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Understanding the interplay between host immunity and
Epstein-Barr virus in NPC patients

Yong Shen1,2, Suzhan Zhang1,2, Ren Sun1,2,3, Tingting Wu1,2,3 and Jing Qian2,4

Epstein-Barr virus (EBV) has been used as a paradigm for studying host–virus interactions, not only because of its importance as a

human oncogenic virus associated with several malignancies including nasopharyngeal carcinoma (NPC) but also owing to its

sophisticated strategies to subvert the host antiviral responses. An understanding of the interplay between EBV and NPC is critical for

the development of EBV-targeted immunotherapy. Here, we summarize the current knowledge regarding the host immune responses

and EBV immune evasion mechanisms in the context of NPC.
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INTRODUCTION

Epstein-Barr virus (EBV/HHV-4), which latently infects more than

90% of the world’s adult human population, is associated with naso-

pharyngeal carcinoma (NPC).

In NPC patients, EBV typically exists in a type II latency program

(particularly the undifferentiated or poorly differentiated types). Type

II latency is characterized by the expression of a subset of latent genes,

including EBV-determined nuclear antigen 1 (EBNA1), latent mem-

brane proteins (LMP1, LMP2A, and LMP2B), and several EBV non-

coding RNAs (primarily EBER1 and EBER2).1–3 In addition, BamHI-

A rightward transcripts (BARTs) and BamHI-A rightward frame 1

(BARF1) of EBV are expressed abundantly and detected consistently

in NPC.4–6

The detection of EBV in NPC and the prominent role of EBV in

promoting tumor development support EBV as a potential thera-

peutic target for NPC. In fact, with the accumulation of knowledge

regarding EBV oncogenicity and interactions between EBV and the

host immune responses, immunological approaches, such as adoptive

T-cell immunotherapy and vaccine-based strategies to induce EBV-

specific T-cell responses, are emerging. In this review, we summarize

the current understanding of how EBV stimulates the host immunity

and the mechanisms exploited by EBV to circumvent immune res-

ponses in the context of NPC.

EVIDENCE FOR EBV CONTRIBUTING TO NPC

EBV factors detected in NPC patients

In the 1960s, antibodies against the EBV antigen were first identified in

NPC patients,7 and subsequent studies reported higher levels of anti-

EBV antibodies in NPC patients than in healthy controls.8,9 More

direct and stronger evidence has been obtained regarding the detection

of EBV DNA,10,11 protein antigens,2 and miRNA products1 in NPC

patients. Viral DNA is considered a specific prognostic marker for

both pre- and post-treatment NPC patients,11–17 regardless of preva-

lence in the region studied.18 Recent comprehensive profiles with

methods that are more sensitive and specific (e.g., multiplexed stem-

loop reverse transcription polymerase chain reaction19 and miRNA

microarray20) identified panels of upregulated viral miRNAs in both

NPC lesions and sera, some of which were shown to function as poten-

tial biomarkers for the diagnosis and prognosis of NPC.21

Mechanisms exploited by EBV products to promote NPC

A set of EBV latent genes have been identified that play an important

role in NPC development, and multiple mechanisms including the

restriction of cell homeostasis, the enhancement of cell mobility,

and the induction of stem-like cancer cells were proposed.

EBNA1, which is expressed in all EBV-related tumors, is believed to

be one of the most important viral proteins that promote NPC and is

required for maintaining the viral latency in NPC.22,23 The introduc-

tion of EBNA1 enables EBV-negative NPC cells to grow more rapidly

and to achieve increased metastasis in immunodeficiency mice.24 The

potential mechanisms of EBNA1 function involve upregulation of

tumor angiogenesis cytokines;25 degradation of promyelocytic leuke-

mia (PML) protein, which is associated with p53 activation, DNA

repair and cell apoptosis;26 inhibition of the anti-oncogenesis canon-

ical p65 nuclear factor-kB (NF-kB) pathway;27 and induction of meta-

static potential proteins28 as well as epithelial–mesenchymal transition

(EMT).29

LMP1, another major viral oncoprotein, is closely associated with

epithelial transformation30,31 and angiogenesis.32–34 LMP1 is detected

primarily in preinvasive lesions, including dysplasia and carcinoma in
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situ, but not in late stage, suggesting that its expression may be an early,

initiating event for NPC.35 LMP1 has been shown to promote tumor

invasion and metastasis via remodeling actin filaments,36–38 inducing

EMT39 and upregulating the expression of various matrix metallopro-

teinases (MMPs).40–42 In addition, LPM1 inhibits apoptosis43–45 and

induces cancer stem/progenitor-like cells in nasopharyngeal epithelial

cell lines.46,47

LMP2A and LMP2B are also expressed in NPC.2,48,49 LMP2B nega-

tively regulates LMP2A activity by binding to this protein, preventing

its phosphorylation without altering its cellular localization.50 LMP2A

possesses the ability to induce stem-like cancer cells,47,51 EMT,51 and

MMP expression52 in NPC. No direct evidence has been found for the

role of LMP2B in NPC, although LMP2B itself may facilitate the

spread and motility of epithelial cells.53

Emerging evidence has revealed that EBERs, BARTs and BARF1 also

contribute directly to NPC development. EBERs accelerate the growth

of NPC cells54 and confer resistance against apoptotic stress.55 BARF1

is not expressed during EBV infection of the NPC-derived EBV-nega-

tive cell lines HONE-1 and CNE-1; however, when infected by a

recombinant EBV carrying the BARF1 gene under the control of the

SV40 promoter, the infected NPC cells grew faster and were more

resistant to apoptosis compared with wild-type EBV-infected cells.56

BARTs are very abundant EBV transcripts in NPC, contain several

open reading frames, and are precursors for 22 miRNAs. Their roles

in NPC (for instance, miR-BART157 and 358 in cell transformation,

miR-BART159 and 560 in anti-apoptotic activity, and miR-BART761,62

and 963 in EMT) were recently reviewed64 (Table 1).

THE INTERPLAY BETWEEN HOST INNATE IMMUNITY AND EBV

EBV mounts innate responses

One major characteristic of NPC is the presence of abundant infilt-

rating leukocytes in tumor stroma where various cell types, including

neutrophils,65 natural killer (NK) cells,66,67 monocytes/macrophages,

and dendritic cells (DCs),68–70 are detected and represent the first

defense line for EBV infection. Nevertheless, the interaction between

EBV and the host innate immunity system is not fully understood.

Based on flow cytometry, EBV was shown to bind to the neutrophil

surface with its major envelope glycoprotein gp350 and subsequently

stimulate the production of antiviral cytokines, including interleukin

1a (IL-1a), IL-1b,71 chemokines IL-8, and macrophage inflammatory

protein (MIP)-1.72

Conventional DCs (cDCs) and plasmacytoid DCs (pDCs), the two

major human DC subsets, sense EBV products through Toll-like

receptors. When challenged with either live EBV virions or unmethy-

lated EBV DNA, pDCs were found to produce interferon-a (IFN-a).73

In addition, treatment of cDCs with EBERs induces the production of

IFN-b, IFN-c, and tumor necrosis factors (TNFs).74 EBV-stimulated

cDCs and pDCs can promote the cytotoxicity of NK cells through type

Table 1 A brief summary of mechanisms exploited by EBV latent products to promote NPC formation and development

General mechanisms Viral products Molecular mechanisms References

Promotion of

transformation and

angiogenesis

EBNA1 Mediates AP-1 to upregulate IL-8, VEGF, HIF-1a 25

LMP1 Upregulates the phosphorylation of histone H3; inhibits the LKB1-AMPK pathway 30,31

LMP1 Mediates the NF-kB, MEK-ERK, and JNK pathways to induce endocan; mediates the

degradation of prolyl hydroxylases 1 and 3 to upregulate HIF1-a

32–34

EBERs Upregulate IGF-1 54

BARF1 Increases the cell growth rate 56

miR-BART1 Upregulates PSAT1 and PHGDH 57

miR-BART3 Inhibits DICE1 tumor suppressor 58

Inhibition of apoptosis EBNA1 Disrupts PML nuclear bodies 26

LMP1 Inhibits Chk1 to impair the G2 checkpoint; increases p53-mediated survival; mediates

EGFR and STAT3 to induce cyclin D1

43–45

EBERs Upregulate Bcl-2 and downregulate caspase-3 and PARP 55

miR-BART1 Inhibits LMP1-mediated apoptosis 59

miR-BART5 Inhibits PUMA 60

Induction of stem cell-like

phenotype

LMP1 Induces the CSC/CPC-like phenotype and self-renewal; activates the hedgehog pathway

to induce CD44v6, NGFR (p75NTR), and CXCR4

46,47

LMP2A Activates hedgehog to induce CD133 and CXCR4; induces stem-like cells and self-

renewal

47,51

Enhancement of cell

mobility

EBNA1 Upregulates stathmin 1, aspin, and Nm23-H1 28

EBNA1 Mediates TGF-b1/miR-200/ZEB to induce EMT 29

LMP1 Activates the PI3K/Akt pathway to promote actin stress-fiber formation; interacts with

FGD4 to activate Cdc42; mediates the NF-kB pathway to upregulate TNFAIP2

36–38

LMP1 Downregulates E-cadherin to induce EMT 39

LMP1 Upregulates MMPs (e.g., MMP1, 3 and 9) 40–42

LMP2A Induces EMT 51

LMP2A Mediates the ERK/Fra-1 pathway to induce MMP9 52

miR-BART7 Enhances migration and invasion and inhibits PTEN to induce EMT 61,62

miR-BART9 Inhibits E-cadherin to induce EMT 63

AMPK, AMP-activated protein kinase; AP-1, transcription activator-1; Bcl-2, B-cell lymphoma-2; CSC/CPC, cancer stem cells/cancer progenitor cells; CXCR4, C-X-C

chemokine receptor type 4; DICE1, deleted in cancer 1; EGFR, epidermal growth factor receptor; HIF-1a, hypoxia-inducible factor 1a; IGF-1, insulin-like growth factors-1;

JNK, c-Jun N-terminal kinase; LMP1, AMPK-liver kinase B1-AMP-activated protein kinase; NGFR, nerve growth factor receptor; PARP, poly-ADP-ribose polymerase;

PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphohydroxythreonine aminotransferase 1; PTEN, phosphatase and tensin homolog located on chromosome 10;

PUMA, p53 upregulated modulator of apoptosis; STAT3, signal transducer and activator of transcription; TNFAIP2, tumor necrosis factor-alpha inducible protein-2; VEGF,

vascular endothelial growth factor; MEK-ERK, mitogen-activated protein kinase-extracellular signal-regulated kinase.
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I IFNs.75 NK cells are potential targets for EBV infection because the

gp85-gp25-gp42 complex of EBV can directly combine with human

leukocyte antigen (HLA) class II molecules on NK cells.76

EBV can activate monocytes77 and macrophages.78 dUTPase of EBV

induces macrophages to express and secrete TNF-a, IL-1b, and IL-6

via the MyD88-dependent activation of NF-kB.78,79 For monocytes, in

addition to the inflammatory cytokines that are also produced by

activated macrophages,80 EBV also stimulates production of seve-

ral chemokines, including IFN-inducible protein-10 (IP-10), MIP-1,

monocyte chemotactic protein-1 (MCP-1), and IL-8 at the mRNA

level.77

Evasion of innate immune responses

The establishment of life-long persistence in more than 90% of the

worldwide adult human population clearly indicates that EBV has

delicately evolved to evade the innate immune response. In addition

to the above-mentioned latent genes, a portion of viral lytic antigens

are frequently detected in NPC, probably due to EBV reactivation

upon some poorly defined triggers.81,82 Recently, the mechanisms

by which individual EBV products (including both lytic and latent

genes) evade the innate immune response were reviewed.83 Here, we

focus on summarizing two common and efficient strategies to circum-

vent the innate immune response in the NPC-induced modulation of

phagocyte function and blockade of antiviral cytokines.

Modulation of phagocyte apoptosis and maturation. Subsequent to

the finding that the binding of EBV to the surface of neutrophils

induces inflammatory cytokine expression,71 Gosselin J et al. found

that EBV penetrates neutrophils and localizes to their nuclei. After

infecting neutrophils, EBV launches apoptosis by modulating the

Fas/Fas ligand (L) pathway,84 as indicated by a significant increase

in both membrane-bound Fas/Fas-L and soluble Fas-L. This study

was the first to explain why EBV cannot establish robust infection in

neutrophils. EBV also impairs the phagocytic activity of primary

monocytes by inhibiting protein kinase C (PKC) activity.85,86

Monocyte apoptosis caused by EBV contact during DC development

results in a reduction in mature DCs.87 This reduction may provide

EBV with a time window for productive replication by temporarily

delaying the onset of immune responses. In addition to the decrease in

the number of pDCs during EBV infection, the maturation of pDCs is

also compromised, as indicated by reduced secretion of TNF-a, which

could partly facilitate pDC development.88 pDCs have a dual role in

defending viral infection, by secreting a high level of type I IFNs to

inhibit viral replication directly and by initiating and tuning the spe-

cific adaptive immunity. EBV infection undermines the ability of

pDCs to mature, thereby preventing these cells from mounting anti-

viral T-cell responses.88

Blockade of antiviral cytokines. The apoptosis of innate effector cells

results in a significant reduction in IFN production. In addition, cer-

tain EBV proteins and transcripts, such as EBERs and LMP2, can

inhibit the type I IFN responses by disrupting IFN-stimulated tran-

scription89,90 and by targeting IFN receptors for degradation.91

Inducing the innate immune cells to produce antagonistic factors to

block the function of those antiviral cytokines demonstrates another

strategy by which EBV eludes the immune responses. For example, in

addition to IL-1a and IL-1b, EBV also initiates the production of their

natural inhibitor IL-1 receptor antagonist (IL-1Ra).71,91,92 IL-1Ra

competitively inhibits the binding of IL-1a and IL-1b to their recep-

tors.93 Moreover, IL-Ra is secreted approximately 3200 and 610 times

more than IL-1a and IL-1b, respectively, from EBV-stimulated neu-

trophils,92 indicating another effective mechanism by which EBV

counteracts the host innate immune response.

In addition, EBV prevents the production of prostaglandin E2

(PGE2) by monocytes by inhibiting the expression of inducible

cyclooxygenase 2 (COX-2), a critical enzyme in the PGE2 biosynthesis

pathway. This inhibition of COX-2 may be a result of EBV interfering

with the activation of the NF-kB pathway, which plays an important

role in COX-2 induction in monocytes.94 NF-kB is also critical for

TNF-a induction, and consequently, EBV suppresses TNF-a secretion

from lipopolysaccharide-treated monocytes by 70%–90%.95 Because

simple contact between EBV and monocytes upregulates TNF-a,80,96

inhibition of the NF-kB pathway after EBV replication in monocytes

may be a mechanism by which the virus shuts down further TNF-a

production. Additional evidence of this mechanism may be needed.

First, TNF-a suppression by EBV was not observed at a basal expres-

sion level, and second, the exact mechanism of this suppression may be

largely attributable to monocyte apoptosis upon EBV penetration.

THE INTERPLAY BETWEEN HOST ADAPTIVE IMMUNITY

AND EBV

Antibodies detected during EBV infection

EBV-specific antibodies, primarily immunoglobulin G (IgG) and IgA,

are detected in the sera of NPC patients. These antibodies recognize

various EBV targets, including EBV structural antigens (e.g., viral

capsid antigen-proteins VCA-p18 and VCA-p40,97 glycoproteins

gp350/220,98 and gp7899), lytic antigens (e.g., Bam HI rightward read-

ing frame 1 (BRLF1),82 Bam HI leftward reading frame 1 (BZLF1),100

and EBV-DNase101), and latent antigens (e.g., EBNA1 and LMPs102).

One recent study that enrolled a relatively larger number of samples

studied the humoral immune response to EBV-encoded tumor-assoc-

iated proteins in NPC patients. The results indicated that there exists a

stronger IgG antibody response to EBNA1 than that of LMP1, LMP2,

and BARF1. Except for EBNA1, only low IgA titers against LMP1,

LMP2, and BARF1 were present.102 The marginal immunogenicity

of LMPs and BARF1 to humoral immune responses may be due to

their intrinsic properties (for example, rapid and complete secretion of

BARF1 leaves little protein within or on the surfaces of cells for detec-

tion103) and to their limited expression on the plasma membrane.

The presence of high titers of antibodies against EBV structural and

early lytic antigens97,98,100,101,104 indicates the status of either sporadic

reactivation from latency in malignant cells or new infection of naive

cells within/surrounding the NPC tumor. However, antibodies may

not be able to effectively block EBV infection because EBV has the

capacity of spreading through cell–cell contact, which is an efficient

mode of infecting the epithelium from reactivating B cells without

releasing cell-free virions.105,106

Cellular responses to EBV infection

Cellular immunity is essential for controlling EBV during both prim-

ary and persistent phases. The complete view of EBV-specific cellular

immunity in NPC patients remains to be elucidated, despite the fact

that many novel technical approaches have been introduced to assess

CD81 T and CD41 T-cell responses to EBV.107–109

Circulating EBV-specific cytotoxic lymphocytes (CTLs) can be

detected in NPC patients,110,111 and EBV-specific memory CTL res-

ponses can be reactivated in vitro after those cells were extracted from

blood.112 Nevertheless, the antigen-specific CD81 CTLs against se-

veral consistently expressed viral lytic genes, including BZLF1,

BRLF1, BamHI-M leftward frame 1, BamHI-M rightward frame 1,
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and BamHI-A leftward frame 2, are rarely found in NPC tumor

lesions.113,114 In regard to latent antigens, Fogg MH et al. found that

CTLs targeting the EBNA1 significantly decrease in EBV-associated

NPC patients.115 It is possible that presentation of EBNA1 by major

histocompatibility complex (MHC) I molecules is diminished in

tumors; however, this interesting finding requires further validation.

For the subdominant latent antigens (LMP1, LMP2, and BARF1),

CTLs specific to these proteins can be detected in most of NPC

patients.111,116–118

CD41 T cells play a pivotal role in supporting the production of

high affinity antibodies, maintaining the number and biological func-

tion of CTLs, and possessing cytotoxic activities.119 However, the

understanding of CD41 T-cell responses to EBV is less clear due to

the small size of the CD41 compartment because of a lack of detectable

CD41 T-cell expansion during EBV infection.120 Most knowledge

concerning CD41 responses to EBV has been built on observations

from either healthy EBV carriers or in vitro experiments. For example,

specific CD41 T-cell clones or T-cell lines against EBV were evaluated

by co-culture with autologous B-lymphoblastoid cell lines or DCs

infected with recombinant vaccinia virus encoding individual lytic

or latent proteins.109 Similar to the CD81 T-cell response, a hierarchy

of immunodominance of EBV antigens has been classified. EBNA1

and EBNA3 are the dominant targets, and LMPs and BARF1 are the

subdominant targets.117,121,122 CD41 T cells specific for EBNA1,

LMPs, and BARF1 can be detected in NPC patients, albeit at low

levels.111,117

Evasion of adaptive immune responses

Switching off immunodominant viral antigen expression. EBV has

developed multiple strategies to evade cellular immune responses dur-

ing its long-term co-evolution with the host. Like all other herpes-

viruses, the major strategy EBV uses for establishing and maintaining

latency in the face of the cellular immunity, particularly the CD81 T-

cell response, is to switch off the expression of most viral genes, par-

ticularly the viral genes with strong immunogenicities or that present a

‘‘non-immunogenic’’ phenotype that makes them invisible to the

immune system. For example, several vital latent factors with high

immunodominance, such as the EBNA3 family and EBNA2,123 are

consistently absent in NPC patients. Nevertheless, when co-cultured

in vitro with autologous EBV-transformed lymphoblastoid cell lines,

the virus-specific CTLs extracted from NPC patients sufficiently

recognize antigens from the EBNA3 family.110

Impairment of the antigen-presenting HLA I or HLA II pathway. NPC

cells are positive for both HLA class I and II molecules; thus, these cells

may present viral peptides to be recognized by both CD81 and CD41 T

cells. However, EBV impairs both HLA I and HLA II antigen presenta-

tion pathways to circumvent T-cell surveillance. Notably, NPC cells

retain their antigen presentation capacity when they are cultured in

vitro.110,124

EBNA1 is the primary target for the CD41-, but not the CD81-, T-

cell response because ENBA1 is highly resistant to proteasomal diges-

tion and thus is protected from being presented by MHC I molecules

endogenously.125,126 This strategy is also utilized by latency-associated

nuclear antigen 1, a homolog of EBNA1 in Kaposi sarcoma-associated

herpes virus, to avoid being presented through the MHC class I path-

way.127 Exogenously supplied EBNA1 can be presented by MHC class I

molecules through a transporter associated with Ag processing (TAP)-

independent pathway, whereas endogenously expressed EBNA1 can

only be presented when the glycine-alanine repeat (GAr) domain of

EBNA1 is deleted.128,129 Therefore, the GAr domain of EBNA1 is

thought to control the presentation of endogenous EBNA1.

However, further results have indicated that the GAr domain itself

does not completely protect EBNA1 from presentation to CD81 T

cells.130–132

The expression of LMP1 in human cells dramatically enhances HLA

I processing;133,134 however, LMP1 is a poor CD81 T-cell target in

vivo. Additionally, overall downregulation of HLA class I antigen pre-

sentation machinery (APM) was observed in NPC biopsies.135 This

discrepancy may be explained by the finding that LMP1 induces c-

myelocytomatosis (c-Myc), which has been shown to downregulate

HLA class I APM, subsequently counteracting the stimulatory effect of

LMP1.135 In addition, the first transmembrane domain of LMP1 is

able to mediate self-aggregation to severely impair the cis-presentation

of an LMP1-derived epitope,136 demonstrating another novel mech-

anism of immune evasion.

Among the detectable EBV lytic antigens in NPC patients, BZLF1,

BamHI-G leftward frame 5 (BGLF5), and BamHI-N leftward frame 2a

(BNLF2a) are able to dysregulate the cellular immune response via

various mechanisms. BGLF5, a DNase/alkaline exonuclease (AE) gene,

exerts a host shutoff function to block the synthesis of host HLA I,

thereby limiting CD81 T-cell recognition.137 In addition, this shutoff

function of BGLF5 is also involved in repressing DNA repair, inducing

genomic instability in human epithelial cells.138 BZLF1 inhibits MHC

class II expression by suppressing the transcription of the transactiva-

tor class II, MHC, transactivator (CIITA),139 a critical transcriptional

coactivator of MHC class II expression. BNLF2a specifically affects the

presentation of immediate early and early proteins to HLA I molecules

by inhibiting TAP and surface HLA I expression.140,141

Regulation of immuno-inhibitory biomolecules. IL-10 is a well-

known cytokine with immune-suppressive function. An association

between increased IL-10 secretion and a significantly decreased num-

ber of cytotoxic T cells was observed in EBV-positive NPCs.142 Both

EBV structural proteins and EBV-encoded miRNAs are involved in IL-

10 induction. LMP1 was the first identified viral protein responsible

for IL-10 induction via the activation of p38/stress-activated protein

kinase 2 (SAPK2).143 In addition, EBER1 and EBER2 were shown to be

associated with enhanced IL-10 expression at the transcription level

through a novel signaling pathway independent of an IFN-inducible

protein kinase R (PKR).144

Decoy receptor 3 (DcR3), a recently identified molecule with

immune inhibitory function, has the capacity to induce DC apoptosis

via the formation of the death domain-containing receptor/death-

inducing signaling complex.145 DcR3 also reduces MHC class II

expression in tumor-associated macrophages.146 LMP1 was found to

upregulate DcR3 expression via the NF-kB and phosphatidyl inositol

3-kinase (PI3K) signaling pathways.147 Because NPC-associated

macrophages are positive for EBV,148 DcR3 may also be involved in

immune evasion by EBV.

In addition, B7 homolog 1 (B7-H1), a T-cell inhibitory molecule,

was upregulated during EBV infection of pDCs88 and NPC cell

lines,149 and further studies are required to explore the role of B7-

H1 in EBV immune evasion in NPCs.

Induction of T regulatory cell activation and T-cell anergy. T reg-

ulatory cells (Tregs), a subset of T cells with immune inhibitory func-

tions, work in a cell-to-cell contact manner and secrete granzyme or

cytokines such as IL-10 and transforming growth factor b (TGF-

b).150–152 Tregs are consistently detected in the circulation and tumor
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microenvironment in EBV-positive NPC, where approximately 12%

of tumor-infiltrating leucocytes (TILs) in NPC harbor a Treg pheno-

type (CD41 CD25high forkhead box P31).153 LMP1 dominantly

induces Tregs to secrete IL-10, which suppresses the proliferation of

mitogen or the withdrawal of Ag-stimulated T-effector cells and their

release of IFN-c.154 LALLFWL peptides of LMP1 show strong and

direct inhibition of T-cell proliferation and NK cytotoxicity. This T-

cell anergy is most likely attributable to the enhanced expression of IL-

10 and TGF-b, resembling Treg responses.155 Tregs are also involved

in the immune evasion of EBNA1 and LMP2 because Treg depletion

restores EBNA1- and LMP2-specific CD81 T-cell responses, as well as

the immune control of EBV-infected cells in vitro156 (Table 2).

CONCLUDING REMARKS

NPC patients maintain efficient immune functions, including innate

and adaptive immunities, to address EBV infection. However, this

ancient virus has evolved multiple elaborate strategies to counteract

and evade the host immunity, leading to its high prevalence among the

human population. Seemingly, symbiosis is established between EBV

and NPC that EBV facilitates NPC development by promoting the

Table 2 Strategies of cellular response evasion exploited by individual EBV antigens detected in NPC

Strategies Viral antigens Mechanisms References

Switch off immunodominant viral

antigens

e.g., EBNA2, the EBNA3 family Not well-known, epigenetic modification? 123

Impair the HLA I or HLA II pathway EBNA1 Blocks proteasomal HLA II pathway degradation via the GAr domain 128,129

LMP1 Induces c-Myc via IL6 and the JAK3/STAT3 pathway 135

LMP1 Self-aggregation via its first transmembrane domain 136

BZLF1 (Zta) Suppresses the class II transactivator CIITA 139

BGLF5 Directly shuts off host HLA I synthesis 137

BNLF2a Inhibits TAP and surface HLA I expression 138,139

Upregulate immune-inhibitory

molecules

LMP1 Induces IL-10 via p38/SAPK2 143

EBERs Induce IL-10 via PKR-independent pathways 144

LMP1 Induces DcR3 via NF-kB and PI3K pathways 147

EBV (specific antigen, not yet determined) Induces B7-H1 and ICOS-L 88

Recruit Tregs and induce T-cell

anergy

LMP1 Induces Tregs via chemokines (e.g., IL-10 and TGF-b) 155

LMP1 Directly inhibits T-cell proliferation 156

ICOS-L, inducible costimulatory ligand; JAK3, Janus kinase 3.

Inhibittion of inflammatory
cytokines: IFN, IL-1a, IL-1b
PGE2, etc.

Inhibition of innate
immunocytes:
Apoptosis of neutrophils
and monocyte, unmaturation of
DCs, inactivation of NK cells

Inhibition of cellular immunity:
Absence of EBNA2, EBNA3, etc.
impairment of HLA I or
HLA II pathway, induc-
tion of Tregs, IL-10,
DcR3, B7-H1,etc.

Innate immunocytes:
Neutrophils, NK cells
Monocytes/MF
DCs (pDCs and cDCs)

Inflammatory cytokines:
IFNs, IL-1, IL-6, MIP-1, MCP-1,
IL-8, IP-10, etc.

IgG, IgA, IgM specific to
EBV antigens;
CD8+,CD4+ T cells
specific to EBNA1,
LMPs BARF1, etc.

Antibodies and T cells:

Figure 1. The interaction between EBV and the host immune system in NPC patients. NPC patients preserve efficient anti-EBV immunity while EBV has evolved

multiple evasion strategies. A type of balance has been established for this interaction. The anti-EBV immune responses represent the ‘‘yang’’ or ‘‘positive’’ side of the

Taiji diagram, and the EBV evasion mechanisms represent the ‘‘yin’’ or ‘‘negative’’ side.
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growth of EBV-infected cells and by preventing apoptosis.157,158 EBV

also counteracts the host immunity by modulating numerous cellular

signaling pathways,159 and an increased number of cancer cells pro-

vides more potential neo-hosts for EBV (Figure 1).

The limited knowledge regarding the virus–host interaction in the

NPC environment and in systemic immune responses contributes to

the failure or low efficacy of most EBV-targeted immunotherapies.

More importantly, selection pressure-driven evolution constantly sti-

mulates the emergence of EBV variants,160,161 which may be more

oncogenic and less immunogenic than the parental strain. For instance,

a recent study identified an EBV variant from NPC with unusually high

tropism for epithelial cells but low tropism for B cells,162 suggesting the

existence of EBV variants with increased NPC risk.

To date, the induction of an EBV antigen-specific T-cell response

(primarily CD81 T cells) in patients with vaccines and adoptive T-cell

therapy are the two most common strategies for the immunological

treatment of EBV-associated cancers. Because targeting only one spe-

cific antigen led to limited tumor regression in NPC patients,163–166

vaccines composed of multiple EBV antigens to activate T-cell res-

ponses that are more potent has emerged as a novel strategy. In this

respect, two different teams constructed two recombinant viruses. The

recombinant virus called Ad-SAVINE incorporates peptide sets from

EBNA1, LMP1, and LMP2,167 and the other recombinant virus, called

MVA-EL, contains an EBNA1/LMP2 fusion protein.168 Phase I trials

in NPC patients showed that both of these vaccinia viruses activate

CD41 and CD81 T-cell responses; encouraging clinical progress with

full tolerance has been made.168–170

However, many questions regarding host immunity and EBV

remain to be addressed for the development of EBV-targeted therapy.

For instance, the immunodominance hierarchy of individual viral anti-

gens (particularly for EBV-encoding RNAs) and the crosstalk among

multiple signaling pathways activated by EBV should be addressed.

New technologies (for example, a molecular-based tag linkage method

our lab developed that enables haplotype phasing greater accuracy and

sensitivity for viral quasispecies determination171) with higher sensitiv-

ity and precision to examine viral quasispecies in the NPC envir-

onment are required to monitor viral evolution. Exploring novel

cellular factors or chemical substances that can reactivate EBV from

latency will provide a promising strategy for treating EBV-related

tumors by inducing cell lysis through viral reactivation. Greater atten-

tion should be given to the local suppression of EBV-specific immunity

because immunosuppression contributes greatly to NPC development.
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