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Abstract: Three-dimensional (3D) mapping of power lines is very important for power line inspection.
Many remotely-sensed data products like light detection and ranging (LiDAR) have been already
studied for power line surveys. More and more data are being obtained via photogrammetric
measurements. This increases the need for the implementation of advanced processing techniques.
In recent years, there have been several developments in visualisation techniques using UAV
(unmanned aerial vehicle) platform photography. The most modern of such imaging systems have
the ability to generate dense point clouds. However, image-based point cloud accuracy is very often
various (unstable) and dependent on the radiometric quality of images and the efficiency of image
processing algorithms. The main factor influencing the point cloud quality is noise. Such problems
usually arise with data obtained via low-cost UAV platforms. Therefore, generated point clouds
representing power lines are usually incomplete and noisy. To obtain a complete and accurate 3D
model of power lines and towers, it is necessary to develop improved data processing algorithms.
The experiment tested the algorithms on power lines with different voltages. This paper presents
the wavelet-based method of processing data acquired with a low-cost UAV camera. The proposed,
original method involves the application of algorithms for coarse filtration and precise filtering.
In addition, a new way of calculating the recommended flight height was proposed. At the end,
the accuracy assessment of this two-stage filtration process was examined. For this, point quality
indices were proposed. The experimental results show that the proposed algorithm improves the
quality of low-cost point clouds. The proposed methods improve the accuracy of determining
the parameters of the lines by more than twice. About 10% of noise is reduced by using the
wavelet-based approach.
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1. Introduction

Photogrammetric mapping of power lines with the use of photogrammetry is currently a topic of
great interest to engineering researchers. It might prove difficult to render the 3D reconstruction of
power lines unless appropriate conditions for data acquisition are maintained. Many remotely-sensed
data products, such as synthetic aperture radar (SAR), thermal sensor, light detection and ranging
(LiDAR), land-based mobile mapping data, and unmanned aerial vehicle (UAV), have been studied
for power line surveys [1] and other geosurvey applications [2,3]. Most research papers have focused
on the extraction of power lines from aerial laser scanning (ALS) data. Zhu and Hyyppa in [4,5]
proposed the use of Automated Power Line Extraction from ALS in forest areas, while Wang et al.
in [6] used random forest and neural network algorithms for power line classification in suburban
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and urban areas. Finally, other elements of energy networks (e.g., pylons) were also modelled from
LiDAR point clouds in [7,8]. For all these cases, the other methods RANSAC, Hough transformation
and statistical methods were also introduced in [9,10]. Recently, compact and lightweight UAV-LiDAR
sensors were introduced into the market, although their performance is limited in terms of scan speed
and measurement rate [11]. Ax et al. in [12] presented the use of laser scanner data from a UAV
helicopter for vegetation control at high-voltage transmission lines; Teng et al. in [13] proposed their
own LiDAR-UAV system. However, most of these systems (LiDAR, SAR, satellite imagery) are quite
costly, which is why recent research has focused more on processing UAV imagery data in a way
that allows the highest possible accuracy of 3D reconstruction. The linear course of the power lines
enforces a specific unmanned data acquisition system. Evidently, corridor mapping will work in
this case, especially if multi-rotor platforms are used. The cheaper the platform is, the shorter the
flight duration will be, and the worse the optical sensors and navigation systems will be; on the
other hand, the costs of purchasing and maintenance of the equipment will be significantly lower.
The technology of unmanned systems is constantly getting more advanced and cheaper, which is
why more emphasis is put on increasing the accuracy of data processing algorithms than on the types
of platforms or the sensors used. There has been very little research on the 3D reconstruction of
power lines from point clouds generated from multiple UAV images. The analysis of point clouds
from UAV imagery for inspecting power lines was discussed for example in [14,15], where it was
applied for detecting cable collision with terrain obstacles. Several researchers have proposed to
increase the accuracy of extracting power lines from UAV images by improving the radiometry at
the stage of preliminary image processing. In their paper [11], Oh and Lee used horizontal-extended
filters to constrain noise and enhance power lines in the image. A similar approach to correcting the
digital images and thus improving the resulting quality was confirmed in such publications as [16,17],
where the grey ratio operator and mathematical morphology, among others, were used to refine power
line feature extraction.

Improving the image quality plays a significant role in the ability to generate power lines on
the image; however, unless certain conditions of image acquisition are met (such as flight altitude,
Ground Resolved Distance (GSD), or image overlap), it is not possible to properly generate these data
sets. A point cloud is generated from photogrammetric images via image matching in a process called
multi-image matching or semi-global matching (SGM). This has been discussed in several publications,
for example [17–21], while [22,23] presented the generation of point clouds and the identification of
unconventional shapes using video images, and [24,25] proposed the use of oblique images.

The aim of multi-image matching is to reconstruct the object in 3D by finding homologous points
on an image pair with a known inner and absolute orientation [26]. It is difficult to use image-matching
methods to find the corresponding points along power lines because of the small diameters of power
lines and the complexity of the background [17]. Applying the SGM algorithm results in a point
cloud, which is a set of points with XYZ coordinates defined on an orthogonal coordinate system,
rendering the object in 3D space. Each point may have additional attributes, such as an intensity
value or RGB information assigned from the images [27]. Point cloud quality is directly related to the
accuracy of image correlation and depends on factors such as the accuracy of determining tie points on
stereo imaging, the geometric complexity of the object, the image block geometry, the radiometric and
geometric quality of the images, as well as all stages of image data processing (including interpolation,
orientation and others). Point cloud quality was also introduced in [28,29].

Presented in this paper are automatic algorithms to improve point cloud quality with a focus on
rendering power lines. The validity of methods was tested in three experimental areas and on the basis
of reference data.

Research Problem

A typical error in point clouds generated from UAV imagery is noise, most often occurring around
the edges, e.g., of roofs, on linear objects (such as power lines) or on the borders between the objects and
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the background. This phenomenon is often referred to as “mixed pixels”. Mixed pixels in point clouds
generated from photographs involve for example the blurring of pixels on the object–background
border, leading to disturbances in image correlation, and these are of a slightly different nature than
the noise resulting, e.g., from laser scanning [30]. Presented in Figure 1 is a theoretical line and the
point cloud representing it. Some of the points can be classified as points representing the object
in question—the line (black dots)—while others are either gross errors (mixed pixels—red dots) or
errors related to the interpretation of belonging to the object itself (potential noise—green dots).
Gross errors are characterised by different intensity values and can also be filtered out by means of
statistical analysis and deviation from the average or line approximation. All the other points—those
actually representing the object (black) and those included in the measurement noise (green)—may be
characterised by similar intensity and are located very close to each other. This causes problems in the
interpretation and thus the filtration or classification of a given group of points as “object” or “noise”.
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Figure 1. Schematic representation of erroneous points for linear objects.

Within the area of potential errors, mixed pixels points, noisy points or real measurement data
may also be present.

The aim of this study is to assess and improve the quality of 3D power line point clouds generated
from multiple images acquired using low-cost UAV. The study proposes a method of wavelet-based
denoising of UAV-image-based point clouds to eliminate (filter) noisy points. This method involves
the application of algorithms for coarse filtration (eliminating gross errors) and precise filtering
(eliminating noise) with the use of wavelet transform. Improved point clouds are compared to laser
scanning point clouds. A no-reference method for assessing data accuracy is also proposed.

The paper is structured as follows: in Section 2, the test data are introduced, and in Section 3,
the proposed method is explained. Section 4 presents experimental results, followed by the conclusions
and discussion in Section 5.

2. Materials and Methods

The study uses three data sets obtained via one type of platform (multi-rotor platform). Lines of
different diameters were acquired at different heights. In each case, separate images with high overlap
(85%) were obtained. Next, the proposed filtering method was implemented in all data sets.

Description of Data Sets

In order to carry out a complex analysis of point clouds to reconstruct power lines in
low-cost platform images, data on low- and high-voltage power lines were obtained via various
photogrammetric systems.

Set I: The first data set contains the data obtained with the Riegl platform [31] above the
high-voltage lines (pylons hT ca. 45 m). They were obtained in an open area, locally covered with high
vegetation. The diameter of the lines was about 30–40 mm. The data comprised digital photographs
and LiDAR data from the Ricopter platform. The photographs were taken with the Sony alpha 6000
camera (with a rigid mount to the VUX-1) with a 24 megapixel 6000 × 4000 matrix and a 16 mm lens.
Point clouds from LiDAR were acquired with 380 kHz pulse repetition with the Riegl VUX-1UAV
Airborne Laser Scanning system. Power lines were recorded in 3 flight strips at 90 m AGL (Above
Ground Level) flight altitude (3 × hT). The dimensions of the processed section were 670 × 50 m.
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POSPac MMS 7.1 and RiPROCESS v. 1.6.5 were used for data processing. The point clouds from
imaging data were generated in the Pix4D Mapper Pro software with a half-image scale. The data
were obtained thanks to the courtesy of the Riegl company. The flight mission took place during
the summer.

Set II: The second data set was obtained during a flight mission above low-voltage (0.4 kV) power
lines conducted with a Phantom 4 platform in a lowland rural area (Masuria, Poland). The camera
mounted on the platform had a focal length of 3.6 mm, 20 Mpix (5400 × 3600) and a Field Of View of
94 deg. The images were obtained in 4 strips at the heights of 23 and 30 m AGL (2,5 hT). The pylon
height was−11 m and the cable diameter was about−6 mm. The point clouds from imaging data were
generated in the Pix4D Mapper Pro software with a full-image scale. The data were obtained during
summer and winter. Differences in this measurement campaign will be revealed in the experiments.

Set III: The third data set comprised low-voltage (0.4 kV) power lines and pylons located in
an urban area (Warsaw, Poland). The images were obtained in 3 strips at the height of 28 m AGL.
The platform used was DJI Phantom 4 Pro with a 20 Mpix camera and a 3.6 mm focal length. The pylon
height was 11 m, and the cable diameter equalled 28 mm in total (5 cable cores). The point clouds from
imaging data were generated in the Pix4D Mapper Pro software with a full-image scale.

Set IV—reference data: For the purposes of verifying the proposed method, reference measurements
were conducted in the form of point clouds from the Terrestrial Laser Scanning system (TLS).
Laser scanning was carried out with the Leica P40 impulse scanner [32], which can measure up
to 1 million points per second and has an effective measuring range between 0.6 and 200 m (for
objects with an albedo of 90%; in practice—about 100 m effective range). The manufacturer certified
a 2–4 mm accuracy of determining point coordinates. The scan was made with the target resolution set
at 4–5 mm.

An overview of the research data is presented in Table 1.

Table 1. Overview of the test data sets.

Feature Set I Set II Set III

Objects and area
Power line type

Cable diameter (cm)
Scene type

High-voltage
(φT = 30 mm)

Open and forest area

Low-voltage
(φT = 6 mm)
Rural area

Low-voltage
(φT = 28 mm)
Urban area

Image and point clouds

Camera model
GSD (cm)

Flight height (m)
Point cloud resolution (cm)

Sony Alpha 6000
4 cm

90 AGL
4

Sony RX100
0.3

23 m, 30 m
0.5–1.0

Sony RX100
0.5

28 m
0.6–1.2

Set IV
Reference data type

Laser scanning model
and type

Riegl VUX-1UAV
(UAV-ALS)

Leica P40
(TLS)

Leica P40
(TLS)

In each data set, the theoretical diameters of power lines (φT) did not exceed the range between 6
and 35 mm. The flight height (linked with the GSD value) was always chosen so that the lines were
visible on at least 2–3 pixels. TLS data were also obtained from a distance, so that the footprint (laser
diameter) was smaller or equal to the cable cross-section width. The data are presented in Figure 2.
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Figure 2. The view for the three data sets: (a) forest area and high-voltage power lines: platform,
imagery, point clouds (image), point clouds ultra-light light detection and ranging (LiDAR); (b) rural
area and mean-voltage power lines: platform, imagery, point clouds (image), point clouds (TLS);
(c) urban area and low-voltage power lines: platform, imagery, point clouds (image), point clouds (TLS).

3. Methods

Presented in this chapter is the two-stage method for improving the quality of point clouds by
filtering them with the use of wavelet analysis. A block diagram of the overall method workflow is
shown in Figure 3.
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The proposed approach comprises the stages of data preparation, coarse filtration and precise
denoising as well as a quality check based on reference measurements and denoising statistics via
wavelet transform.

3.1. Data Capture

Appropriate acquisition of data makes it possible to detect power lines and is as important as
the methods of its subsequent processing. Low-cost UAV systems offer the option of automatic flight
mission, both by way of photogrammetric strips and corridor mapping. When acquiring data on power
lines via UAV, it is recommended to plan the flight route and strip distribution along the transmission
towers. Thus, multi-rotor platforms with flight direction independent from the wind are the preferred
UAVs for power line mapping. However, in order to obtain usable imaging data from UAV, it is
necessary to adjust the flight parameters and exposure according to the model and type of camera
mounted on the platform. The fundamental aspect of acquiring images for power lines inspection is
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the image resolution from which they are to be extracted. Due to the specific characteristics of the
object (power lines can measure less than 1 cm in diameter), the spatial resolution of the images will be
important; this is also referred to as the ground pixel value. There are two parameters defining the
resolving power of the lens: Ground Resolved Distance (GRD) and Ground Sampling Distance (GSD).
The GRD is given by the smallest element distinguishable in the acquired image. Knowing the distance
of the sensor from the object, the relation between the image of the smallest object (identified in the
photograph, ∆xi) and the real length of the given object is defined by the following, Equation [33]:

GRD = H
∆xi

f
(1)

where H is the distance between the sensor and the object, and f is the sensor’s focal length.
When mapping linear objects, they must be visible on at least 2 pixels of the acquired image (Figure 4).
This is crucial for the algorithms of automatic correlation of images used at the stage of aerial
triangulation and generating tie points as well as later when creating a 3D model of the object.
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The GSD—as it is the distance between two consecutive pixel centres related to measurement
on the ground—only allows an approximate definition of the interpretation possibilities of the
photographs. In turn, the GRD defines the actual resolution of the acquired photograph, taking
into account the influences of the optics and the material recording the radiation on image quality [33].
Therefore, the resulting spatial resolution of the images will depend on the flight height and the camera
parameters (focal length and pixel pitch). In order to determine the parameters of the flight and images
when obtaining data for linear, thin and slender objects (such as power lines), I propose the assumption
of the following approximate relation for the optimal flight height, HFL[AGL] (2). This value takes into
account the distance of the power line from the ground.

HFL[AGL] = k·θ· f
px

+ hT (2)

where hT is the approximate pylon height (distance of power lines from ground), f is the focal
length, px is the pixel pitch, φT is the theoretical cable diameter and k is the thickness coefficient.
For low-voltage power lines, k = 1, and for high voltage power lines, k = 0.5. It should be noted that
the planned flight height should be greater than the highest terrain obstacle in the flight area. It is
important to take note of the longitudinal and side overlap between the strips, with the recommended
value being 80–85%. This will guarantee that the power lines will show up on the stereogram, especially
in the case of side overlap.

Another important element is the georeferencing of UAV imagery. Solving the block adjustment
and dense image matching in the local coordinate system leads to smaller adjustment errors,
while introducing point transformation into the global coordinate system decreases the accuracy.
The acquired images are assigned initial information about their position and attitude from the global
navigation satellite systems (GNSS) and inertial measurement unit (IMU). However, in this case,
we are only looking at low-cost solutions based on the airborne measurement unit. This paper focuses
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solely on the quality and consistency of point clouds without taking into account the accuracy of data
transformation for the global coordinate system.

3.2. Imagery Pre-Processing

All data (photographs) were processed with Pix4Dmapper Pro software, and the point clouds
were generated with the use of the Semi-Global Matching algorithm. The process of preparing and
generating point clouds is shown in Figure 5.
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Optional stages of data pre-processing include the recommended radiometric enhancement of
images before the adjustment stage [17,34] or the calibration of non-metric cameras mounted on the
platform [35–37]. The final stage of extracting the lines from the point clouds can be carried out via
different algorithms, automatically or manually [5,38]. Colour coding the point cloud from the acquired
imagery is very helpful when classifying point clouds. The platform-mounted camera is composed of
the navigation system, which means that the photographs have defined elements of exterior orientation,
i.e., the positions of the projection centre and inclination angles. The mathematical relation between
the ground coordinates of points (X,Y,Z) and the position of its image on the photograph (image
coordinates x,y) allows us to determine the position of every point with (X,Y,Z) spatial coordinates
on the photograph (x,y), and from this place, we can obtain colour information in the form of RGB
components that have the integer range [0; 255].

In the case of point clouds generated from UAV imagery, instead of an RGB value, a point may be
assigned a new value—the image intensity (IIMG). The conversion scheme is presented in Figure 6.
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RGB values for every point can be converted to grayscale by weighing the Digital Number (DN)
value for every channel and then normalised to the intensity scale expressed for example in the ranges:
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[0; 1], [−2048; 2047] or others, depending on the file format. Such normalised data will provide a basis
for further operations with the algorithm. Intensity scale was used in this research.

3.3. Classifying and Filtering Power Lines

Power lines are situated parallel to each other, anchored at both ends to the pylons. This constitutes
a defined and geometrically repeatable arrangement of objects, which may be helpful when classifying
points belonging to the ground, vegetation, buildings or other classes. The classification process itself
is quite complex and can be conducted in different ways. Among the available methods, examples of
power line classification were introduced in [12,38]. Single-line separation algorithms are very helpful,
for example, Spatial Clustering introduced in [9] and splitting pans in [5]. Most sources discuss the
classification and filtering of data obtained via LiDAR systems, which makes the task considerably
easier. Point clouds generated from UAV imagery are significantly noisier, with a strong presence
of mixed pixels. Discussed below is the proposed two-stage approach to filter point clouds from
UAV imagery.

3.3.1. Two-Stage Coarse Filtration

The first stage of data processing is coarse filtration, which results in the elimination of gross
errors and any points significantly departing from the studied object (cable) which prohibit a correct
detection of its shape. The proposed initial filtering has to do not only with the shape of the line,
but also with the attributes of the points, i.e., the RGB value or imagery intensity assigned to each point.

Coarse filtration mostly concerns gross errors and mixed pixels resulting from dense image
matching. It may be based on the statistical analysis of imagery intensity or the values from the
R, G and B channels. Therefore, the filtering will constitute the result of, e.g., segmentation or
dividing the points according to a certain pattern. The basic assumptions that have to be met for
the segmentation/thresholding of point clouds are, firstly, the diversity of the intensity values and
secondly, the existence of a relation between a particular object/class and intensity. One of the filtering
methods is thresholding. The basic assumption for thresholding is the extraction of the object from its
background by assigning appropriate intensity values. When segmenting point clouds with the use
of thresholding, the points are divided into those for which a set value of imagery intensity (IIMG) in
relation to the neighbouring points falls below the threshold and those in which the value is equal to
or higher than the threshold value, t:

mixed pixels for IIMG < t

accepted points for IIMG ≥ t

The above relation assumes that points with a high (above-threshold) intensity are accepted as
points containing the lines and noise, while pixels with low intensity are gross errors. With global
thresholding methods, the threshold value remains fixed for the entire data set and refers to every
point. The most difficult to define is the threshold value, t, i.e., the condition for which points are
considered noise or mixed pixels and which are not. In the case of mapping power lines, it is especially
difficult, because it depends directly on presenting the lines on original (source) images and the relation
between the image of the lines and the background or surroundings. The lines on the point clouds
generated from the photographs will “take on” the noise resulting from the process of correlating
the image.

There are several methods of automatic thresholding, including statistical methods, global
and local thresholding with iterative methods, linear combination, average and standard deviation,
and Otsu algorithm described in [39–41].

The most frequent problem with the majority of thresholding methods is that the main parameter
taken into consideration is the intensity (both with imagery and LiDAR data), and not, e.g., topological
and geometric relations between neighbouring pixels or points. That is why there is no certainty that
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the objects identified as background objects in the thresholding process are of a continuous nature.
This can result in including points from outside the class or excluding certain correct points, especially
around the object–background border. The stronger the data noise is, the more these effects intensify,
and the more probable that the intensity or colour of the points does not reflect the average intensity for
the given class. This is clearly visible in Figure 1 (mixing of green and black points). Thus, the greatest
challenge for effective thresholding lies in determining the threshold value t. Consequently, setting
the threshold leads to losing “good” data from the object and intensifying the “bad” data from the
background. The phenomena described above are common and troublesome when filtering UAV data,
especially in the case of power lines.

The proposed two-stage method for the coarse filtration of power lines from point clouds
is based on Sauvola and Pietikäinen’s thresholding algorithm [42] in terms of intensity and
geometric conditions.

Intensity Condition

In the part concerning intensity filtering, the threshold value is determined based on the average
and standard deviation of point values in the range directly surrounding the analysed point:

t = µ

[
1 + k·( σ

σmax
− 1)

]
(3)

where µ stands for the average, σ is the standard deviation of the point intensity in the surroundings, k is
a parameter depending on the data (k = 0.2 for very noisy data, k = 0.15 for medium noise, and k = 0.07
for low noise), and σmax is the dynamic range of standard deviations for the data. The criterion for the
level of noise of the data is the relation between the values of the standard deviation and the average.

As a result of segmentation based on intensity values, there still remain some points whose
intensity fits within the threshold value but that are located outside of the desired object, i.e.,
gross errors of this stage of filtering. That is why a second stage is necessary: segmentation with
geometric conditions.

Geometric Conditions

Due to the fact that power lines must be horizontal straight lines (projected to the xy-plane),
and vertically (projected to the z-axis), i.e., catenaries, it is necessary to conduct filtering that takes these
trends into account. The first stage is filtering by horizontal coordinates to analyse the approximation
of the linear trend (Algorithm 1), while the second occurs on the Z coordinate, with the analysis of side
trends using the moving average (Algorithm 2).

Algorithm 1. Filtering points horizontally

Initial: points from data set after coarse filtration
Determining an approximated line based on power line’s points

1: Look for a linear model for a straight line: Y_t = α + βt, (t,y_t) for t = 1, . . . , n
2: Solve the optimisation problem:

min
α,β

(
n
∑

t=1
e2

t

)
= min

α,β
(

n
∑

t=1
(yt − α− βt)2)

where et = yt − y̆t (yt− realisation of variable Yt), y̆t = α + βt (theoretical value of variable)
3: Determine the coefficients defining the straight line:

ᾰ = y− β̆t

β̆ =
(∑n

t=1(t−t)(y−y))

∑n
t=1(t−t)

2
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Reject the points whose distance exceeds the set d value constituting 65% of the theoretical

radius of the cable
d ≤ 0.65 · φT

Sensors 2019, 19 FOR PEER REVIEW  9 

 

value t. Consequently, setting the threshold leads to losing “good” data from the object and 
intensifying the “bad” data from the background. The phenomena described above are common and 
troublesome when filtering UAV data, especially in the case of power lines.  

The proposed two-stage method for the coarse filtration of power lines from point clouds is 
based on Sauvola and Pietikäinen’s thresholding algorithm [42] in terms of intensity and geometric 
conditions. 

Intensity Condition 

In the part concerning intensity filtering, the threshold value is determined based on the average 
and standard deviation of point values in the range directly surrounding the analysed point:  

𝑡 = 𝜇 ൤1 + 𝑘 ∙ ( 𝜎𝜎௠௔௫ − 1)൨ (3) 

where μ stands for the average, σ is the standard deviation of the point intensity in the surroundings, 
k is a parameter depending on the data (k = 0.2 for very noisy data, k = 0.15 for medium noise, and k 
= 0.07 for low noise), and σmax is the dynamic range of standard deviations for the data. The criterion 
for the level of noise of the data is the relation between the values of the standard deviation and the 
average.  

As a result of segmentation based on intensity values, there still remain some points whose 
intensity fits within the threshold value but that are located outside of the desired object, i.e., gross 
errors of this stage of filtering. That is why a second stage is necessary: segmentation with  
geometric conditions. 

Geometric Conditions 

Due to the fact that power lines must be horizontal straight lines (projected to the xy-plane), and 
vertically (projected to the z-axis), i.e., catenaries, it is necessary to conduct filtering that takes these 
trends into account. The first stage is filtering by horizontal coordinates to analyse the approximation 
of the linear trend (Algorithm 1), while the second occurs on the Z coordinate, with the analysis of 
side trends using the moving average (Algorithm 2). 

 

Algorithm 1. Filtering points horizontally 

Initial: points from data set after coarse filtration 

Determining an approximated line based on power line’s points 

1:  

2:  

 

 

3:  

 

 

4: 

5:  

Look for a linear model for a straight line: Y_t=α+βt, (t,y_t ) for t=1,..,n  

Solve the optimisation problem:  
 𝑚𝑖𝑛ఈ,ఉ (∑ 𝑒௧ଶ௡௧ୀଵ ) = 𝑚𝑖𝑛ఈ,ఉ (∑ (𝑦௧ − 𝛼 − 𝛽𝑡)ଶ௡௧ୀଵ ) 

 where e୲ = y୲ − y෬୲ (y୲ − realisation of variable Yt), 𝑦෬௧ = 𝛼 + 𝛽𝑡 (theoretical value of variable) 

Determine the coefficients defining the straight line: 𝛼෬ = 𝑦ത − 𝛽෰𝑡̅𝛽෰ = ൫∑ (௧ି௧̅)೙೟సభ (௬ି௬ത)൯∑ (௧ି௧̅)మ೙೟సభ                             straight line is constructed 

Calculate the distance of each point P(Py, Px) from the line d’(P,L) 

Reject the points whose distance exceeds the set d value constituting 65% of the theoretical radius of 

the cable 

d ≤ 0.65 ⋅ φT                           output: correct points 

Consequently, the algorithm excludes the points whose distance from the line is bigger than the 
predetermined value of 65% of the theoretical radius of the cable φT. The analysis of side trends for 

output: correct points



Sensors 2019, 19, 700 10 of 24

Consequently, the algorithm excludes the points whose distance from the line is bigger than the
predetermined value of 65% of the theoretical radius of the cable φT. The analysis of side trends for
the vertical coordinate Z will work in a similar way. Because of the shape of power lines, the analysis
of noise “around” the line, considering it vertically, is not a straight line and does not always have to
fulfil the condition of a “regular curve”. Furthermore, in dense image matching, the Z coordinate is
the most prone to errors at the stage of data acquisition, which later influences the 3D modelling of the
object. To analyse the noise distribution around the Z coordinate, Bollinger Bands were used based on
the moving average (MA, determined by means of the simple moving average—SMA) and the analysis
of side trends. To this end, it was necessary to define the moving average intervals. The number of
intervals depends on the course of the power line and may be determined by the quality of the data.
For example, we can determine any constant segments of the power line in a point cloud or places
where the line’s course or shape changes as intervals. The value can be set at decimetre-long segments
of the line. The Bollinger Bands define the natural extremes in the developing trend. The boundaries
of the envelopes located below and above the curve in the constant moving average are expressed as
a percentage of the distance, the limits being constructed from the Bollinger Band at a distance equal
to a certain number of standard deviations. As the standard deviation depends on the variability of
data, the bands adopted for the analyses of power lines should differ from the average by a value of
1σ (65%). When constructing the limits, we should use the one sigma rule, according to which the data
will be found between the two bands for 65% of points from the interval. Points located outside of the
assumed interval should be rejected.

Algorithm 2. Filtering points vertically

Initial: points from data set after coarse filtration
Determining Bollinger Bands for power line approximation

1: Divide the points of the line with the length dL into a set number of intervals n = 0.1 dL

2: Determine the moving average:
yt =

yt+yt−1+...+yt−n−1
n

for y—the variable Z, and t—the current points interval, n—the number of intervals in the average
Determine the side trends—upper (UT) and lower (LT):

3: UT = MA + σ

LT = MA − σ

4: Reject the points outside side trends.
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The schematic results of the algorithms are presented in Figure 7.
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Figure 7a shows how, according to Algorithm 1, points belonging to the horizontal straight line
are chosen. A point qualifies (green colour) if its distance from the straight line is shorter than the
assumed threshold value. The results of Algorithm 2 are presented in Figure 7b, where the blue colour
represents the moving average and red shows the upper and lower bands around this average.

As a result of the overall coarse filtration process, about 90% of “obvious” noise is removed,
leaving the data that, with the use of geometric approximations or simple static analyses of intensity
variation, are “unnoticeable” by the proposed algorithms. Therefore, wavelet analysis tools were used
for further analysis.
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3.4. Denoising Using Wavelet Analysis

Presented in this section is a novel process for the precise denoising of data representing power
lines with the use of wavelet analysis. This requires proper pre-processing of data, defining the wavelet
family and choosing a thresholding method. In addition, discussed below is the no-reference method
for assessing the accuracy of data filtering. Figure 8 demonstrates the stages of preparation for the
filtration process and the process itself.
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In the presented figure, the meanings of the symbols are as follows: Z—vertical coordinate of
UAV imagery point clouds, Di—details, a_Z—approximation of the Z coordinate.

3.4.1. Data Preparation

When considering power lines, we focused mainly on the following parameters of the object:
span, diameter and sag. This last parameter is the most variable in the long term and depends on
factors such as the ambient temperature or wear and tear. Thus, one of the most important coordinates
to consider is the Z coordinate (understood as a value on the vertical axis in a rectangular coordinate
system). In further steps of the proposed methodology, wavelet analysis will use one-dimensional
signals representing the vertical coordinate, arranged in relation to the horizontal Y coordinate.

3.4.2. Wavelet Analysis

Wavelet analysis is used in many geometric problem solutions and point cloud processing,
for example, in [29,43]. Wavelet transform represents a one-dimensional signal f (t) as a linear
superposition of atomic functions called wavelets. In the case of discrete wavelet analysis, the signal is
scaled and shifted discreetly. Then, we express

ψj,k(t) =
1√
sj

0

ψ

(
t− kτ0sj

0

sj
0

)
(4)
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where j and k are integers and s0 > 1 is the spreading step, on which the shift τ0 (where τ0 = 1) depends.
Usually, coefficient s0 = 2. The sampling frequency corresponds to the dyadic sampling.

In Discrete Wavelet Transform (DWT), the wavelet can be represented as a high pass filter.
This issue is used when the wave propagates in a multi-resolution structure. These developments can be
determined using a discrete algorithm of a multistage filters. The algorithm based on this dependency
is called the Mallat algorithm [44]. The wavelet analysis represents a signal using hierarchical resolution
to receive information about the signal that can be presented in different levels of detail. It extracts
a general approximation but also enables the selection of some details, disturbances or noise. The signal
is decomposed into an approximation (correspond to low-frequency part) and details (represents the
high-frequency part). A simple diagram of wavelet decomposition is shown in Figure 9.
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Approximation (A) determines the general characteristic of signal tendency, while the details
(D) correspond to the high-frequency part and detailed nature of the signal, enabling the separation
of noise from the signal. All signals representing individual coordinates for power lines’ data were
analysed using wavelet analysis. Each signal (point series) was decomposed to a particular number
of levels in different intervals of details and to a component called approximation. Then, by sum of
details and approximation, the signal was reconstructed.

1. Choice of mother wavelet and decomposition level

The first task in any wavelet data analysis is to choose a decomposing mother wavelet and the
level of this decomposition. There are several ways to set these parameters. Some of them are based on
the entropy value of energy distribution and partly on correct energy distribution in frequency bands.
In choosing the wavelet function, there are several factors that should be considered: orthogonality,
complexity, width and shape [46,47]. A very important parameter is orthogonality, because it implies
that the energy content of a signal is preserved through the wavelet transform and it allows for
multiresolution analysis (MRA). Furthermore, mother wavelet choice also depends on the waveform
shape of the signal (which is especially important for power lines). The chosen mother wavelet should
be close to the analysed signal. Hence, it gives a perfect reconstruction with few decomposition levels.

Decomposition, depending on data, can be single- or multi-level. It is assumed that the level of
decomposition is dependent on the length of the signal (series). There are only a few methods which
allow the level of decomposition to be defined for signals, and often, it is a theoretical or empirical
estimation. The main way to define it is by means of entropy [43].

2. Denoising the wavelet domain—chosen thresholds

After choosing the proper level of decomposition, the type of data denoising has to be proposed.
Having conducted several analyses of wavelet characteristics, it was concluded that an orthogonal
family of wavelets, such as a symlet or Daubechies wavelet, is a good choice for denoising signals.
Furthermore, an orthogonal transform preserves the L2-norm. The basic principle of most wavelet
denoising techniques is to modify the wavelet coefficients obtained by the transform before they
are reverse transformed [48]. The process of thresholding wavelet coefficients can be divided into
two steps: policy choice and threshold function t. The choice of the threshold parameter in wavelet
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function estimation is briefly explained in [26]. There are two basic types of thresholding: hard
and soft. A method called soft thresholding, where wavelet coefficients are thresholded and the
remaining coefficients reduced by the value of the threshold prior to reconstruction, was proposed
in [49]. This was performed using a relatively straightforward threshold, the Universal Threshold,
where L is the length of the data. Donoho and Johnstone took idea further with new thresholding rules:
MiniMaxi, SUREShrink and Hybrid SURE [48,50]. Therefore, the non-linear thresholding function in
wavelet domain will tend to keep a few larger coefficients representing the function, while the noise
coefficients will tend to reduce to zero [51]. However, it can also be noticed that the detail coefficients
d1 consist mainly of noise, and the standard deviation of the d1 coefficients is taken to be that of the
noise. If orthogonal DWT is used, the risk function R can be expressed as

R
(

f̌ , f
)
=

1
N

N−1

∑
i=0

( f̌i − fi)
2
=

1
N ∑

j,k
( ˇvj,k − vij,k)

2 (5)

where fi is samples of a deterministic function f, ˇvj,k are estimated coefficients obtained on the basis of

the selected threshold t for wavelet coefficients at scale j: t =
[
t1, t2, . . . , tJ

]T . If the soft thresholding
function is used, nonlinearity is applied to the empirical wavelet coefficients at each scale j, j−1, . . . , j:

ns
(

x, tj
)
= sgn(x)

(
|x| − tj

)
+

(6)

In research, also subjected to analysis were fixed thresholding, the SURE algorithm and the
minimax algorithm. Usually, the thresholds are the same at all scales, but in some algorithms, such as
the scale-dependent scheme—SUREShrink, the thresholds at different scales are generally different [51].
The SURE is used only if the level has a significant signal present. Otherwise, universal thresholding
is used, which is the simplest threshold (named also fixed threshold). Donoho and Johnstone [49]
developed thresholding based on the function σ

√
2 log n, where n is the sample size and σ2 is the

noise variance. This threshold was one of the first proposed and provides easy, fast and automatic
thresholding. The rationale is to remove all wavelet coefficients that are smaller than the expected
maximum of an assumed normal noise sequence of a given size [52]. Threshold selection alternatives
based on minimising certain optimisation criteria include the minimax [53], and the SURE [49] methods.
SURE algorithms are divided into rigorous and heuristic.

3.5. Quality Check—Point Cloud Quality Index

After the data has been denoised, the accuracy of the denoising must be checked. If there are
no reference data available, the proposed no-reference method of results analysis should be applied.
In the case of the no-reference method, the quality coefficients for denoising point clouds proposed
by the author in [29] should be used. The quality of point clouds can be determined based on the
statistical parameters of signal decomposition and decomposition in the context of data noise. After
denoising the data, the statistical parameters of the process are determined. These include L1 norms
and L2 norms and are known as least absolute deviation (LAD) errors. It is basically minimising the
sum of the absolute differences (S) between the target value (yi) and the estimated values (f (xi)):

S =
n

∑
i=1
|yi − f (xi)| (7)

The L2-norm is also known as least squares. It is basically minimising the sum of the square of
the differences (S) between the target value (yi) and the estimated values (f(xi)):

S =
n

∑
i=1

(yi − f (xi)
2 (8)
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Except for the L1 norm and L2 norm, Max norm and standard deviation values were used.
When considering denoised data quality, we should relate to the original values of the signal and its
statistics. When analysing results, two wavelet denoising quality indexes are proposed:

w1dn =

(
L1o

Max_n o

)
(

L1dn
Max_n dn

) (9)

w2dn =

(
L1o
L1dn

+ L2o
L2dn

)
(

Max_no
Max_ndn

) +
σo

σdn
(10)

Equation (9) presents the ratio of the normalised L1 norm (L1o) parameter of the original signal
to the normalised L1 norm (L1dn) parameter of the signal denoised with a particular threshold
method. Equation (10) shows the relation of statistical parameters of coefficients residuals, taking
into consideration also the standard deviation of both the original and denoised data (σo and σdn).
The W2dn index also presents the relation between noisy and smoothened data. Both indexes indicate
the relative level of noise in the data.

Validation—Comparative Study

Apart from the statistical analysis of data filtering, another important aspect is the parameters of
power lines subjected to geodetic measurements. To this end, reference data from laser scanning were
used. Quality parameters of point clouds representing power lines adopted for quality check were
span, diameter, sag and point cloud resolution (average distance between neighbouring points).

The line length/span is measured as the distance between two points representing the anchoring
of lines to the transmission towers and constitutes a reference line connecting points A and B
(Figure 10). Power lines can be considered as free hanging lines, always deviating from the reference
line. The deviation between the reference line connecting the line anchor points and the centre of the
tension member cross-section, situated in the vertical direction, according to gravity, parallel to the Z
coordinate axis, is referred to as sag. Sag is affected by temperature and has its maximum on hot days.
The diameter is calculated as the average diameter of the cross-section of overhead cables measured
on the denoised point clouds in different segments of the cables.
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Every power line takes the form of a catenary, but the catenary is often replaced by a parabola
in order to simplify the calculations. The obtained result is correct only if the tension members are
fastened at similar heights and the spans are not too large. Then, based on the determined values of
the coordinates of the A and B cable anchor points and the height of point C located in the middle
of the span, the equation of the parabola can be determined. This is a simplified method, because
we assume that the sag value reaches its maximum in the middle of the span between two pylons.
Thus, for practical reasons, it is assumed that the cable sag is equal to the sag in the middle of the span
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reference line. The abovementioned parameters were determined on the basis of point clouds from
UAV imagery and LiDAR data.

4. Experiment and Results

In this section, the experimental results for all data sets are reported. General information about
the experiment flow chart can be found in Figure 6. Each “section” of the power lines between the
pylons, regardless of the data set examined, was obtained during three or four flight strips as several
photographs (80–96). Bundle adjustment was performed in Pix4Dmapper Pro software using dense
image matching algorithms. As a result of the algorithm, point clouds were generated, each one
characterised by considerable noise and discontinuity. Sample results are presented in Figure 1.
Based on initial classification, the points were divided into ground, vegetation, buildings, pylons
and lines.

4.1. Point Cloud Filtering of Power Lines

In the process of coarse filtration, gross errors and outliers were eliminated. This was achieved
with the use of the two-stage algorithm proposed in Section 3.3.1. This made it possible to set
an appropriate intensity threshold and to eliminate the points that were not located in the immediate
vicinity of the line points but which still had the required intensity. The process of coarse filtration is
presented in Figure 11.
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Figure 11. Results of different stages of coarse filtration: (a) original points, (b) intensity
filtration—horizontal view, (c) intensity filtration—horizontal view, (d) result of filtering with intensity
and geometric condition—horizontal view, (e), (f)—LiDAR point clouds—horizontal and vertical view.

In Figure 11a green and some yellow points represent the outliers—points subjected to
segmentation under the intensity condition. The red and the part of orange coloured points represent
real power lines points and some of the remaining noise. Figure 11b,c correspond to results of the
first—intensity filtering. Visible points left over from the first stage were not eliminated until the
geometric condition was applied. In Figure 11d final results of the whole coarse filtration (intensity
and geometric) is shown. For comparison, Figure 11e,f present reference, corresponding LiDAR data
with laser scanning intensity scale. It can be seen that LiDAR data are less noisy and have lower
density. Statistical results of point clouds (minimum, maximum, mean and standard deviation) and
threshold values t are presented below in Table 2. Shown in the ‘Filtration’ row is the percentage of
points removed from the original point cloud after thresholding (intensity filtration).
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Table 2. Intensity and filtration statistics for chosen lines from all data sets.

SET I (Summer) SET II (Summer) SET II (Winter) SET III (Autumn)

Minimum 0.499 0.499 0.499 0.499
Maximum 0.560 0.560 0.560 0.560

Mean 0.509 0.523 0.529 0.512
SD 0.019 0.013 0.015 0.009

Max. SD 0.031 0.031 0.031 0.031
K coefficient 0.20 0.15 0.20 0.07

Threshold value t 0.522 0.523 0.525 0.513
Filtration 68% 67% 75% 84%

As can be seen in Table 2, as a result of coarse filtration alone, the number of points representing
gross errors in mixed pixels is lower by at least 65% in every case. In this way, most erroneous points
that are difficult to eliminate from a point cloud generated from imagery were removed. The remaining
points are difficult to classify as object/background points without further data analysis.

4.2. Denoising with Wavelet Transform

Pre-filtered point clouds representing power lines were divided into separate one-dimensional
files (each containing a different coordinate). The points were oriented and segregated according to the
Y coordinate to determine the horizontal axis of the coordinate system. This helped to separate signals
representing only the Z coordinate, which was then subjected to wavelet analysis, because, as was
already mentioned, this coordinate is the most important in the process of reconstructing power lines
in 3D space and provides valuable information on factors such as, e.g., cable sag. The decomposition
of signal for different families—Symlet, Haar, Daubeshies and Coiflet—was analysed. The selection
of the family of the waves was related to their characteristics [54]. Finally, taking into account the
conditions presented for example in [46], wavelet db6 was chosen. Because of the length of the signals,
the data was decomposed at level 6. Figure 12 shows the signal representing one of the decomposed
lines S3_L1_UAV (data set III) of the Daubechies6 wavelet at level 6.Sensors 2019, 19 FOR PEER REVIEW  17 
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In all signal details, there were visible disturbances suggesting a certain nature of the data. In the
case of power lines generated from UAV imagery, the changes in d1 and d2 details indicated point
discontinuities or a lot of noise. The areas of these disturbances were reflected in the course of the
signals or in the a6 level approximation. In the next step, point clouds were denoised with the use of
three algorithms: rigorous SURE, heuristic SURE and Fixed from Threshold. Value thresholding for
these methods was conducted individually for every coefficient interval (Figure 13).
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Figure 13. Sample thresholding in the denoising process for the d1 coefficient.

The thresholds can be increased to keep only the highest values of the wavelet coefficients at each
level. The interval-dependent strategy can be also defined separately and individually. Each level
must be considered separately, and the thresholds adjusted. The current interval delimiters can also be
propagated to all levels. Usually on the basis of signal statistics, intervals are proposed automatically.
Since the variances for the three intervals are very different, the optimisation program easily detects
the correct structure. Nevertheless, we can also define a dedicated number of intervals. The next step
is to perform denoising. Decomposition of signal denoised with use of RSURE algorithm is presented
in Figure 14.Sensors 2019, 19 FOR PEER REVIEW  18 
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The process of denoising with the use of the RSURE algorithm had a radical impact on the data
(bolded in Table 3). The coefficients that usually contain information on signal disturbances were very
smooth (d1–d3). Then, the signal was reconstructed to its primary form. Theoretically, a denoised
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signal after reconstruction should be noiseless. The thresholding results are presented in Figure 15,
where the black line represents the denoised signal and the red one shows the original signal.
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Similarly, decomposition and denoising were performed for all data sets using the proposed
method. After reconstructing the denoised signal, the results obtained indicated an improved quality
of point clouds. Presented in Figure 16 is a sample power line and its fragment filtered according to
the proposed algorithm.Sensors 2019, 19 FOR PEER REVIEW  19 
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Figure 16. Power line (data set III) at different stages of the proposed algorithm: (a) the original point
cloud, (b) close-up, (c) the results of coarse filtration with intensity condition, (d) the results of coarse
filtration with geometric condition, (e) points denoised with the use of wavelet analysis (f) close-up of
wavelet analysis results.

Figure 16a shows the original point cloud with significant noise visible in the close-up in 16b.
The following stages (Figure 16c,d) are the results of coarse filtration, first with the intensity condition,
and then with the geometric condition. The final form of the data is presented in Figure 16e and the
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close-up in 16f, which also shows points denoised with the use of wavelet analysis (points in blue).
Sample data before and after filtering is presented in Figure 17 for high-voltage power lines (data set I).
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Figures 11, 16 and 17 represent point clouds that RGB colours were converted according to the
scheme in Section 3.2. For LiDAR data—points are presented in original laser scanning intensity scale.
Figure 17a,b show the elimination of points with a certain intensity (in this case marked with red).
Apart from the visual analysis, statistical analysis of data correction is also important. The statistics
for data before and after the filtration for coefficients (column coeff.) and data after the reconstruction
(column rec.) are presented in Table 3. A more adequate and precise analysis is shown for the first
level of details, named Detail1. This decomposition level was chosen because noise information is
accumulated mostly in this detail. The parameters for residuals of the denoising DB6 wavelet for
Detail1 are presented in the tables below, including both the original and denoised data.

Table 3. Statistics for the coefficients and reconstruction of the original and denoised signals for a power
line (data set III).

Original Data Fixed from
Threshold RSURE HSURE

Coeff. Rec. Coeff. Rec. Coeff. Rec. Coeff. Rec.

SD 0.024 0.020 0.018 0.012 4.769 × 10−07 1.972 × 10−07 0.018 0.013
MAD 0.005 0.009 0.002 0.002 1.045 × 10−08 6.24 × 10−09 0.002 0.002

L1 norm 129.4 182.6 19.55 33.93 0.0001 0.0001 22.09 38.16
L2 norm 2.879 2.879 1.808 1.808 4.837 × 10−05 0.0001 1.877 1.877

Max norm 0.624 0.459 0.567 0.389 3.645 × 10−05 0.0001 0.574 0.398
w1dn 6.0 4.6 82.7 105.2 5.4 4.2
w2dn 8.8 7.5 50,201 101,935 8.1 7.0

Significant changes are noticeable, especially in the mean absolute deviation (MAD), standard
deviation (SD) and L1norm and L2norm values. When it comes to Detail1, the residual parameters L1
norm, L2 norm and standard deviation values are the highest for the original signal and decrease for
consecutive threshold methods: Fixed from Threshold and both SURE algorithms.

Similar results were obtained for the remaining test areas. Provided in Table 4 is a sample analysis
of a high-voltage power line from data set II.
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Table 4. Statistics for the coefficients and reconstruction of the original and denoised signal for a power
line (data set II).

Original Data Fixed from
Threshold RSURE HSURE

Coeff. Rec. Coeff. Rec. Coeff. Rec. Coeff. Rec.

SD 0.004 0.003 0.002 0.001566 0.001991 0.0014 0.0022 0.0015
MAD 0.002 0.002 0.0003 0.000225 0.0002494 0.0002 0.0003 0.0002

L1 norm 25.3 35.3 2.77 4.69 2.44 4.21 2.77 4.69
L2 norm 0.447 0.447 0.226 0.226 0.203 0.203 0.226 0.226

Max norm 0.086 0.077 0.078 0.066 0.077 0.066 0.077 0.066
w1dn 5.8 5.6 6.6 6.3 5.8 5.6
w2dn 18.2 20.3 20.4 22.6 18.2 20.3

According to Equations (9) and (10), it can be noticed that the higher the values of w1dn and w2dn
indexes, the more noiseless the data (bolded in Table 4). This also provides a good comparison of
thresholding methods of denoising. In all cases, the RSURE method yields the most accurate data.
The analysis was also conducted on the actual parameters of power lines and compared with the
theoretical values and those obtained via laser scanning. Table 5 shows the values of point cloud
resolution, line span and diameter before (φUAVo) and after correction (φUAVc), and sag before (SUAVc)
and after correction (SUAVc).

Table 5. Parameters of selected lines before and after correction.

Line Point Cloud
Resolution (mm) Span (m)

Theor. Cable
Diameter φT

(mm)

Cable
Diameter

φUAVo (mm)

Cable
Diameter
Corrected

φUAVc (mm)

Sag
SUAVo
(m)

Sag
Corrected
SUAVc (m)

SET I

S1_L1_ALS 38 292.69

30

46 - 5.52 -
S1_L1_UAV 43 291.88 96 64 5.71 5.61
S1_L2_ALS 38 291.19 65 - 8.10 -
S1_L2_UAV 43 291.25 88 58 8.24 8.31

SET II

S2_L3_TLS 6 48.94

6

10 - 0.26 -
S2_L3_UAV 4 48.41 10 8 0.22 0.25
S2_L1_TLS

(winter) 4 44.52 13 - 0.47 -

S2_L1_UAV
(summer) 10 44.86 26 15 0.76 0.69

S2_L1_UAV
(winter) 5 43.78 12 10 0.51 0.46

SET III
S3_L1_TLS 7 40.62

28
30 - 1.61 -

S3_L1_UAV 11 40.62 42 29 1.58 1.63

Table 5 shows the sag measurements for each power line computed by measuring the maximum
difference in elevation from the reference line. The order of magnitude of the sag determined from
UAV imagery point clouds was similar to the values obtained via laser scanning. There was also
a significant improvement for data acquired with low-cost platforms. Data from UAV imagery point
clouds were compared with the data from aerial (ALS) and terrestrial (TLS) laser scanning. Presented
in Table 6 are the differences in sag values for UAV imagery (SUAVo—original, SUAVc—corrected) and
laser scanning (LS) data. The largest differences are noticeable for resolution, cable diameter and
point cloud resolution. There was less improvement for the line sag value. It is also interesting that
sag values for the same line could be different in different seasons because of temperature. The sag
value was usually smaller in winter than in summer. This is related to the properties of the power line
material. These properties can be noticed for Line S2_L1_UAV in Tables 5 and 7.

As we are analysing different lines, each with different parameters, the comparison of accuracy
is presented as a percentage in relation to the LiDAR data to determine the correction level.
This comparison is presented in Table 6.
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Table 6. Comparison of line sag before and after correction for UAV imagery and laser scanning.

SET I SET II SET III

Sag Delta [m] S1_L1 S1_L2 S2_L3 S2_L1
(Winter)

S2_L1
(Summer) S3_L1

SUAVo–SLS 0.19 0.14 0.03 0.04 0.03
SUAVc–SLS 0.09 0.20 0.01 0.01 0.02

SUAVo–SUAVc 0.09 0.07 0.02 0.04 0.07 0.05
Correction level 2% 1% 10% 10% 9% 3%

With all the data obtained from a low-cost platform (set II and set III), there was a visible
improvement in the accuracy of determining the line sag. These are calculations made against laser
scanning data, which are assumed to carry a negligible error. The improvement in determining the
sag value approached 10% when compared with the value obtained from laser scanning, while in the
case of a professional platform (set I), the values did not improve or even slightly decreased (1–2%).
However, there were significantly larger differences when comparing the other parameters, including
cable diameter (Table 7).

Table 7. Comparison of diameter before and after correction for UAV imagery and laser scanning data.

Diameter Delta (mm) S1_L1 S1_L2 S2_L3 S2_L1
(Winter)

S2_L1
(Summer) S3_L1

φUAVo–φT 66 58 4 6 20 14
φUAVc–φT 34 28 2 4 9 1
φLS–φT 16 35 4 7 7 2

In the case of the diameter, the actual (theoretical) value was known. In all sets, the values of
the diameter after correction were the closest to the actual values. In one extreme case, the corrected
diameter reached a value of 7 mm from the original 20 mm. Data filtration and denoising increased
the accuracy by almost twofold. In the case of obtaining data for the same object in different seasons,
and thus in different exposure conditions, there was also major improvement (50%).

The resulting accuracies are acceptable for power line inspection and monitoring, which typically
requires an elevation accuracy of 10–20 cm.

5. Discussion and Conclusions

This paper has presented an analysis of data obtained with both a professional and a low-cost
unmanned platform. The aim of the study was to analyse the point clouds generated from UAV
imagery with a potential application in the monitoring and inspection of power lines, especially with
low-cost platforms. A precise power line model is a basic data requirement for further data processing:
inspection or 3D modeling. Given the high level of noise in point clouds generated from UAV imagery,
a method for improving their quality was proposed. From the experimental results, it is clear that
improved point clouds result in an increased accuracy in power line parameter determination. Despite
the “amount of noise”, the proposed method was shown to be effective. Thus, the advantage of
the method developed is the independency from the SGM of SfM algorithms even with high noise.
Sometimes, point clouds are not complete or more or less noisy. Therefore, the proposed coarse and
precise filtering methodology was developed. The algorithm tolerates both noisy and very noisy point
clouds in the input. Due to the other properties of proposed methods, very noisy point clouds might be
used to represent a single power line more precisely (level of mixed pixel removal by coarse intensity
filtering is about 65–80%). Furthermore, the proposed method can overcome the limitation of using
low-cost UAV for low-voltage power lines mapping.

Nevertheless, despite the improvement after the correction process, slight differences still existed
between the UAV imagery point cloud and laser scanning. Two main limitations were observed in this
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study. Firstly, data sets used in research should be acquired using other low-cost platforms. However,
the platform used in this study is one of the most common non-professional UAV platforms. The second
limitation is the automatisation level of the last stage, i.e., the wavelet analysis. Nevertheless, the coarse
filtration alone (the first part of the method) can be performed quickly and guarantees a high increase
in data quality. Refinement with the use of the wavelet transform will only be necessary with less
dense point clouds or when exposure conditions are unfavourable.

In future work, the method automatisation level will be increased, and the data from other
unmanned platforms will be studied.

In future research work, the proposed method will be compared and integrated with existing
power line reconstruction algorithms. Application of this method combined with other algorithms
like RANSAC [9] or point cloud classification [5,7] would give very promising results. This would
probably be even more effective than the separate use of them.
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