed to
determine the anatomical deficits and causal connectivity related
to anatomical deficits in a group of first-episode, drug-naive
patients with SD. Based on the abovementioned researches,
we hypothesized that patients with SD would show anatomical
deficits of the cortico-limbic-cerebellar circuit, and causal effects
would decrease with the anatomical deficits (see Figure 1). We
also examined the correlations between the abnormal GMV or
causal connectivity, and clinical variables (i.e., symptom severity
and cognitive function) in the patients.

MATERIALS AND METHODS

Participants
A total of 56 right-handed subjects were recruited for this study,
including 26 first-episode, drug-naive patients with SD and 30
healthy controls. Diagnosis of SD was determined through a
consensus of two experienced clinical psychiatrists by using the
Structural Clinical Interview of the Diagnostic and Statistical
Manual of Mental Disorders-IV (SCID), Patient’s Edition (29).
Healthy controls were recruited from the community and were
screened to exclude lifetime psychiatric illness by the non-patient
edition of the SCID. Moreover, healthy controls with a history
of psychiatric illness in first-degree relatives were also excluded.
Exclusion criteria for all subjects included severe medical or
neurological diseases, substance abuse or loss of consciousness
history, mental retardation, contraindications for MRI scanning,

FIGURE 1 | Hypothesized model in first-episode, drug-naive somatization

disorder: overall reduced causal connectivities in the cortico-limbic-cerebellar

circuit.

and other psychiatric disorders, such as schizophrenia, bipolar
disorder, anxiety disorders, and personality disorders. As
depressive symptoms were common in patients with SD, patients
with comorbidity of depression were not excluded. However,
the presence of depressive symptoms should occur after the
onset of somatization symptoms. Six patients with SD presented
comorbidity with major depressive disorder in the current study.
In addition, none of the healthy controls had a personal history
of psychiatric or severe physical disease and craniocerebral
operations.

All subjects were evaluated through the following tests by
two experienced psychiatrists (ZZ and WG): symptom severity
of somatization, depression, and anxiety were assessed by the
somatization subscale of SCL-90 (7), Hamilton Rating Scale for
Depression (HAMD, 17 items) (30), and Hamilton Anxiety Scale
(HAMA) (31); Eysenck Personality Questionnaire (EPQ) (32)
was used to assess personality dimensions; and cognitive function
was assessed by the Wisconsin Card Sorting Test (WCST) (33)
and Wechsler Adult Intelligence Scale (WAIS): digit symbol
coding (34).

This study was carried out in accordance with the
recommendations of the local ethics committee of the First
Affiliated Hospital of Guangxi Medical University. All subjects
gave a written informed consent in accordance with the
Declaration of Helsinki.

MRI Acquisition and Functional Data
Preprocessing
Whole-brain imaging was acquired on a 3.0 T Siemens scanner.
Functional data were preprocessed with the software DPABI
in Matlab (35). Details of MRI acquisition and functional data
preprocessing are provided in the Supplementary Files.

Anatomical Analyses
Each image was manually checked for gross anatomical
abnormalities and image artifacts. The images were processed
with the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm) and
SPM8 (http://www.fil.ion.ucl.ac.uk/spm). First, the images were
normalized to the same template using a 12 parameter
affine transformation. Afterward, each participant’s images were
segmented to identify tissue-signal intensities, combined with
prior knowledge of probability maps. The images were then
spatially normalized to the template space and resampled to
1.5 × 1.5 × 1.5mm3. To eliminate non-brain tissue voxels
from dural venous sinuses, skull, scalp, and diplopic space, an
automated brain extraction procedure was used. Finally, the
optimally normalized segmented images were modulated, and
the obtained images were smoothed with an 8mm full-width
half-maximum Gaussian kernel.

Two-sample t-tests were conducted to determine GMV
differences between patients with SD and healthy controls. Age
was used as a covariate to minimize the potential effects of this
variable. For multiple comparisons, the significance threshold
was set at p < 0.05 for multiple comparisons corrected by the
Gaussian Random Field (GRF) theory (voxel significance: p <

0.001, cluster significance: p < 0.05).
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GCA Processing
Four brain regions, the right cerebellum Crus I, right middle
frontal gyrus (MFG), left anterior cingulate cortex (ACC), and
left angular gyrus (AG), with abnormal GMV were selected as
seeds. The peak voxel of each seed was selected as a 6 mm-
radius spherical seed for GCA processing. Voxel-wise coefficient
GCA was performed by using the REST software (36). Granger
causality was conducted by vector autoregressive models to
explore whether the past variable of a time series could predict
the current variable of another time series correctly. A signed
regression coefficient β was used to estimate the Granger effect
(27, 28). Positive/negative βmay indicate an excitatory/inhibitory
effect or positive/negative feedback (37). There were two analyses
for each seed: seed-to-whole-brain and whole-brain-to-seed
analyses. The former was conducted to estimate the driving
effect from the seed to other brain regions of the whole brain,
including excitatory and inhibitory effects. The latter was used to
estimate the feedback effect from other brain regions of the whole
brain to the seed, including positive and negative feedback. Two
sample t-tests were used to compare the causal effects between
patients and controls. The framewise displacement (FD) values
were computed for all subjects. Age and the mean FD values
were used as covariates in the group comparisons to minimize
the potential effects of these variables. The significance threshold
was set at p < 0.05 (GRF corrected).

Correlation Analyses
To identify the correlations between abnormal GMV or causal
effect and symptoms in patients with SD, partial correlation
analyses were conducted after controlling for the HAMD and
HAMA scores to rule out the potential effects of depression and
anxiety. The statistical threshold was set at p < 0.05 (Bonferroni
corrected).

RESULTS

Demographics and Clinical Characteristics
of Participants
The data of one patient and two controls were eliminated due
to excessive head motion. As shown in Table 1, no significant
differences were found between patients and controls in regard
to age, sex ratio, education level, digit symbol coding of WAIS,
EPQ extraversion and EPQ lie scores, andWCST scores. Relative
to healthy controls, patients with SD showed significantly higher
scores in the SCL-90 somatization subscale, HAMD, HAMA,
and EPQ psychoticism and neuroticism scales. Furthermore, the
controls exhibited higher FD values than those of the patients.

Anatomical Abnormalities Between Groups
Relative to the controls, patients with SD showed significantly
reduced GMV in the right cerebellum Crus I and significantly
increased GMV in the left ACC, right MFG, and left AG (Table 2
and Figure 2). These four brain regions were selected as seeds for
further GCA analyses.

TABLE 1 | Characteristics of the participants.

Variables Patients (n = 25) Controls (n = 28) p-value

Age (years) 41.00 ± 10.76 38.71 ± 9.59 0.42b

Sex (male/female) 4/21 6/22 0.73a

Years of education

(years)

7.72 ± 4.39 7.82 ± 2.59 0.92b

FD (mm) 0.08 ± 0.03 0.10 ± 0.05 0.02b

Illness duration

(months)

59.12 ± 62.22

Somatization

subscale of

SCL-90

28.48 ± 10.37 14.32 ± 3.44 <0.001b

HAMD 18.84 ± 7.31 2.60 ± 1.83 <0.001b

HAMA 22.96 ± 10.95 0.53 ± 0.99 <0.001b

Digit

symbol-coding of

WAIS

8.28 ± 2.87 9.64 ± 2.15 0.06b

EPQ

Extraversion 46.84 ± 11.02 49.75 ± 9.65 0.31b

Psychoticism 50.52 ± 9.01 45.00 ± 8.54 0.03b

Neuroticism 57.36 ± 9.18 46.78 ± 10.24 <0.001b

Lie 49.44 ± 12.31 47.96 ± 11.01 0.65b

WCST

Number of

categories

achieved

3.52 ± 1.76 3.89 ± 1.66 0.43b

Number of errors 22.84 ± 9.12 24.71 ± 8.91 0.45b

WCST-Pre 20.04 ± 9.48 22.82 ± 8.72 0.27b

aThe p-value for sex distribution was obtained by a chi-square test.
bThe p-values were obtained by two sample t-tests.

FD, Framewise displacement; HAMD, Hamilton depression scale; HAMA, Hamilton

anxiety scale; SCL-90, Symptom Checklist-90; EPQ, Eysenck Personality Questionnaire;

WAIS, Wechsler Adult Intelligence Scale; WCST-Pre, persistent error response of

Wisconsin Card Sorting Test.

Voxel-Wise GCA: Seed-To-Whole-Brain
Analysis
As shown in Table 3 and Figure 3 (Supplementary Figure S1),
the patients exhibited excitatory effect from the left ACC to
the left cerebellum Crus II, bilateral MFG/superior frontal
gyrus, and right middle temporal gyrus (MTG) relative to
the controls. In addition, the patients showed excitatory effect
from the right MFG to the right fusiform gyrus/cerebellum
vermis IV, V, left lingual gyrus/cerebellum vermis VI, cerebellum
vermis IX, left inferior temporal gyrus, and bilateral middle
cingulate cortex. Moreover, the patients exhibited inhibitory
effect from the right cerebellum Crus I to the left middle occipital
gyrus/inferior occipital gyrus/cerebellumVI, left superior MPFC,
and left superior MPFC/ACC, from the left ACC to the left
supplementary motor area.

Voxel-Wise GCA: Whole-Brain-To-Seed
Analysis
Patients with SD showed positive feedback from the left MFG
to the right cerebellum Crus I and from the left superior
temporal gyrus, bilateral PCC/precuneus, right inferior frontal
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gyrus, right precentral gyrus/postcentral gyrus, and right
postcentral gyrus to the left AG compared with healthy
controls. By contrast, causal effects from the left cerebellum
Crus II, right MTG, and right superior frontal gyrus to
the left ACC, as well as from the left cerebellum Crus I
and II, cerebellum IV, V, bilateral lingual gyrus/cerebellum
vermis VI, and right superior parietal lobule to the right
MFG decreased in the patients (Table 3, Figure 4 and
Supplementary Figure S2).

TABLE 2 | Regions with abnormal gray matter volume in the patients.

Cluster location Peak (MNI) Number

of

voxels

T-value

x y z

Right Cerebellum Crus I 36 −75 −28.5 27 −3.4839

Left Anterior Cingulate Cortex −12 18 27 35 4.7333

Right Middle Frontal Gyrus 51 15 30 24 3.9673

Left Angular Gyrus −39 −63 33 25 4.3977

MNI, Montreal Neurological Institute.

Correlations Between Anatomical
Alterations or Causal Effects and Clinical
Variables in Patients With SD
As shown in Figure 5, the mean GMV of the right MFG was
negatively correlated with the scores of the somatization subscale
of SCL-90 (r = −0.46, p = 0.027) and persistent error response
of WCST (r = −0.415. p = 0.049) in the patients. Significantly
negative correlations were observed between the causal effect
from the right MFG to the bilateral middle cingulate cortex and
scores of WCST number of categories achieved (r = −0.649,
p = 0.001) and between the causal effect from the right MFG
to the right fusiform gyrus/cerebellum IV and V and the EPQ
extraversion scores (r = −0.422, p =0.045). Moreover, the mean
GMV of the left ACC was positively associated with the scores
of WCST number of categories achieved (r = 0.467, p = 0.025)
and negatively associated with the WCST number of errors and
persistent error response (r= – 0.589, p= 0.003; r=−0.627, p=
0.001). Significantly negative correlation was observed between
the causal effect from the left ACC to the right MTG and the
scores of WCST number of categories achieved (r =−0.472, p=
0.023), and a positive correlation was found between the causal
effect from the right MTG to the left ACC and scores of WCST
number of categories achieved (r = 0.487, p= 0.019).

FIGURE 2 | Regions with abnormal gray matter volume in the patients.
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TABLE 3 | Regions with abnormal causal effect with the seeds in the patients.

Cluster location Peak (MNI) Number

of

voxels

T-valuea

x y z

SEED-TO-WHOLE-BRAIN EFFECT

Seed: Right cerebellum crus I

Left Middle Occipital

Gyrus/Inferior Occipital

Gyrus/Cerebellum VI

−45 −78 −6 235 −3.9323

Left Superior MPFC/ACC −6 51 27 412 −4.3354

Left Superior MPFC −9 39 51 63 −5.2241

Right Superior Temporal

Gyrus

39 −39 12 34 4.1831

Seed: Left ACC

Left Cerebellum Crus II −45 −60 −45 49 3.9294

Left Middle Frontal

Gyrus/Superior Frontal

Gyrus

−30 45 9 59 3.8802

Right Middle Frontal

Gyrus/Superior Frontal

Gyrus

24 60 12 93 4.5407

Right Middle Temporal

Gyrus

42 −66 15 42 4.1405

Left Supplementary Motor

Area

−9 −12 57 51 −3.5602

Seed: Right middle frontal gyrus

Left Inferior Temporal Gyrus −42 9 −39 33 3.7493

Cerebellum Vermis IX 3 −51 −36 32 3.6072

Right Fusiform

Gyrus/Cerebellum IV, V

21 −36 −18 120 4.2073

Left Lingual

Gyrus/Cerebellum Vermis VI

−12 −39 −6 248 4.8860

Bilateral Middle Cingulate

Cortex

−3 −3 33 35 3.8098

Seed: Left angular gyrus

None

WHOLE-BRAIN-TO-SEED EFFECT

Seed: Right cerebellum crus I

Left Middle Frontal Gyrus −36 33 36 48 3.9856

Seed: Left ACC

Left Cerebellum Crus II −42 −63 −36 67 −4.0615

Right Middle Temporal

Gyrus

39 −66 18 46 −4.1778

Right Superior Frontal Gyrus 24 63 12 38 −4.5013

Seed: Right middle frontal gyrus

Left Cerebellum Crus I, II −42 −51 −42 171 −4.225

Bilateral Lingual

Gyrus/Cerebellum Vermis VI

3 −78 −24 337 −4.4932

Cerebellum IV, V −6 −39 −9 48 −4.2817

Right Superior Parietal

Lobule

24 −72 51 93 −4.2222

Seed: Left angular gyrus

Left Superior Temporal

Gyrus

−54 −12 6 78 4.3236

Right Inferior Frontal Gyrus 63 12 6 34 5.2976

(Continued)

TABLE 3 | Continued

Cluster location Peak (MNI) Number

of

voxels

T-valuea

Bilateral PCC/Precuneus 0 −15 48 174 3.6941

Right Precentral

Gyrus/Postcentral Gyrus

54 −12 42 57 3.5997

Right Postcentral Gyrus 42 −33 54 37 3.9333

aA positive/negative T value represents an increased/decreased causal effect; MNI,

Montreal Neurological Institute; MPFC, Medial Prefrontal cortex; ACC, Anterior Cingulate

Cortex; PCC, Posterior Cingulate Cortex.

DISCUSSION

The current findings reveal that the causal connectivity of
the cortico-limbic-cerebellar circuit is partly affected by
structural alterations in patients with SD. The primary results
include bidirectional cortico-limbic connectivity abnormalities,
bidirectional cortico-cerebellar connectivity abnormalities,
bidirectional limbic-cerebellar connectivity abnormalities,
and bidirectional causal effects among the cortical regions
(Figures 3, 4). Moreover, correlations between anatomical
alterations or causal effects and clinical variables are observed in
patients with SD, and bear clinical significance.

Gray matter deficits in the bilateral amygdala or pituitary have
been reported in patients with SD by using manual volumetric
analysis (20, 21). Inconsistent with these studies, the present
study demonstrates that patients with SD showed increasedGMV
in several cortical areas, including the right MFG, left ACC, and
left AG. Several factors merit consideration in interpreting the
increased GMV seen in our study. First, the magnetic resonance
field strength may have contributed to such increases. Previously,
Atmaca et al. (20) and Yildirim et al. (21) utilized a 1.5 Tmagnetic
resonance scanner. In the current study, we used a 3.0 T scanner,
which had higher signal-to-noise ratio, better image quality, and
higher resolution than the 1.5 T scanner. Second, all patients were
females in the previous studies, whereas there were four male
patients in our study. Sex differences in GMVmay account for the
inconsistency (38). Importantly, Atmaca et al. and Yildirim et al.
recruited chronic and medicated patients, whereas we recruited
first-episode and drug-naive patients. Therefore, the patients in
our study may present with early-stage neuronal pathology at the
onset of somatization symptoms.

The MFG is involved in working memory, executive
functions, attention, and language skills (39–42). Increased GMV
in the right MFG has not been reported in patients with
SD, but increased FC in the left MFG in patients with SD
has been found (43). Furthermore, negative associations were
found between the GMV of the right MFG and somatization
subscale of SCL-90 and persistent error response of WCST
in patients with SD in this study, indicating that patients
with a smaller right MFG volume experienced more severe
somatic symptoms and impaired executive function. Moreover,
a negative correlation was observed between the increased
driving connectivity from the right MFG to the bilateral middle
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FIGURE 3 | Integrated model of voxel-wise Granger causality analyses in first-episode, drug-naive somatization disorder (Seed-to-Whole-Brain Analyses): affected

causal connectivities in the cortico-limbic-cerebellar circuit (A). Brain regions and circuitry implicated in first-episode, drug naive somatization disorder

(Seed-to-Whole-Brain Analyses) (B). MFG, Middle Frontal gyrus; MPFC, Medial Prefrontal Cortex; ACC, Anterior Cingulate Cortex; MCC, Middle Cingulate Cortex;

PCC, Posterior Cingulate Cortex; AG, Angular Gyrus; Cere Crus, Cerebellum Crus; Cere Vermis, Cerebellum Vermis; Lingual/Cere, Lingual Gyrus/Cerebellum Vermis;

Fusiform/Cere, Fusiform Gyrus/Cerebellum. Lateral cortical regions are shown in red, medial cortical regions in blue, subcortical regions in green, and cerebellum

regions in purple. The functional pathways in (A,B) are indicated with red arrows (excitatory effect) and blue arrows (inhibitory effect).

FIGURE 4 | Integrated model of voxel-wise Granger causality analyses in first-episode, drug-naive somatization disorder (Whole-Brain-to-Seed Analyses): affected

causal connectivities in the cortico-limbic-cerebellar circuit (A). Brain regions and circuitry implicated in first-episode, drug naive somatization disorder

(Whole-Brain-to-Seed Analyses) (B). MFG, Middle Frontal gyrus; MPFC, Medial Prefrontal Cortex; ACC, Anterior Cingulate Cortex; MCC, Middle Cingulate Cortex;

PCC, Posterior Cingulate Cortex; AG, Angular Gyrus; Cere Crus, Cerebellum Crus; Cere Vermis, Cerebellum Vermis; Lingual/Cere, Lingual Gyrus/Cerebellum Vermis;

Fusiform/Cere, Fusiform Gyrus/Cerebellum. Lateral cortical regions are shown in red, medial cortical regions in blue, subcortical regions in green, and cerebellum

regions in purple. The functional pathways in (A,B) are indicated with red dotted arrows (positive feedback) and blue dotted arrows (negative feedback).

cingulate cortex and number of categories achieved on the
WCST scores in patients, suggesting that patients with increased
cortico-limbic connectivity would show prominent dysfunction
in executive function. A negative correlation was also found
between the EPQ extraversion scores and increased driving effect
from the right MFG to the right fusiform gyrus/cerebellum
IV, V in the patients, demonstrating that patients with a low
EPQ extraversion (introversion) score reflect increased cortico-
cerebellar connectivity. Patients who were introverts tend to be
reserved, show solitary in behavior, and seek internal stimuli. Due

to personality traits concentrating on internal stimuli, introverts
may be more concerned about their own internal physical
discomfort and be inclined to have a high risk of experiencing SD.
Increased connectivity in the lobule IX-left superior MPFC with
a negative correlation with the EPQ extraversion scores has been
reported in patients with SD (10). In line with these findings, the
present study emphasizes the importance of the cortico-limbic-
cerebellar circuit in the neurophysiological mechanism of SD.

The ACC plays an important role in cognitive, emotional
regulation, social evaluation, and awareness (44–47).
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FIGURE 5 | Correlations between abnormal GMV or causal effects and clinical variables in patients with somatization disorder. GMV, gray matter volume; ACC,

anterior cingulate cortex; WCST, Wisconsin Card Sorting Test; WCST-Pre, persistent error response of WCST; MFG, middle frontal gyrus; MTG, middle temporal gyrus.

Intriguingly, anatomical alterations of the left ACC and
increased connectivity of ACC are correlated with cognitive
function. First, the mean GMV of the left ACC negatively
correlates with the WCST number of errors and persistent
error response scores, and positively correlates with the WCST
number of categories achieved scores. These correlations suggest
that patients with a smaller GMV of the left ACC may display
more serious cognitive impairment, such as dysfunction abstract
reasoning and problem solving. ACC plays a crucial role in
cognition and emotional regulation, especially in the monitoring
of conflict processing (48). Our findings are in line with the
results that ACC has a strong connectivity with areas involved in
cognition and sensorimotor processing (49). Second, a negative
correlation was observed between increased driving effect from
the left ACC to the right MTG and scores of WCST number of
categories achieved, corresponding to the positive correlation
between decreased feedback from the right MTG to the left ACC
and scores of WCST number of categories achieved. The MTG,

located between the superior temporal and inferior temporal
gyri, is involved in cognitive processes, such as semantic memory
processing and multimodal sensory integration (50). Taken
together, these findings suggest that the left ACC and increased
driving effect from the left ACC to the right MTG might be an
important anatomical substrate of cognitive deficits in patients
with SD.

The AG plays an important role in semantic processing,
language, number processing, memory retrieval, attention,
reasoning, and social cognition (51, 52). A recent study suggests
that patients with SD were associated with lower voxel-mirrored
homotopic connectivity in the AG/supramarginal gyrus (11).
Therefore, our finding of increased GVM in the AG may provide
an understanding of the pathophysiology of SD.

Converging evidence suggests that the cerebellum is involved
in sensorimotor control, cognitive function, and emotional
control (53–56). Previous SPECT study in patients with SD found
hypoperfusion in cerebellum region in four out of eleven patients
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with SD (14). Decreased cerebellar activity has also been found
in patients with somatoform disorder during emotional empathy
by using fMRI (19), suggesting that there may be important
clinical significance associated with disorder-related alteration
in the cerebellum. MPFC, a key node in the DMN, has an
extensive connection with the affective limbic regions, including
the hippocampus, amygdala, and hypothalamus. Additionally,
MPFC and ACC are important parts of cortical midline
structures, which play a crucial role in emotional regulation, self-
referential processing, and sensory and higher-order processing.
Cortical midline structures play a mediating effect in self-
referential processing between sensory (sensory cortex) and
advanced cognitive processing (lateral cortex). Consideringmany
studies showing the involvement of the cerebellum in cognitive
processing and emotional regulation (56–58), the present study
suggests that the cerebellum is involved in the neurobiology of
SD through a cerebellar-frontal connectivity.

Several limitations should be taken into consideration when
interpreting the present results. First, the current study is a cross-
sectional study. Longitudinal studies are needed to understand
the treatment effects on the altered cortico-limbic-cerebellar
circuit in SD. Second, patients with SD showed a high rate
of comorbidity with depression in our study, which could
have affected our findings. However, to exclude the potential
effects of depression and anxiety, the HAMD and HAMA scores
were used as covariates in the correlation analyses. Hence,
comorbidity with depression and anxiety may have limited effects
on our results. Finally, the sample size was relatively small. A
large sample size is needed to confirm or refute the current
results.

Despite these limitations, this study is the first to explore
the causal connectivity affected by structural alterations in
patients with SD at rest. These findings demonstrate the partial

effects of structural alteration on the cortico-limbic-cerebellar
circuit in first-episode, drug-naive patients with SD. Correlations
are observed between anatomical alterations or causal effects
and clinical variables in patients with SD, and bear clinical
significance. The present study emphasizes the importance of the
cortico-limbic-cerebellar circuit in the neurobiology of SD.
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