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esis of stable four-coordinated
benzotriazole-borane with tunable fluorescence
emission†
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A new class of stable four-coordinated benzotriazole-borane compounds was developed via gold-

catalyzed alkyne hydroboration. The application of polymeric (BH2CN)n reagent gave the formation of

cyano-amine-boranes (CAB) complexes with less basic N-heterocyclic amines and anilines. Various new

CABs were investigated in catalytic hydroboration to synthesize N–B cycles. The 1,2,3-benzotriazoles

were identified as the only feasible N-source, giving the four coordinated borane N–B cycles (BTAB) in

excellent yields (up to 90%) with good functional group tolerability. This new class of polycyclic N–B

compounds showed excellent stability toward acid, base, high temperature, and photo-irradiation. The

facile synthesis, excellent stability, strong and tunable fluorescence emission make BTAB interesting new

fluorescent probes for future chemical and biological applications.
Introduction

With the good binding affinity between nitrogen lone-pair
electrons and boron's empty orbital, the amine–borane
complexes have been widely applied as versatile synthetic
reagents.1 Recently, discovering interesting photo/electronic
properties associated with the cyclic N–B compounds makes
them an important class of heterocycles in chemical, material,
and biomedical research.2 With the discovery of BODIPY and its
derivatives, the four-coordinate boron “ate” complexes have
received great attention due to their interesting uorescence
(FL) properties.3 Recently, the discovery of aryl-modied boron
complexes (containing C–B–Nmoiety) led to a new direction for
developing molecular probes with novel structural skeletons.4

However, with labile B–Ar bonds, these compounds undergo
rapid photo-initiated isomerization (Scheme 1A), impeding
them from being valid FL probes.5

The synthesis of N–B heterocycles could be challenging. As
shown in Scheme 1B, N–B heterocycle formation involves the
selected construction of N–B, C–N, and C–B bonds. Compared
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with N–B and C–N bonds, the C–B bond construction is the
most challenging due to limited available methods. Currently,
strategies for cyclic N–B complex synthesis include (A) carbon
anion (from n-BuLi C–H deprotonation) nucleophilic addition6

and (B) LA promoted aryl C–H activation.7 The lack of effective
practical approaches for large-scale synthesis and the strong
need to access new N–Bmodied polycyclic molecular skeletons
Scheme 1 N–B heterocycles as new molecular probes.
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Fig. 2 New CAB synthesis strategy and hydroboration.
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make developing a new synthetic strategy toward the N–B
modied polycyclic system highly desirable.8 In this work, we
report the preparation of benzotriazole borane (BTAB) as a new
class of stable four-coordinate N–B heterocycles through gold-
catalyzed alkyne hydroboration. These new N–B heterocycles
give strong and tunable FL emission (lmax ¼ 465 nm to 561 nm)
with excellent stability toward acid (1 N HCl), base (1 N NaOH),
thermal (100 �C, 24 h), and photo radiation (254 nm and
365 nm, 24 h), making them promising new molecular probes
for chemical research (Scheme 1C).

One effective strategy for vinyl-C–B bond synthesis is alkyne
hydroboration.9e Though this method has been applied for
many B-containing compound preparation, it could not be
feasible in the N–B heterocycles synthesis. As shown in Fig. 1A,
cis-addition of alkyne in most catalytic system leads to
a “wrong” regioisomer against the sequential endo-type cycli-
zation.10 Although Wang and coworkers reported an interesting
route to N–B heterocycles with the assistance of directing
nitrogen (Fig. 1B),11 it only works with 9-BBN as borane source,
and the resulting 5-membered N–B heterocycles have poor
stability, even decomposing upon the separation. To test
whether this method would be valid for broader N–B heterocy-
cles synthesis, we prepared alkynes 1a–1e (Fig. 2C) to react with
9-BBN using Wang's condition. No cyclic N–B compounds were
observed in any cases. This result, again, highlighted the chal-
lenges associated with the synthesis of polycyclic four-
coordinated N–B compounds.

Our group recently reported that the triazole-gold (TA-Au)
catalyzed alkyne hydroboration to synthesize cyclic N–B
compounds (N as aliphatic amine).12 As we reported previously,
triazole gold [L-Au-TA]+ showed signicantly improved stability
over [L-Au]+. However, treating TA-Au with [N]–BH3 still led to
rapid gold decomposition, highlighting the challenge of
applying gold catalysis under a reductive environment. Fortu-
nately, the cyano-amino-borane (CAB, N–BH2CN) was identied
as the valid hydride source, giving hydroboration with TA-Au as
the catalyst ([L-Au]+ gave rapid decomposition). The initial
preparation of CABs could be tricky by treating the aliphatic
amine HCl salts with NaBH3CN in THF. As a result, this protocol
could not be used for the polycyclic N–B compound synthesis
Fig. 1 Challenges of hydroboration toward N–B cycle construction.

© 2022 The Author(s). Published by the Royal Society of Chemistry
since both aniline and N-heterocycles failed to produce CABs
using the initial conditions (Fig. 2A).

Over the past several years, we have devoted efforts to
exploring new strategies for plausible CAB synthesis with
aniline or N-heterocycles as the N-source. Aer many attempts,
we identied polymeric cyano-borane (BH2CN)n as a new
reagent in CAB synthesis.13 As shown in Fig. 2B, this polymeric
(BH2CN)n reagent could be readily prepared by treating
NaBH3CN with 1 N HCl (see ESI†). The resulting THF solution
can be used directly to react with quinoline, giving the desired
Q-CAB in 90% yields. With this new reagent, the desired CABs of
aniline 1a or 1b were prepared in excellent yields. Other N-
heterocycles were also tested. Both quinoline alkyne 1c and
benzimidazole alkyne 1d gave low yields of CAB due to poor
stability (substrate decomposition). Interestingly, the 1,2,3-
benzotriazole alkyne 1e gave the desired CAB with excellent
yield (95%).
Results and discussion

Encouraged by the synthesis of aniline and triazole CABs, the
alkyne-CAB complexes were charged with gold-catalyzed
hydroboration under various conditions. Aer exploring
various gold-catalyzed conditions, the aniline CABs (1a and 1b)
failed to give any hydroboration products with rapid gold
decomposition, likely due to the more reactive B–H. Interest-
ingly, under previously optimal conditions, 10 mol% [(ArO)3-
PAu(TA-Ph)]OTf and 20 mol% Cu(OTf)2 at 60 �C, benzotriazole
modied 1e-CAB successfully generated the desired cyclic N–B
product 3a, though in low yields (Fig. 2C, 50% conversion, 15%
yields). To our surprise, this new N–B heterocycle 3a was very
stable toward air, moisture, and even elevated temperature (vide
Chem. Sci., 2022, 13, 5982–5987 | 5983



Table 2 Reaction scope and BTAB derivatizationa,b,c

a Conditions: 4a (0.2 mmol), Au cat. (0.01 mmol), DCE (2 mL), 80 �C,
12 h. b Isolated yields. c brsm ¼ based on recovered starting material.
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infra). Therefore, the low yield results from gold catalyst
decomposition (low conversation) and 1e-CAB decomposition
(formation of 1e). This result was exciting since it conrmed
that 1,2,3-benzotriazole, as a special N-heterocycle, could be
successfully applied to construct the N–B heterocycle as a new
molecular skeleton. Comprehensive condition screening was
performed, and RuPhosAuNTf2 (10 mol%) in DCE at 80 �C was
identied as the optimal one, giving the BTAB 3a in 87% iso-
lated yields. Comparison with selected alternative conditions is
summarized in Table 1 (see detailed conditions screening in
ESI†).

As shown in Table 1, among various tested metal complexes
(including Ag, Cu, Zr, Zn etc. entry 12), the cationic gold is the
only one that gives desired hydroboration products, which
highlighted the critical role of gold catalyst for this trans-
formation. The primary ligand on gold plays a crucial role by
providing balanced reactivity and catalyst stability. The Buch-
wald type bis-aryl ligands increased conversion with the
improved gold cation stability (entries 5–6). Notably, while tri-
azole helps to improve gold stability, TA-Au gave low conversion
(entry 7), likely due to the competing TA-borane coordination.
Reducing reaction temperature to 60 �C caused a slow reaction
rate with gold decomposition over time. With the optimal
condition in hand, the substrate scope was evaluated.

As shown in Table 2, this new transformation works well
with aromatic and aliphatic substituted alkynes, giving the
desired BTAB in good yields. Both EDG and EWG modied aryl
alkynes work well (3a–3g), except ortho-substituted benzene (3h,
slow conversion, likely due to the combination of electronic
effect and steric hindrance). Impressively, thiophene
substituted alkynes (3l–3n) are suitable substrates for this
reaction, albeit the potential Au–S binding. Terminal alkyne
(3p) and aliphatic alkyne (3o) give slightly reduced yields. The
Table 1 Optimization of reaction conditionsa,b

Entry Variation from “standard conditions”

1 None
2 [Au] ¼ PPh3AuNTf2
3 IPrAuNTf2
4 JohnPhosAuNTf2
5 (ArO)3PAuNTf2
6 SPhosAuNTf2
7 TA-Au: RuPhosAu(TA-H)OTf
8 [Au] + [Cu]: RuPhosAu(TA-H)OTf + Cu(OTf)2
9 Other solvents (CH3CN, THF, tol, MeOH. See details
10 5% [Au]
11 60 �C
12 Other metal cat. (Ag, Cu, Zr, Zn etc. See ESI)

a Conditions: 1e-CAB (0.1 mmol), Au cat. (0.01 mmol), DCE (2 mL), 80
standard (isolated yields).
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substituted group on the N-1 position of benzotriazole was also
tested. Both N-aryl (3q) and N-alkyl (3s) substituted benzo-
triazole are suitable substrates. In addition, both EDG and EWG
modied N-aryl triazoles gave the desired N–B heterocycles in
good yields (3q, 3r). Various N-alkyl substituted triazoles (3s–3u)
were applied, giving the BTABs in good yields, suggesting the
Convn.
(%) 3a (%) 1e (%)

100 90 (87) <5
<5 n.d. n.d.
70 20 38
80 45 24
52 10 35
95 78 10
43 8 30
20 <5 n.d.

in ESI) <89 <71 —
65 54 <5
65 30 —
<10% n.d. —

�C, 12 h. b 1H NMR yields using 1,3,5-tribromobenzene as an internal

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 BTAB photophysical properties.
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excellent functional group tolerability and easy modication for
future applications (with N-1 position as the synthetic handle).

Treating BTAB 3a with LiAlH4 gave the dihydro borane 4a
(R2BH2) in excellent yield, conrming the feasibility of
sequential modication on boron aer cyclization. However,
the reaction of 3a with Grignard reagents gave no CN substi-
tution. Instead, the reaction between 4a (R2BH2) and excess
PhMgBr gave the formation of diphenyl substituted borane 4b
(decomposition upon separation, based on crude NMR).14 The
polyaromatic hydrocarbon (PAH) compounds have received
tremendous attention over the past decades due to their inter-
esting photo and electronic properties.15 With the incorporation
of “electron” and “hole” pair, the NB modied PAH is
undoubtedly one interesting modication of typical PAH. As
a six-membered N–B heterocycle, one question is whether this
new class BTAB would transform into three-coordinated aza-
borine as polyaromatic hydrocarbons, especially with active
B–H bond (losing hydride).

To explore this idea, BTAB 3a was treated by various RCOOH.
As shown in Fig. 3, while acetic acid and PhCOOH gave no
reaction, treating 3a with TFA gave the rapid formation of TFA
substituted BTAB 4c in excellent yield (structure conrmed by
singles crystal X-ray structure determination). Interestingly, the
hydroxy modied BTAB 3v could give the [2 + 2] cycloaddition
product 4d (X-ray) over a long period (10 days) without N–B
bond dissociation in the hexane and ethyl acetate solvent
mixture. These results suggested the excellent N–B bond
stability of this four-coordinated BTAB polycycles.

Comprehensive photophysical properties evaluations of
these new stable N–B polycyclic molecular skeletons were per-
formed. As expected, strong photoluminescence activity was
observed. The detailed excitation (lex), emission (lem), adsorp-
tion (3), Stokes shi, quantum yield (4F), and uorescence
lifetime (FLT) date are summarized in SI. Some representative
data are highlighted in Fig. 4. First, all BTABs gave strong
uorescence emission in the solid-state and in the solution with
emission lmax between 465 nm and 561 nm (Fig. 4A). In addi-
tion, this N–B polycyclic skeleton showed impressive stability
with no decomposition in acid (1 N HCl, 24 h), base (1 N NaOH,
24 h), thermal (100 �C, 24 h), and photo-irradiation (254 nm, 24
h). Both N-substituted group R1 and alkyne C-substitute group
R2 would inuence the overall uorescence performance, giving
Fig. 3 BTAB derivatization: the extremely stable TA-B coordination.

© 2022 The Author(s). Published by the Royal Society of Chemistry
tunable emissions. As shown in Fig. 4B, extended conjugation
on both C and N positions gave the expected red shi (3a vs. 3t;
3r vs. 3t). Similarly, since TA is electron decient, the electron-
withdrawing group (EWG, R1) modied 3r gave further
redshi compared to the electron-donating group (EDG)
modied 3s. In contrast, EDG modied R2 substrates cause the
red shi compared to the EWG modied R2 substrates due to
this extended conjugation effect (3g vs. 3c). Impressively, a large
Stokes shi (193 nm to 274 nm, Fig. 4C) and long uorescence
lifetime (7.7 ns, Fig. 4D) were obtained with these BTABs, sug-
gesting promising application scope as this new FL probe.16

Finally, density functional theory (DFT) and time-dependent
density functional theory (TD-DFT) calculations were performed
to explore the emission mechanism. The calculation of 3a at
PBE0 level shows the rst two peaks of absorption are 404 nm
and 297 nm, which are very close to the experimental results
(375 nm and 287 nm). The calculated energy gap of HOMO and
LUMO was 3.8 eV, corresponding to the rst absorption peak.
The analysis of those orbitals shows that HOMO is majorly
located on azaborine moiety while LUMO is majorly located on
benzotriazole moiety, suggesting a possible charge transfer
process from the azaborine to benzotriazole in the exited
process. Based on this computational model, the emission was
determined as 522 nm, which was in very good agreement with
the experimental data (511 nm), suggesting the good correlation
of the computational model in explaining the uorescence
emission mechanism for these new BTAB compounds.
Chem. Sci., 2022, 13, 5982–5987 | 5985
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Conclusions

In summary, with the application of polymeric (BH2CN)n
reagent to form cyanoborane complexes of less reactive N-
heterocycles, we identied 1,2,3-benzotriazole as the critical
building block and successfully developed a highly efficient
synthesis to achieve a new class of N–B heterocycles BTABs.
These new compounds showed strong, tunable uorescence
emission with excellent stability toward acid, base, and photo-
irradiation. The combination of easy gram-scale synthesis, long
lifetime, and large Stokes shi makes BTABs a promising new
uorophore for future chemical and material applications.
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