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Processing of pain by the developing brain:
evidence of differences between adolescent and
adult females
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Abstract
Adolescence is a sensitive period for both brain development and the emergence of chronic pain particularly in females. However,
the brain mechanisms supporting pain perception during adolescence remain unclear. This study compares perceptual and brain
responses to pain in female adolescents and adults to characterize pain processing in the developing brain. Thirty adolescent (ages
13-17 years) and 30 adult (ages 35-55 years) females underwent a functional magnetic resonance imaging scan involving acute
pain. Participants received 12 ten-second noxious pressure stimuli that were applied to the left thumbnail at 2.5 and 4 kg/cm2, and
rated pain intensity and unpleasantness on a visual analogue scale.We found a significant group-by-stimulus intensity interaction on
pain ratings. Compared with adults, adolescents reported greater pain intensity and unpleasantness in response to 2.5 kg/cm2 but
not 4 kg/cm2. Adolescents showed greater medial–lateral prefrontal cortex and supramarginal gyrus activation in response to 2.5
kg/cm2 and greatermedial prefrontal cortex and rostral anterior cingulate responses to 4 kg/cm2. Adolescents showed greater pain-
evoked responses in the neurologic pain signature and greater activation in the default mode and ventral attention networks. Also,
the amygdala and associated regions played a stronger role in predicting pain intensity in adolescents, and activity in default mode
and ventral attention regions more strongly mediated the relationship between stimulus intensity and pain ratings. This study
provides first evidence of greater low-pain sensitivity and pain-evoked brain responses in female adolescents (vs adult women) in
regions important for nociceptive, affective, and cognitive processing, which may be associated with differences in peripheral
nociception.
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1. Introduction

Pain is a major health issue that plagues adolescence. Studies
have found that 20% to 46% of adolescents worldwide suffer

from chronic weekly pain.31,47,77 Indeed, adolescence marks a

timewhen gender differences emerge and significant increases in

the prevalence of chronic pain conditions are seen in adolescent

females,47,55,77 many of which persist into adulthood, such as

fibromyalgia,46,107 complex regional pain syndrome,1 and irritable

bowel syndrome.41 Their emergence at this stage of development

raises interesting questions about what specific changes related

to pain processing occur during puberty that make adolescent
females more vulnerable. Although the past 2 decades have seen
a great advancement in our understanding of pain in
adults,2,15,18,101 little is known about characteristics of pain
processing in adolescents. To our knowledge, no study has
directly compared pain sensitivity and brain responses to pain
between adolescents and adults. Previous studies have shown
that pain sensitivity generally decreases as children grow into
adulthood.24 One study found a rapid rise in cutaneous pain
threshold to the age of 25 years.99 This observed greater pain
sensitivity during development may involve peripheral and central
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nervous system mechanisms. On the one hand, adolescents
have a higher density of intraepidermal nerve fibers (ie, un-
myelinated nociceptors), suggesting increased nociceptive input
to the central nervous system.56,76 On the other hand,
adolescence is a critical period for brain development when the
brain undergoes a fundamental reorganization,80 permitting
various environmental influences to exert powerful effects that
could determine health outcomes in adulthood.23,50 In particular,
significant morphological and functional changes occur in
amygdala and associated regions during adolescence,36,37,40,70

which may account for heightened emotional reactivity to
aversive stimuli.13,93 Furthermore, association cortices such as
the prefrontal cortex (PFC) and the posterior parietal cortex (PPC),
which contribute greatly to forming and regulating pain experi-
ence,2,11,62 undergo continued maturation during adoles-
cence.13,32 Moreover, the default mode network (DMN),
another key player in pain perception and regulation in both
health and disease,7,8,53,58,66,95 increased intranetwork integra-
tion and internetwork segregation during adolescence.25,88

In this study, we compared psychophysical andbrain responses
to controlled noxious pressure stimulations between adolescents
and middle-aged adults. We only enrolled female participants
because most primary chronic pain conditions of adolescence
predominantly affect females,27,100 and there could be qualitative
sex differences in pain processing which would need to be
examined separately.68,69 We sought to identify the neural
processes in the brain that characterize adolescents’ pain
experience. To this end, besides standard univariate analyses,
we conducted whole-brain multilevel mediation analyses and
computed pain-evoked responses in large-scale cortical net-
works106 and the neurologic pain signature (NPS).101 TheNPSwas
used as a summarymeasure of nociceptive processing at the brain
level because it is particularly sensitive to nociception-dependent
physical pain but not other aversive experiences.51,59–61,63,101,102

We expected that, compared with adults, adolescents would
show: (1) greater pain sensitivity accompanied by greater pain-
evoked nociceptive-specific NPS responses and (2) greater
responses in brain regions involved in regulating emotional
responses and cognitive appraisal of painful aversive stimuli, such
as the amygdala, the medial and lateral prefrontal cortex, and the
DMN, all also undergoing maturation during adolescence.

2. Materials and methods

2.1. Participants

This study included 30 healthy adolescent girls (13-17 years old,
meanageof 16.0061.25 years) and30healthywomen (35-55 years
old, mean age of 44.676 6.29 years) without acute pain (assessed
by the 0-10 numeric pain rating scale) and any history of psychiatric,
neurological, or chronic pain disorders. Before being enrolled in the
study, all adult participants and the parents of the adolescent
participants provided written informed consent. In addition, all
adolescent participants provided informed assent. The study pro-
tocol and consent forms were approved by Cincinnati Children’s
Hospital Medical Center Institutional Review Board (study ID: 2017-
7771). All participants completed the functional magnetic resonance
imaging (fMRI) task and received compensation for their participation.
All the data needed for this study were collected between February
2018 and December 2019 and used for subsequent analyses.

2.2. Study procedures

This study consisted of 2 sessions. Session 1 was conducted at
the Schubert Research Clinic, and it involved collecting

demographic and biometric information and familiarizing the
participants with the pressure stimulation device and the
pressure pain fMRI task. Specifically, the experimenter demon-
strated to the participants how the pressure stimulation device
works and explained the pressure pain task in detail. Noxious
pressure was applied by the experimenter using a hand-held
algometer with the same stimulus intensity, duration, and interval
as the stimuli administered by the pressure pain device during the
fMRI scans. Then the participants were asked to practice the
rating task on a laptop computer. Session 2, which was
conducted at the Imaging Research Center, immediately
followed session 1 and involved functional and anatomical brain
MRI scans.

2.2.1. Pressure stimulation device

As in previous studies,34,62,63,84 a calibrated computer-controlled
pneumatic device, which can reliably transmit preset pressure to
1-cm2 surface, was used to deliver noxious pressure stimuli to the
base of the participants’ left thumbnail. The experimenter
ensured that the base of the participant’s thumbnail fit the
pressure stimulation device right before each fMRI scan started.
Noxious pressure stimuli were applied at 2 stimulus intensities: a
low intensity of 2.5 kg/cm2 and a medium intensity of 4 kg/cm2.

2.2.2. Noxious pressure stimulation functional magnetic
resonance imaging task

We adopted a block design for our noxious pressure stimulation
fMRI task, programmed and presented to the participants using the
E-Prime 3.0 software (Psychology Software Tools, Pittsburgh, PA).
As shown in Figure 1, this task composed of 2 consecutive fMRI
runs (ie, scanning sequences), each containing 6 trials (3 at each
pressure level, in a mixed pseudorandom order). Each trial began
with a rest period with pseudorandom duration (range: 11-20
seconds), followed by a brief auditory stimulus (200-ms tone), a 3- to
6-second anticipatory period, and then a fixed 10-second pressure
stimulation period. After an 8- to 10-second poststimulation rest
period, the participants were asked to rate pain intensity (“How
intense was the pain you just experienced?”) and pain unpleasant-
ness (“How unpleasant was the pain you just experienced?”) on
computerized visual analogue scales from 0 (not painful/unpleasant
at all) to 100 (most painful/unpleasant imaginable).81,82 The
participants were instructed to move the cursor on the scales using
an MRI-compatible trackball until the position that best describes
their pain experience and click the button to submit their ratings. The
numbers between 0 and 100 on the scales were not visible to the
participants.

2.3. Magnetic resonance imaging data acquisition

All MRI data for this study were acquired using a Philips Ingenia
3.0T MR System (Philips Healthcare, Best, The Netherlands) with
a 32-channel head coil at Cincinnati Children’s Hospital Medical
Center. Structural images of the brain were acquired using the
standard T1-weighted gradient echo sequence with the following
scan parameters: TR 5 10 milliseconds, TE 5 1.8, 3.8, 5.8, and
7.8 milliseconds, field of view 5 256 3 224 3 200 mm, voxel
size5 13 13 1mm, number of slices5 200, flip angle5 8˚, slice
orientation 5 sagittal, and total scan duration 5 4:42 minutes.
Blood oxygen level–dependent (BOLD) fMRI data were collected
using T2*-weighted echo planar imaging sequence with multi-
band sensitivity encoding (SENSE) technique.26,54,83 Scan
parameters for the BOLD fMRI acquisition were as follows:
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multiband acceleration factor 5 4, TR 5 650 milliseconds,
TE 530 milliseconds, field of view 5 200 mm, flip angle 5 53˚,
voxel size 52.5 3 2.5 3 3.5 mm, slice orientation 5 transverse
(parallel to the orbitofrontal cortex line), slice thickness5 3.5mm,
number of slice5 40 (provided whole-brain coverage), number of
volumes5 522, dummy scans5 12, and total scan duration5 5:
42 minutes.

2.4. Data analyses

2.4.1. Statistical analyses of behavioral data

Mixed-design analysis of variance (ANOVA) with “group” as a
between-subject variable and “pressure” as a within-subject
variable was performed using R software (version 3.6.2, R
Foundation for Statistical Computing, Vienna, Austria) to assess
differences in pain intensity and unpleasantness under 2
experimental conditions (ie, noxious pressure stimuli at 2.5 and
4 kg/cm2) between the adolescent group and the adult group.
Post-hoc between-group comparisons for each experimental
condition were made using Fisher least significant difference
(LSD) method. Trial-to-trial variability in pain ratings was de-
termined by first computing SDs across the 6 trials at each
stimulus intensity (2.5 or 4 kg/cm2) for each participant and then
making between-group comparisons using 2-sample t tests.

2.4.2. Preprocessing of neuroimaging data

The neuroimaging data were preprocessed using FSL (FMRIB
Software Library version 6.0.3; theAnalysis Group, FMRIB,Oxford,
United Kingdom)43,92 and AFNI (Analysis of Functional Neuro-
images version 20.3.02; Medical College of Wisconsin, WI).21 For
the T1-weighted structural image of each participant, brain
extraction was performed using FSL’s BET (Brain Extraction
Tool),91 then bias correction and segmentation were done using
FSL’s FAST (FMRIB’s Automated Segmentation Tool).110 The
brain extracted image was then normalized and resampled to the
2-mm isotropic Montreal Neurological Institute (MNI) ICBM 152
nonlinear sixth-generation template28 using FSL’s FLIRT (FMRIB’s
Linear Image Registration Tool).42,44 Each participant’s functional
(BOLD) scanswere preprocessed in the following steps: First, brain
extraction was performed using FSL’s BET.91 Next, outlying
functional volumes (ie, spikes) were detected using the DVARS
metric within FSL’s “fsl_motion_outliers.”79 Motion correction of
the BOLD time series was done using MCFLIRT.42 The motion-
corrected data were high-pass filtered at 0.01 Hz (100 seconds)
and smoothed with a 6-mm full-width-at-half-maximum (FWHM)
filter using AFNI’s 3dBandpass. Intensity normalization (ie, scaling

each functional volume by its mean global intensity) was applied to
minimize confounds arising from pain-induced global cerebral
blood flow fluctuations.16,17,108,109 The intensity-normalized data
were then aligned to theMNI template28 by first coregistering it with
the participant’s T1 structural MPRAGE image using FSL’s FLIRT
(6-parameter rigid body model).42,44

2.4.3. First-level general linear model analyses

Wemodeled each run of the preprocessed functional MRI data for
each participant using the general linear model (GLM) approach as
implemented in FSL’s “fsl_glm”104 to estimate each participant’s
brain responses to pain in the following 2 ways: (1) modeling the 3
pain periods associated with 2.5 kg/cm2 stimuli as one regressor
and the other 3 pain periods associated with 4 kg/cm2 stimuli as
another regressor to prepare the data for higher-level GLM
analyses and neurologic pain signature (NPS) analyses; (2)
modeling each of the 6 pain periods as a separate regressor to
be used in the whole-brain multilevel mediation analyses. In
addition to the pain period regressors, our GLM model included
regressors for the anticipatory periods, postpain periods, and pain
rating periods. The remaining “rest” period was used as the implicit
baseline. Finally, 6 motion parameters (3 for translational motion
and 3 for rotational motion) and outlying volumes (spikes) were
included as nuisance regressors (Figure S1, available as supple-
mental digital content at http://links.lww.com/PAIN/B559).

2.4.4. Higher-level general linear model analyses

The 2 runs of each participant’s first-level GLM results, which
included estimated contrasts of parameter estimates (COPEs)
and their variances (VARCOPEs), were combined at the second
level (single-subject level) using the fixed-effects modeling in FSL
with “flameo.”103 Then at the third level (group-level), mixed
effects modeling (FLAME 1 1 2)103 was used to compute each
group’s mean brain responses to pressure pain (1-sample t test)
and between-group differences (2-sample t test) for each
condition (2.5 and 4 kg/cm2). The results of third-level analyses
were corrected for multiple comparisons across the whole brain
using FSL’s “cluster” tool. Clusters of voxels were identified using
a threshold of Z. 3.1, and their statistical significance (P, 0.05)
was estimated by cluster-based inference according to Gaussian
random field theory.105

2.4.5. Pain-evoked neurologic pain signature responses

As a multivariate brain pattern that specifically responds to
somatic pain rather than to other aversive experiences, the NPS

Figure 1. Graphic representation of the noxious pressure stimulation functional magnetic resonance imaging task.

September 2022·Volume 163·Number 9 www.painjournalonline.com 1779

http://links.lww.com/PAIN/B559
www.painjournalonline.com


was used to further investigate nociceptive-specific neural
responses in adolescents and adults. A single scalar value
summarizing each participant’s NPS signature response was
computed for the 2 pressure pain conditions (ie, 2.5 and 4 kg/
cm2) in each run, respectively. Specifically, we computed the dot
product of the voxel weights within the predefined NPSmask and
the contrast image of parameter estimates from first-level GLM
analyses for each subject and run using custom code developed
in Python (version 3.7.4; Python Software Foundation, OR) that
uses the Nibabel10 and Numpy38 packages. Next, the NPS
signature responses for the 2 runs were averaged for each
participant. Last, a group by pressure mixed ANOVA was
performed using R software (version 3.6.2; R Foundation for
Statistical Computing, Vienna, Austria) to compare themeanNPS
responses to noxious stimuli at 2.5 and 4 kg/cm2 between the
adolescent and adult groups. Post-hoc between-group compar-
isons for each stimulus intensity were made using Fisher’s LSD
method. This is the first time that the NPS has been applied to
data from adolescents. To determine the performance of NPS
responses in predicting pain in adolescents, we calculated the
Pearson correlation coefficients between increases in NPS
responses from 2.5 to 4 kg/cm2 and concomitant increases in
pain intensity ratings for adolescents and adults. Then we did a
Fisher r to z transformation and compared the z statistics between
the 2 groups.

2.4.6. Pain-evoked neural responses in large-scale brain
networks

To assess how pain-evoked neural responses mapped onto
large-scale functional brain networks, we computed the dot
product, using our python code, of each participant’s contrast
images of parameter estimates for each run (ie, “pressure pain
at 2.5 kg/cm2” and “pressure pain at 4 kg/cm2”) and
predefined masks of the previously identified 7 major cortical
resting-state networks,106 including the somatomotor net-
work, the default mode network, the frontoparietal network,
the limbic network, the ventral attentional network, the dorsal
attentional network, the limbic network, and the visual
network. Then, the responses within each brain network for
each run were combined by taking an arithmetic mean at the
individual participant level, which resulted in a single-scalar
value representing a summary metric of neural responses to
pain across the entire functional brain network. Finally,
between-group comparisons were performed in R software
for each network and each condition using 2-sample t tests,
and P values were FDR-corrected for multiple comparisons.

2.4.7. Whole-brain multilevel mediation analyses

First-level contrast images for the single-trial pain period
regressors for each participant were carried forward to a
multilevel mediation analysis model. To avoid that single-trial
estimates could be driven bymovement artifacts or other sources
of noise, we examined variance inflation factor (VIF) of all trial
estimates and the maximum VIF was 3.40. Because previous
studies only discarded those trials with a VIF of 5 or more,48,59,61

we included all trials for subsequent analyses. We then tested
relationships between conditions (noxious stimulus intensity of 4
vs 2.5 kg/cm2), single-trial pain-evoked brain responses (contrast
images for each trial), and pain intensity ratings across individual
trials using multilevel mediation analysis found in the Mediation
Toolbox (canlab.github.io) and implemented in MATLAB (version
R2019b, MathWorks, MA).4,5,48,59 Multilevel mediation analysis

identifies brain regions that show partially independent, but not
orthogonal, effects: (1) brain regions that show activity increases
or decreases during high vs low painful stimulation (path a), (2)
brain regions that predict changes in pain intensity (path b) even
after controlling for path a, and (3) mediating regions (path a3 b),
that is, regions most directly associated with both the exper-
imental manipulation (high vs low painful stimulus) and the
variations in pain ratings. The idea underlying “mediation” is that
painful stimulus intensity has an effect on pain perception that can
be decomposed into 2 constituent pathways: painful stimulus
intensity affects the brain response in some regions, which in turn
leads to changes in pain perception. Some other regions that
respond to stimulus intensity (path a) might not correlate with pain
perception. In this case, they would not be mediators because
mediation requires both stimulus and pain effects (controlling for
stimulus) to be present. Likewise, some areas that correlate with
pain perception (path b) might not respond to stimulus intensity.
These areas will also not appear as mediators. In this study, we
were specifically interested in path b, showing activation
increases that predict greater pain reports at the single trial level
even after controlling for stimulus intensity, and path a 3 b of
significant brain mediators of the effect of stimulus intensity on
pain perception. The resulting activation maps were thresholded
at q , 0.05 false discovery rate (FDR)-corrected within an
extensive whole-brain gray-matter mask including 352,328
voxels, as previously done by our group and others.4,48,59,61 To
test the effect of group on the mediation paths of interest, we also
added a second-level moderator (adolescents. adults), and the
results of between-group comparisons were thresholded at P ,
0.001.4,48 To facilitate interpretation of the functional maps,
adjacent voxels to a corrected cluster were also displayed at
lower thresholds of P , 0.005 uncorrected.

3. Results

3.1. Adolescents have greater pain sensitivity than adults to
low level of noxious pressure

We analyzed pain ratings in response to noxious pressure stimuli
for each group and pressure intensity level. Pain intensity and pain
unpleasantness ratings to stimuli at 2.5 kg/cm2 were 22.71 6
14.68 (mean 6 SD) and 20.92 6 13.59 in adolescents and
13.75 6 9.93 and 12.29 6 11.45 in adults, respectively. Pain
intensity and pain unpleasantness ratings to stimuli at 4 kg/cm2

were 31.646 18.91 and 32.316 19.39 in adolescents and 29.83
6 17.32 and 27.796 16.62 in adults, respectively (Fig. 2). Then
we performed mixed-design ANOVA with “group” as the
between-subject factor and “pressure” as the within-subject
factor for pain intensity and pain unpleasantness ratings,
respectively. As expected, we found a significant main effect of
pressure on pain intensity (F 5 92.09, P , 0.0001) and pain
unpleasantness ratings (F 5 95.42, P , 0.0001), indicating that
pain ratings increased with the rise of pressure level. We also
observed a trend for a main effect of group on pain un-
pleasantness ratings (F 5 3.04, P 5 0.087) but not on pain
intensity ratings (F 5 2.00, P 5 0.168). Moreover, we found a
significant group 3 pressure interaction effect on pain intensity
ratings (F 5 7.52, P 5 0.008), indicating that increases in pain
ratings with rise in pressure level are different between
adolescents and adults. The interaction effect was not significant
for pain unpleasantness (F5 2.23, P5 0.141). After ANOVA, we
made post-hoc between-group comparisons for pain intensity
and unpleasantness at each pressure level using Fisher LSD
method. Adolescent participants reported significantly greater
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pain intensity (t5 2.23, P5 0.030) and pain unpleasantness (t5
2.15, P 5 0.036) at 2.5 kg/cm2 than adult participants. Pain
ratings in adolescents did not differ from adults in response to
stimuli at 4 kg/cm2 (t 5 0.45, P 5 0.655 for pain intensity and
t 5 1.12, P 5 0.265 for pain unpleasantness). These findings
suggest that adolescents are more sensitive than adults to low-
level, peri-threshold noxious pressure stimuli.

Finally, we compared trial-to-trial variability of pain intensity
ratings between adolescents and adults. At 2.5 kg/cm2, mean
SDs for the adolescent and adult groups were 6.95 and 6.54,
respectively. The between-group difference was not statistically
significant (t 5 0.34, P 5 0.74). At 4 kg/cm2, mean SDs for the
adolescent and adult groups were 8.14 and 8.67, respectively.
The between-group difference was not statistically significant
(t 5 20.43, P 5 0.67).

3.2. Characterization of brain responses to pain
in adolescents

3.2.1. Adolescents exhibit greater pain-evoked neural
responses than adults

Pain-evoked brain responses in adolescents involved brain
regions similar to those found in adults, including bilateral
insula/central operculum, anterior cingulate cortex, parietal
operculum (S2), supramarginal gyrus, primary sensorimotor
cortex (S1/M1), supplementary motor area, dorsolateral pre-
frontal cortex, superior temporal gyrus, basal ganglia, thalamus,
periaqueductal gray matter, and amygdala. Pain-evoked deac-
tivations were found in the cerebellum, fusiform gyrus,
precuneus/posterior cingulate cortex, and occipital visual cortex.
Additionally, adolescents showed significant pain-evoked acti-
vation in medial prefrontal cortex and deactivation in the medial
orbitofrontal cortex, whichwere not found in adults (Fig. 3, Tables
S1-S4, available as supplemental digital content at http://links.
lww.com/PAIN/B559). When statistically compared, adolescents
exhibited significantly greater activation than adults in the
dorsolateral prefrontal cortex, the dorsomedial prefrontal cortex,
and supramarginal gyrus, along with greater deactivation in the
medial orbitofrontal cortex, in response to noxious pressure

stimuli at 2.5 kg/cm2. In response to noxious pressure stimuli at 4
kg/cm2, adolescents showed greater activations in rostral
anterior cingulate and dorsomedial prefrontal cortex, along with
greater deactivations in the cerebellum and fusiform gyrus (Fig. 3,
Tables S5-S6, available as supplemental digital content at http://
links.lww.com/PAIN/B559).

3.2.2. Adolescents have stronger neurologic pain signature
responses during pain

The NPS is a map of brain voxel weights that is sensitive and
specific to physical pain as opposed to other related, yet different,
negative experiences.51,59–61,101 The NPS includes significant
positive predictive weights in the posterior and anterior insula, the
secondary somatosensory cortex, the ventrolateral and medial
thalamus, and the dorsal anterior mid-cingulate cortex. It also
includes significant negative predictive weights in the middle and
inferior occipital gyrus, precuneus, and ventromedial prefrontal
cortex (Fig. 4A).101 We applied these NPS weights to each
participant’s contrast image for the pain period and computed
pain-evoked NPS responses by pressure and group. As
expected, the NPS was strongly expressed in both groups
during pressure pain at 2.5 kg/cm2 (adolescent group: 3054.60
6 1236.72, t 5 13.53, P , 0.0001; effect size Cohen d 5 2.47;
adult group: 2307.66 6 1193.18, t 5 10.59, P , 0.0001, d 5
1.93) and 4 kg/cm2 (adolescent group: 3971.96 6 1261.17, t 5
17.25, P , 0.0001, d 5 3.15; adult group: 3002.49 6 1329.82,
t 5 12.37, P , 0.0001, d 5 2.26) (see a visual summary of the
NPS results in Fig. 4B). The mixed-design ANOVA showed a
significant main effect of group (F 5 8.04, P 5 0.006) and
pressure (F5 48.00,P, 0.0001) onNPS responses. Unlike what
we found for pain intensity ratings, we did not find an interaction
effect (F 5 0.92, P 5 0.343) for NPS responses. Post-hoc
between-group comparisons showed that adolescents had
significantly stronger NPS responses to painful stimuli than adults
at both 2.5 kg/cm2 (t 5 2.30, P 5 0.025, effect size Cohen d 5
0.61) and 4 kg/cm2 (t 5 2.99, P 5 0.004, d 5 0.75).

We also compared the Pearson correlation coefficients
between increases in NPS responses from 2.5 to 4 kg/cm2 and

Figure 2. Pain intensity and pain unpleasantness ratings to noxious pressure stimuli by pressure and group. (A) Adolescents reported higher pain intensity than
adults in response to noxious pressure stimuli at 2.5 kg/cm2. However, this between-group difference disappeared at 4 kg/cm2.We found a significant main effect
of pressure and an interaction effect of group by pressure on pain intensity ratings (see main text for statistics). (B) Adolescents reported higher pain
unpleasantness than adults to noxious pressure stimuli at 2.5 kg/cm2 but not to stimuli at 4 kg/cm2. The group by pressure interaction effect on pain
unpleasantness was not significant, but we found a significant main effect of pressure and a trend toward significant main effect of group (see main text for
statistics). Error bars represent SEM. *P , 0.05 in post-hoc t test following mixed-design ANOVA. ANOVA, analysis of variance.
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concomitant increases in pain intensity ratings for adolescents
and adults. We found no significant between-group differences in
this correlation measure (z 5 0.03, P 5 0.98), indicating that the
NPS works similarly for adolescents and adults when predicting
pain intensity increases associated with increased stimulus
intensity across subjects. The within-group correlations were
nonsignificant: the correlation coefficient rwas 0.19 (t5 1.03,P5
0.31) in the adolescent group and 0.20 (t5 1.07, P5 0.29) in the
adult group. These results are in line with our expectations
because the NPS was tailored to predict within-subject and not
across-subjects variability in pain ratings.

3.2.3. Adolescents show greater pain-evoked neural
responses in the default mode network and the ventral
attention network

We examined pain-evoked activation differences between
groups within 7 large-scale cortical resting-state networks as
identified in the study by Yeo and colleagues (N 5 1000

participants).106 A single scalar value was computed for each of
these 7 networks in each participant, respectively, by taking the
dot product of contrast images of parameter estimates for the
pain period and the binary mask of the network (Fig. 5). For both
pressure pain conditions, significant group activation was found
in the somatomotor network, the frontoparietal network, and the
ventral attentional network (Table S7, available as supplemental
digital content at http://links.lww.com/PAIN/B559). In addition,
deactivations were found in the dorsal attentional network and
the visual network. The default mode network was found to be
significantly deactivated only in adults in response to 4 kg/cm2

(Table S7, available as supplemental digital content at http://links.
lww.com/PAIN/B559). Importantly, adolescents showed greater
pain-evoked neural responses in ventral attention (2.5 kg/cm2:
t 5 2.94, uncorrected P 5 0.005, FDR-corrected P 5 0.033; 4
kg/cm2: t 5 3.07, uncorrected P 5 0.003, FDR-corrected
P 5 0.033) and default mode networks (2.5 kg/cm2: t 5 2.14,
uncorrected P5 0.037, FDR-corrected P5 0.104; 4 kg/cm2: t5
2.79, uncorrected P 5 0.007, FDR-corrected P 5 0.033) when

Figure 3. Pain-evoked brain responses in adolescent group, adult group, and between-group comparisons. (A) Brain responses to noxious pressure stimuli at 2.5
kg/cm2. Adolescents showed greater activation than adults in dorsolateral and dorsomedial PFC, and supramarginal gyrus, along with greater deactivation in the
medial orbitofrontal cortex, in response to stimuli at 2.5/cm2. (B) Brain responses to noxious pressure stimuli at 4 kg/cm2. Adolescents showed greater activation
than adults in rostral anterior cingulate cortex and dorsomedial prefrontal cortex. Clusters of voxels were identified using a threshold of Z. 3.1, and their statistical
significance (P , 0.05) was estimated according to Gaussian random field theory (Worsley et al., 1992). 105 X, Y, Z are MNI coordinates.
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compared with adults (Table S7, available as supplemental digital
content at http://links.lww.com/PAIN/B559). Adolescents also
exhibited a trend toward greater deactivations in visual network
during pain caused by pressure stimuli at 4 kg/cm2 (t 5 2.50,
uncorrected P 5 0.016, FDR-corrected P 5 0.053).

3.2.4. Pain-evoked brain activation in limbic and prefrontal
regions predict and mediate pain perception in adolescents

To identify the brain systems that (1) most strongly predict pain
perception in adolescents even after controlling for stimulus
intensity and (2) mediate the effects of noxious stimulus intensity
on pain perception in adolescents, we conducted whole-brain
multilevel mediation analyses across trial-by-trial estimates of
brain and behavioral responses during pain.4,5,48,59

Our mediation model included stimulus intensity as the pre-
dictor, single trial pain-evoked brain activity as themediating factor,
and pain intensity ratings as the outcome. Group (adolescent vs
adult) was included as the second-level moderator to investigate
adolescent vs adult significant group changes (Fig. 6).

The results for path b in adolescents showed that greater
activation of the amygdala and parahippocampal gyrus bilaterally
significantly predicted greater pain perception above and beyond
the effects of stimulus intensity (Fig. 7A). Other significant regions
for path b in adolescents included the posterior insula, secondary
somatosensory cortex, primary sensorimotor cortex in the
paracentral lobule, dorsolateral prefrontal cortex, midcingulate
cortex, temporal cortex, lateral occipital cortex, and putamen
(Table S8, available as supplemental digital content at http://links.

lww.com/PAIN/B559). Interestingly, we did not find pain-evoked
neural responses in amygdala and parahippocampal gyrus as
strong predictors of greater pain perception (path b effect) in
adults (Fig. 7B and Table S9, available as supplemental digital
content at http://links.lww.com/PAIN/B559). Furthermore, re-
sults from the second-level moderator analysis showed that the
bilateral parahippocampal gyrus and clusters in the amygdala/
hippocampus, midcingulate cortex, paracentral lobule, premotor
cortex, and temporal cortex were significantly stronger predictors
of pain intensity in adolescents than in adults (Fig. 7C and Table
S10, available as supplemental digital content at http://links.lww.
com/PAIN/B559). For the second-level moderator analyses, we
chose a more lenient uncorrected P , 0.001 threshold at the
voxel level as in previous studies.48

The results for path a3 b in adolescents showed that the brain
mediators of noxious stimulus intensity on pain perception
involved mostly regions that were significantly activated during
pain, including the amygdala/hippocampus, parahippocampal
gyrus, prefrontal regions, midcingulate cortex, supramarginal
gyrus, and ventral striatum (Fig. 8A and Table S11, available as
supplemental digital content at http://links.lww.com/PAIN/
B559). The observed mediation effect in these regions indicates
that greater increases in pain-evoked activation during high vs
low pressure in such regions were also predictive of larger
increases in pain intensity ratings (even after controlling for
pressure intensity) in adolescents. The results for path a 3 b in
adults seem a bit more spatially scattered when visually
compared with adolescents but does not include dorsomedial
prefrontal cortex and parahippocampal gyrus (Fig. 8B and Table
S12, available as supplemental digital content at http://links.lww.
com/PAIN/B559). Importantly, clusters within the dorsomedial
PFC and right ventrolateral PFC, parahippocampal gyrus,
midcingulate cortex, and temporal cortex showed a significant
moderator effect (Fig. 8C and Table S13, available as supple-
mental digital content at http://links.lww.com/PAIN/B559), in-
dicating that these regions were stronger mediators of subjective
pain perception in adolescents than in adults. Consistent with our
previous GLM results showing greater activation of the medial
and lateral PFC in adolescents than in adults, these findings
suggest a role for these regions in more strongly contributing to
pain perception in adolescents.

4. Discussion

To our knowledge, this is the first study that directly compares
pain perception and brain responses to acute experimental
noxious stimuli between adolescents and adults. We found that,
compared with adult women, adolescent females were more
sensitive to painful pressure at low stimulus intensities and
showed remarkably stronger pain-related responses of NPS, an
fMRI-based brain marker for acute physical pain perception.101

We also found that regions within themedial prefrontal cortex, the
default mode network, the amygdala, and associated hippo-
campal and striatal regions were more strongly activated during
pain or showed a greater contribution to predicting pain
experience in adolescents. Taken together, the findings suggest
that adolescence particularly in females is a developmental period
characterized by increased sensitivity to pain, potentially through
2 mechanisms: (1) greater nociceptive signal processing at the
central nervous system (CNS) level, which may reflect (at least in
part) greater peripheral input to the CNS, and (2) greater
involvement of core brain regions for aversive emotion appraisal,
regulation, affective learning, and memory. The hyperrepresen-
tation of acute pain in the adolescent female brain may underlie

Figure 4. The neurologic pain signature (NPS) pattern and pain-evoked NPS
responses. (A) The NPS, an fMRI-based brain signature for physical pain, is a
map of brain voxel weights that can predict pain intensity at the individual person
level (Wager TD et al., 2013). Voxels in yellow represent positive predictive
weights, whereas voxels in blue represent negative predictive weights. (B) Both
adolescents and adults showed significant pain-evoked NPS responses.
Adolescents had greater NPS responses than adults to noxious pressure stimuli
at both 2.5 and 4 kg/cm2. Error bars represent SEM. *P, 0.05 in post-hoc t test
following mixed-design ANOVA. ANOVA, analysis of variance.
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greater vulnerability to acute painful experiences and associated
aversive memories during adolescence. Futures studies are
warranted to further establish this association, its underlying

neurobiology, and its relationship with the steep increase of bodily
pains that is observed, particularly in females, in the transition to
adolescence.

Figure 5. Pain-evoked neural responses within 7 major resting-state cortical networks (as described in Yeo BTT et al., 2011) and the brain regions forming the
ventral attention network and the default mode network. (A) Polar plots comparing pain-evoked brain responses to noxious pressure stimuli at 2.5 and 4 kg/cm2

between adolescent group and adult groupwithin 7major cortical networks. The numerical values are the groupmeans of the dot product of the predefinedmasks
of these networks and each participant’s contrast images of parameter estimates for the pain period (2.5 or 4 kg/cm2). *P, 0.05, **P, 0.01 in 2-sample t test. (B)
Representation of the brain regions forming ventral attention network and default mode network (Yeo BTT et al., 2011). AC, anterior cingulate cortex; AG, angular
gyrus; IFG, inferior frontal gyrus; Ins, insula; ITG, inferior temporal gyrus; MPFC, medial prefrontal cortex; MTG, middle temporal gyrus; M1, primary motor cortex;
Op, Operculum; PC, Precuneus; PCC, posterior cingulate cortex; STG, superior temporal gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus;
TPJ, temporoparietal junction.

Figure 6.Whole-brain multilevel mediation model, with stimulus intensity as the predictor, single trial pain-evoked brain activity as the mediating factor, and pain
intensity ratings as the outcome. Group (adolescent vs adult) was included as the second-level moderator to investigate adolescence-induced changes.
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We found a group by stimulus intensity interaction effect
predicting pain intensity ratings, suggesting that the heightened
pain sensitivity in adolescents is stimulus-intensity-dependent.
Specifically, adolescents reported greater pain intensity and
unpleasantness than middle-aged adults in response to low-
intensity peri-threshold noxious stimuli (at 2.5 kg/cm2). This
finding is in line with the observation that pain threshold generally
increases with age.99 It suggests that adolescents are more
sensitive to noxious pressure than adults at low stimulus
intensities. However, we also observed that this difference in
pain perception between adolescents and adults disappeared as
the stimulus intensity increased to 4 kg/cm2. The underlying
mechanisms for increased sensitivity to low noxious pressure in

adolescents could be related to a greater density of nociceptor-
containing sensory nerve fibers found in their skin or deep
tissue.45,56 However, this possibility does not readily explain the
observed stimulus intensity dependence of pain sensitivity in
adolescents. The mechanisms might also involve the central
nervous system, specifically the brain, where the pain perception
is generated and modulated.

The standard massive univariate GLM analyses showed that
adolescents exhibited greater pain-evoked activation in the PFC
(medial and middle frontal gyrus) and the PPC (supramarginal
gyrus) in response to low-intensity noxious pressure. The PFC
and the PPC are often activated during acute experimental
pain3,22,49,73,98 and have been associated with cognitive aspects

Figure 7.Brain activity predictive of higher pain intensity ratings controlling for stimulus intensity. (A) Brain predictors for pain intensity ratings in adolescents (path b
effect). (B) Brain predictors for pain intensity ratings in adults (path b effect). (C) Differences between adolescents and adults in brain predictors of higher pain
intensity ratings (group moderated path b effect: adolescent. adult). Amg, amygdala; CB, cerebellum; dlPFC, dorsolateral prefrontal cortex; HC, hippocampus;
ITG, inferior temporal gyrus; LOC, lateral occipital cortex; M1, primary motor cortex; MCC, medial cingulate cortex; mPFC, medial prefrontal cortex; MTG, middle
temporal gyrus; OFC, orbitofrontal cortex; Opl, operculum; PCL, paracentral lobule; PHG, parahippocampus; pIns, posterior insula; PMC, premotor cortex; Ptm,
putamen; S2, secondary somatosensory cortex; SMA, supplementary motor area; STG, superior temporal gyrus; SPL, superior parietal lobule; Thl, thalamus.
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of pain perception such as spatial attention and evaluation of the
spatial location of noxious stimuli.57,75 Both regions are part of the
association cortex that is undergoing dynamic maturation during
adolescence through synaptic pruning.13,32,50 Our finding is
consistent with the results of previous fMRI studies showing
greater PFC and PPC activation in adolescents than in adults
during cognitive tasks.14,64 The increased pain-evoked brain
activation of these brain regions might be associated with the
firing of an excessive number of synapses that are still waiting to
be pruned. It may also reflect, at least in part, a compensatory
brain response to more nociceptive input.

We then compared the pain-evoked responses in the NPS, an
fMRI-based spatial andmagnitude pattern for perception of acute
physical pain,101 between adolescents and adults. Adolescents
showed stronger NPS responses to both low and high levels of
noxious pressure than adults (ie, 2.5 kg/cm2 and 4 kg/cm2). We
interpret this finding as suggesting that adolescents have an
overall increase in nociception-related signal processing in the
brain. Again, the underlying mechanisms may involve adoles-
cents’ relative hypersensitivity in the central or peripheral nervous
system. Interestingly, we did not find a group by stimulus intensity
interaction effect for NPS responses as we found for subjective
pain ratings. This implies that the greater sensitivity to lower
stimulus intensities in adolescents may involve pain-related
neural processes not reflected in NPS.

To further identify these processes, we compared pain-evoked
neural responses within each of the 7 previously identified large-
scale cortical networks.106 We found that adolescents showed
greater responses within the DMN and the ventral attention
network (VAN). The DMN is composed of medial PFC, the
posterior cingulate cortex (PCC)/precuneus, the lateral parietal
cortex, and parahippocampal gyrus and characterized by being

active when a person is at rest and being deactivated during
externally oriented tasks.9,29,35,85,90 Regions of DMN, particularly
the medial PFC, are also found to be activated during internal
mentation such as autobiographical memory recall12,65,94 and
tasks associated with social or self-referential processing.30,86

Core regions of DMN (medial PFC, PCC) are typically deactivated
during acute experimental pain.2,49 The paradoxical pain-evoked
activation in the medial PFC in adolescents could reflect greater
self-referential processing while they experience acute pain,
possibly associated with retrieving pain-related aversive memo-
ries. This may also reflect a greater recruitment of top-down pain
regulatory mechanisms74 in response to more nociceptive signal
processing in adolescents as evidenced by their relatively high
(compared with adults) expression of the NPS. The VAN includes
regions in the right-lateralized temporoparietal junction (including
supramarginal gyrus and superior temporal gyrus), ventrolateral
frontal cortex, anterior insula, and anterior cingulate cortex, and is
typically activated by salient sensory stimuli, such as pain.19,20,71

This network is also often known as the salience network.52,87

The VAN has been functionally associated with breaking one’s
attention from the current task and reorienting it to unexpected
salient external stimuli (ie, bottom-up processing).19,89 The
observed increased pain-evoked VAN responses in adolescents
may suggest greater attentional reorienting to noxious stimuli
during this developmental period. This could be interpreted as
immature, less-efficient functioning of the associative cortices
that encompass the VAN or a compensatory response to more
nociceptive input.

Lastly, using the statistically robust multilevel mediation
approach,4,5,48,59 we explored the relationships between
stimulus intensity, single-trial pain-evoked brain responses,
and single-trial pain ratings. We focused on brain predictors of

Figure 8.Brain activity mediating the relationship between stimulus intensity and pain intensity ratings. (A) Brain mediators of higher pain intensity ratings to stimuli
with greater intensity in adolescents (path a3 b effect). (B) Brain mediators of higher pain intensity ratings to stimuli with greater intensity in adults (path ab effect).
(C) Differences between adolescents and adults in brain activity mediating the relationship between stimulus intensity and pain intensity ratings (group moderated
path a3 b effect: adolescent. adult). Amg, amygdala; BG, basal ganglia; CB, cerebellum; dlPFC, dorsolateral prefrontal cortex; Ins, insula; ITG, inferior temporal
gyrus; MCC, medial cingulate cortex; mPFC, medial prefrontal cortex; PHG, parahippocampus; SMA, supplementary motor area; SMG, supramarginal gyrus;
STG, superior temporal gyrus; vlPFC, ventrolateral prefrontal cortex.
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pain experience controlling for stimulus intensity (path b) and
brain activity mediating the relationship between pressure
intensity and subjective pain experience (path a 3 b) because
those are the 2 paths in the model directly linking brain
responses to subjective experience. Our results showed that
activations in the amygdala and associated regions (ie,
hippocampus, parahippocampal gyrus) played a stronger role
in adolescents compared with adults in predicting higher pain
intensity ratings. This suggests that the amygdala and hippo-
campus are more actively involved in encoding perceived pain
during adolescence. Given the pivotal role of these regions in
pain processing6,96,97 as well as emotional learning and
memory,33,39,67,78 we speculate that adolescents could be
more vulnerable to overengaging these regions when experi-
encing pain, which may underlie the formation of long-term
pain-related aversive memories and maladaptive structural
changes such as decreased neurogenesis and gray matter
volume.72,111 We also speculate that this mechanism might be
further amplified by a relatively high (compared with adults)
nociceptive input to the brain, as suggested by the higher
intraepidermal nerve fiber density56,76 and NPS responses
found in adolescents. In addition, we found that adolescents’
increased activity in key regions comprising DMN (medial PFC,
parahippocampus, inferior temporal cortex) and VAN (ventro-
lateral PFC, insula, anterior cingulate, supramarginal gyrus,
superior temporal gyrus) mediated the between-group differ-
ence in the relationship between stimulus intensity and pain
intensity ratings. Overall, these findings complement and
reinforce previous findings showing that limbic regions, together
with regions that are involved in self-referential processing and
bottom-up attentional reorienting, mediate subjective pain
experience in adolescents.

In conclusion, this study provides the first evidence of greater
pain-evoked brain responses in healthy adolescent females
involving regions important for affective, cognitive, and nocicep-
tive processing, which is compatible with their higher pain
sensitivity to low-intensity noxious stimuli compared with adult
women. The present results also confirm that age represents a
significant source of individual differences in perceived pain as
well as noxious stimulus-related brain activation. A greater
emphasis of developmentally informed research on pain across
the entire lifespan is clearly needed.
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