Contribution of V_H Replacement Products in Mouse Antibody Repertoire

Lin Huang^{1®}, Miles D. Lange^{1®}, Yangsheng Yu¹, Song Li¹, Kaihong Su^{1,2,3}, Zhixin Zhang^{1,2*}

1 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America, 2 The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America, 3 Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America

Abstract

 V_{H} replacement occurs through RAG-mediated recombination between the cryptic recombination signal sequence (cRSS) near the 3' end of a rearranged V_{H} gene and the 23-bp RSS from an upstream unrearranged V_{H} gene. Due to the location of the cRSS, V_{H} replacement leaves a short stretch of nucleotides from the previously rearranged V_{H} gene at the newly formed V-D junction, which can be used as a marker to identify V_{H} replacement products. To determine the contribution of V_{H} replacement products to mouse antibody repertoire, we developed a Java-based V_{H} Replacement Footprint Analyzer (V_{H} RFA) program and analyzed 17,179 mouse IgH gene sequences from the NCBI database to identify V_{H} replacement products. The overall frequency of V_{H} replacement products in these IgH genes is 5.29% based on the identification of pentameric V_{H} replacement footprints at their V-D junctions. The identified V_{H} replacement products are distributed similarly in IgH genes using most families of V_{H} genes, although different families of V_{H} genes are used differentially. The frequencies of V_{H} replacement products are significantly elevated in IgH genes derived from several strains of autoimmune prone mice and in IgH genes encoding autoantibodies. Moreover, the identified V_{H} replacement footprints in IgH genes from autoimmune prone mice or IgH genes encoding autoantibodies preferentially encode positively charged amino acids. These results revealed a significant contribution of V_{H} replacement products to the diversification of antibody repertoire and potentially, to the generation of autoantibodies in mice.

Citation: Huang L, Lange MD, Yu Y, Li S, Su K, et al. (2013) Contribution of V_H Replacement Products in Mouse Antibody Repertoire. PLoS ONE 8(2): e57877. doi:10.1371/journal.pone.0057877

Editor: Sebastian D. Fugmann, Chang Gung University, Taiwan

Received June 13, 2012; Accepted January 30, 2013; Published February 28, 2013

Copyright: © 2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by National Institutes of Health grants Al074948 (ZZ), Al076475 (ZZ), and AR059351 (KS), and by faculty developmental fund for ZZ and KS from University of Nebraska Medical Center, Eppley Cancer Institute, Omaha, Nebraska. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhangj@unmc.edu

• These authors contributed equally to this work.

Introduction

The variable region exons of the immunoglobulin (Ig) genes are generated through sequential rearrangement of previously separated V_H, D_H (for heavy chain only), and J_H gene segments catalyzed by the recombination activating gene products (RAG1 and RAG2) [1–5]. The specific joining of V_H , D_H , and J_H gene segments is directed by the recombination signal sequences (RSSs) [6,7]. The RSS consists of a highly conserved heptamer and a nonamer, separated by a non-conserved spacer region with either 12-bp or 23-bp nucleotides [6-9]. Efficient recombination occurs between a 12 bp RSS- and a 23 bp RSS-flanked gene segments [6,7]. After RAG-mediated cleavage, the resulting double strand DNA breaks are repaired by the Non-Homologous End Joining (NHEJ) pathway [4,5]. The coding end hairpins are opened and re-joined to form the coding exon of Ig gene, whereas the signal ends are ligated to form an excision circle and released from the chromosomal DNA [6,7].

Rearrangement of Ig heavy (IgH) chain genes starts with a $D_{\rm H}$ to $J_{\rm H}$ recombination on one allele of the IgH loci in early progenitor (pro) B cells followed by recombining a $V_{\rm H}$ gene segment to the $DJ_{\rm H}$ joint in late pro B cells [4,5]. If the rearrangement is non functional, pro B cells will start to rearrange

the second IgH allele [4,5]. Functionally rearranged IgH genes will be expressed as the µ heavy chains to form pre-B cell receptors with the non-rearranged components, Vpre-B and lambda 5 [10-15]. Signaling from the pre-BCR will stimulate pre B cell proliferation and subsequent IgL gene rearrangement [14,15]. The IgL gene variable region exon is generated by a one step rearrangement between a VL segment and a JL segment in the small precursor (pre-) B cells [4,5,16]. Due to the random recombination process, two thirds of the V(D)J rearrangement products might be out of reading frame and cannot express functional Ig peptides. Even if the IgH gene rearrangements are productive, they might fail to pair with the surrogate or conventional light chains. B cells lacking functional pre-B cell receptors (pre-BCRs) or B cell receptors (BCRs) cannot develop further along the B lineage pathway [14,17]. Moreover, functionally expressed BCRs may be self-reactive. In all these cases, early B lineage cells retain the abilities to initiate secondary RAGmediated recombination to alter the rearranged Ig genes, a process known as receptor editing [18-20].

Editing of rearranged IgL genes can occur through RAGmediated secondary recombination between any upstream V_L gene to a downstream J_L gene [21–26]. The intervening DNA fragment containing the previously rearranged V_LJ_L joint is deleted during the editing process [24-26]. As a default mechanism, pre-B cells with non-functional rearrangements on both $Ig\kappa$ alleles can initiate *de novo* rearrangements at the $Ig\lambda$ locus [26]. Accumulating studies indicated that non-functional or autoreactive IgH gene rearrangements can be edited through a V_H replacement process [27-33]. V_H replacement occurs through RAG-mediated recombination between a cryptic RSS embedded at the 3' end of the rearranged V_H gene with the 23 bp RSS from a upstream V_H gene [31]. V_H replacement was originally observed in murine pre-B cell leukemia cells, which generated functional IgH genes from non-functional IgH rearrangements [27,28]. The potential biological function of V_H replacement in editing IgH genes encoding anti-DNA antibodies was demonstrated in a series of studies using engineered mouse models carrying knocked-in IgH V(D)J rearrangements encoding anti-DNA antibodies [29,34,35]; Later studies also provided evidence that V_H replacement was employed to diversity the antibody repertoire in mouse carrying knocked-in IgH genes encoding anti-NP antibodies [30,36] and to rescue B cells with two alleles of non-functional IgH rearrangements [32,33]. Despite of these findings in engineered mice, evidence for ongoing V_H replacement during B cell development in normal mouse and contribution of V_H replacement products to the mouse antibody repertoire were lacking for a long time [37,38].

Due to the location of the cRSS at the 3' end of V_H germline gene, $V_{\rm H}$ replacement renews almost the entire $V_{\rm H}$ coding region but leaves a short stretch of nucleotides from the previously rearranged $V_{\rm H}$ gene at the newly formed V-D junction [28,31]. These remnants can be used as V_H replacement footprints to trace the occurrence of V_H replacement and to identify potential V_H replacement products through analyzing IgH gene sequences [31]. Our previous analysis of 412 human IgH gene sequences estimated that V_H replacement products contribute to about 5% of the primary B cell repertoire in human [31]. A recent analysis of IgH genes generated from knock-in mice expressing IgH genes encoding anti-DNA antibodies showed that 7.5% of the newly generated IgH genes contain pentameric V_H replacement footprints [39]. Similar frequency of V_H replacement products were also found in IgH genes obtained from the wild type B6 mice [39].

To explore the contribution of V_H replacement products to the diversification of mouse IgH repertoire, we developed a Java based V_H replacement footprint analyzer (V_HRFA) program and analyzed 17,179 mouse IgH gene sequences from the National Center for Biotechnology Information (NCBI) database to identify V_H replacement products. These results revealed a significant contribution of V_H replacement products to the murine IgH repertoire and the enrichment of V_H replacement products in several strains of autoimmune prone mice.

Results

The Mouse IgH Sequence Repertoire

To analyze a large number of IgH gene sequences and to identify potential V_H replacement products, we developed a Java based V_H Replacement Footprint Analyzer (V_H RFA) program. Using the V_H RFA program, we analyzed 17,179 mouse IgH gene sequences from the NCBI databases to identify V_H replacement products. First, the potential V_H , D_H , and J_H germline gene usage were assigned using the IMGT/V-QUEST program by sending batches of sequences using the V_H RFA program (shown in Table S1). Based on the IgH CDR3 region sequences, clonally identical sequences were stripped out. There are 11309 unique IgH gene sequences; 10159 of them have clearly identifiable V_H , D_H , and J_H genes; 9774 of them are productive and 373 of them are nonproductive IgH rearrangements. In these IgH genes, different families of V_H genes are used differentially (Fig. 1). There are 63683 (65%) functional IgH genes using the IGHV1/ V_H J558 family of V_H genes; 911 (or 9.3%) functional IgH genes using the IGHV5/ V_H 7183 family of V_H genes. The other families of V_H genes, including IGHV4/X-24, IGHV11/CP3, IGHV12/CH27, IGHV13/3609N, and IGHV15/VH15A, are used at much lower frequencies (Fig. 1A). Among the non-functional IgH rearrangements, the usages of most V_H gene families are similar to those in functional IgH genes, but the usages of the IGHV5/ $V_{\rm H}$ 7183 and IGHV3/36-60 gene families are increased (Fig. 1A). Among different D_H genes, the IGHD1-1 gene is used the most frequent in almost 39% of the IgH sequences (Fig. 1B). For the $J_{\rm H}$ genes, the IGHJ2 gene is used the most frequent in 43% of IgH genes (Fig. 1C). It should be noted that these 17179 mouse IgH sequences were derived from about 861 published reports (Table S2), presumably from more than 861 experiments with different mice. This analysis represents a comprehensive view of the IgH repertoire of the current available mouse IgH gene sequences in the NCBI database.

Identification of V_H Replacement Products

In the initial test, we use the $V_{\rm H}$ RFA program to identify potential V_H replacement products in 271 mouse IgH gene sequences described previously [40]. Among them, 252 unique IgH genes have clearly identifiable V_H, D_H, and J_H germline genes. Then, we searched for V_H replacement footprint motifs with 3, 4, 5, 6, or 7 nucleotides within the V_H - D_H junction (N1) regions of these IgH genes. V_H replacement can only introduce V_H replacement footprint in the N1 region. As an internal control, we searched for similar V_H replacement footprint motifs in the D_H-J_H junction (N2) regions of these IgH genes, which are likely generated by random nucleotide addition. The frequencies of 3, 4, and 5-mer V_H replacement footprint motifs in the N1 regions are significantly higher than those in the N2 regions (Table 1, top), suggesting that the distribution of such motifs in the N1 region is not due to random nucleotide addition. Based on the identification of the pentameric V_H replacement footprints within the N1 regions, we estimate that the frequency of V_H replacement products is 5.5% in these 252 mouse IgH gene sequences (Table 1, Top). If we consider the 4- or 3-mer of V_H replacement footprints in the N1 regions, the frequencies of V_H replacement products in these 252 IgH genes will be 21.2% or 38%, respectively (Table 1, top and the identified V_H replacement products with 4-mer V_H replacement footprints are shown in Table S5).

Further analysis of the 14 identified V_H replacement products validated the assignment of V_H replacement footprints by the V_HRFA program (Table 2). Theoretically, V_H replacement occurs through an upstream V_H gene replacing a downstream rearranged V_H gene. Among these 14 identified potential V_H replacement products, 11 of them were likely generated through upstream V_H genes replacing downstream V_H genes; 3 of them did not follow such order (Table 2).

Contribution of V_H Replacement Products to the Mouse IgH Repertoire

Next, we analyzed the 11,309 unique mouse IgH gene sequences from the NCBI database using the V_H RFA program to search for V_H replacement products. We performed separated analyses to identify V_H replacement footprints with 3, 4, 5, 6, and 7 nucleotides in the V_H -D_H junction (N1) regions. As internal controls, we also searched for the similar motifs in the D_H-J_H junction (N2) regions. The frequencies of identified V_H re-

Figure 1. Immunoglobulin VH, DH, and JH gene usages in the mouse IgH sequence repertoire. The mouse IgH gene sequence data set containing 17,179 entries was downloaded from NCBI databases. The potential V_H , D_H , and J_H germline gene assignments were performed using the IMGT/V-QUEST program by sending batches of sequences by the V_H RFA program. Clonally redundant IgH sequences were removed if they contain identical CDR3 regions. The usages of different families of V_H germline genes (A), D_H genes (B), and J_H (C) genes in the functional or non-functional unique IgH genes were analyzed. doi:10.1371/journal.pone.0057877.g001

placement footprints with 3, 4, 5, 6, or 7 nucleotides in the N1 regions are significantly higher than those in the N2 regions (Table 1, bottom). These results indicate that the presence of these motifs at the N1 region is not due to random nucleotide addition. With a stringent setting to search for the pentameric $V_{\rm H}$ replacement footprints at the N1 regions, 5.29% of the IgH genes contain such motifs and can be assigned as potential $V_{\rm H}$ replacement footprints. If we consider $V_{\rm H}$ replacement footprints with 4 or 3 nucleotides, 15.95% or 33.55% of the IgH genes, respectively, contain such motifs and can be assigned as potential $V_{\rm H}$ replacement products (Table 1, bottom). These results revealed a significant contribution of $V_{\rm H}$ replacement products to the diversification of the murine IgH repertoire.

Distribution of V_H Replacement Products in IgH Genes Using Different Families of V_H Genes

As we showed earlier, different V_H gene families are used at different frequencies in the 10159 mouse IgH gene sequences. Next, we analyzed the distribution of the identified V_H replacement products with 5-mer footprint motifs in IgH genes using different V_H gene families. Among all the IgH genes using different families of V_H genes, the frequency of V_H replacement products in IgH genes using the VH2/Q52 genes is significantly higher than that in the overall mouse IgH sequences (Table 3). The frequencies of V_H replacement products in IgH genes using the other V_H gene families are quite similar. For example, although the IGHV1/ V_H J558 and IGHV5/ V_H 7183 families are used most frequently and the IGHV4/X-24, IGHV12/CH27, and IGHV14/SM7 families are used at very low frequencies, the frequencies of V_H replacement products in IgH genes using the IGHV1/V_HJ558, IGHV5/V_H7183, IGHV4/X-24, IGHV12/ CH27, and IGHV14/SM7 families are similar (Table 3). These results indicate that although different families of V_H genes are used differentially during the primary V(D)J recombination, they are similarly targeted for secondary recombination during $V_{\rm H}$ replacement. As an internal negative control, we analyzed the N1 regions of IgH genes using the D_H proximal V_H 5-2/7183.2 gene. Among the 56 functional IgH genes using the V_H 5-2/7183.2 gene, there is no pentameric V_H replacement footprints in the N1 regions. Such result provides supporting evidence that the presence of pentameric footprints in the N1 regions of mouse IgH genes is contributed by $V_{\rm H}$ replacement.

Enrichment of V_H Replacement Products in IgH Genes Derived from Different Strains of Autoimmune Prone Mice and IgH Genes Encoding Autoantibodies

To explore the biological significance of V_H replacement in mouse, we analyzed the distribution of V_H replacement products in IgH genes correlating with different keywords in the NCBI database. Based on the identification of 5-mer V_H replacement footprints within the N1 regions, the frequencies of V_H replacement products in IgH genes derived from *C57BL/6* and

	inique Number of Sequences with V, D, J genes ^b	Minimal Length of V _H replacement footprint	V _H replacement footprint motifs in the N1 region ^c	V _H replacement footprii motifs in the N2 region	nt ^d <i>p</i> -value ^e	Frequency of V _H replacement products (%) ^f
Test lgH genes ^g 271	252	œ	101	65	0.0001	40.1
		4	55	23	0.0001	21.8
		5	14	4	0.0308	5.5
		9	2	0	0.4786	0.79
		7	1	0	0.3168	0.39
NCBI IgH genes ^h 11309	10159	m	3384	2622	0.0001	33.55
		4	1609	626	0.0001	15.95
		5	534	256	0.0001	5.29
		9	179	50	0.0001	1.77
		7	45	8	0.0001	0.45

ent footprint motifs with different length in the N1 and N2 regions of the mouse laH genes. renerem Jencies of V Table 1 Erod

"Total number of IgH gene sequences with clearly identifiable V_H, D_H, and J_H genes. ^{VII} region refers to the V-D junction.

⁴N2 region refers to the D-J junction. ^eThe frequencies of potential V_H replacement footprint motifs in the N1 and N2 regions were compared by two-tailed Chi-square with Yate's correction. ρ <0.05 was considered significant and ρ <0.0001is considered extremely significant. ^fNumbers of IgH gene sequences with V_H replacement "footprint" motifs in the N1 regions were divided by the total number of IgH gene sequences with V, D, J gene assignment. ^fMouse IgH gene sequences were previously described. ^hThe mouse IgH gene sequences were downloaded from the NCBI database on May 7, 2011. The GI numbers of these sequences were included in Table S1.

Table 2. List of potential V_H replacement products in the test IgH sequences.

Sequence ID	V _H gene	3′ V _H	Р	N1	D _H	Potential footprint donor	Position ^a
FJ816520	IGHV1S132	tgtgcaaga		gg <u>gagga</u> cct	IGHD2-14	IHGV8-10, IGHV8-14, IGHV8S2	Y
FJ150867	IGHV14-3	tgtgcaaga		gg <u>gagag</u> ggggggggtgatc	IGHD1-1	IGHV3-3, IGHV10-3, IGHV13-1	Y
FJ150854	IGHV1S132	tgtgcaaga		gc <u>gaacg</u>	IGHD2-12	IGHV7-1	Y
GU907018	IGHV1-9	tgtgccaga		ggagga	IGHD1-1	IGHV8-10, IGHV8-14, IGHV8S2	Y
FJ816537	IGHV1-74	tgtgcaa		<u>gagag</u> g	IGHD2-12	IGHV3-3, IGHV10-3, IGHV13-1	Y
FJ816495	IGHV1-47	tgtgcaagg		gagag	IGHD1-1	IGHV3-3, IGHV10-3, IGHV13-1	Y
GU907010	IGHV1-5	tgtacaaga		gagac	IGHD2-1	IGHV10-1, IGHV12-3	Y
GU907038	IGHV1-4	tgtgcaaga	tc	gaagg	IGHD2-3	IGHV3-1	Y
FJ816546	IGHV1-4	tgtgcaag		gaagagg	IGHD1-1	IGHV8-12, IGHV1-11, IGHV12-3	Y
FJ816592	IGHV14-1	tgtgc		cagag	IGHD2-14	IGHV2-6-7	Y
FJ816442	IGHV14-1	tgtgcta		aaacctc	IGHD1-1	IGHV2-3, IGHV2-6-6	Y
FJ816522	IGHV2-9-1	tgtgccagaga	tc	ggg <u>gatatc</u> g	IGHD2-14	IGHV7-3	Ν
GU906999	IGHV14-3	tgtgctaga		ggagga	IGHD1-1	IGHV8-10, IGHV8-14, IGHV852	Ν
GU906995	IGHV14-3	tgtgctgga		ggagga	IGHD1-1	IGHV8-10, IGHV8-14, IGHV852	Ν

The identified V_H replacement footprints in the N1 regions are *underlined*.

^aThe relative positions of the potential donors and recipient V_H genes in the identified V_H replacement product were analyzed to determine if the V_H replacement occurred through an upstream V_H gene replacing a downstream V_H gene (Y) or a downstream V_H gene replacing an upstream gene (N). Only functional V_H germline genes were used in this analysis.

doi:10.1371/journal.pone.0057877.t002

BALB/c strains of mice are 3.17% and 5%, respectively (Fig. 2A and Table S6). Such numbers may serve as the basal levels of $V_{\rm H}$ replacement products in these mice. Comparing IgH genes derived from several strains of mice, the frequencies of $V_{\rm H}$ replacement products are highly elevated in IgH genes derived from different strains of autoimmune prone mice (Fig. 2A). In

particular, the frequencies of V_H replacement product are elevated in IgH genes derived from lupus prone NZB/NZW F1, NZM2410, MRL/lpr, and SLE1/SLE3 mice. In IgH genes derived from mice carrying the spontaneous Fas^{hpr} mutation (MRL/MpJ-Lpr/Lpr), the frequency of V_H replacement products is 15.38%. In IgH genes from the *Sle1/Sle3* mice, the frequency of V_H replacement

Table 3. Frequencies of V_H replacement products in IgH genes using different families of mouse V_H genes.

V _H family	Number of IgH gene sequences	Motifs in the N1 region	Frequency of V _H replacement products (%) ^a
VH1/J558	6530	314	4.81
VH2/Q52	665	55	8.27 ^c
VH3/36-60	565	30	5.31
VH4/X-24	57	3	5.26
VH5/7183	998	68	6.81
VH6/J606	131	6	4.58
VH7S107	253	8	3.16
VH8/3609	139	9	6.47
VH9/VGAM3-8	144	11	7.64
VH10/VH10	127	4	3.15
VH11/CP3	37	0	0
VH12/CH27	43	3	6.98
VH13/3609N	7	1	14.29
VH14/SM7	459	26	5.66
VH15/VH15A	4	0	0
VH5-2/7183.2 ^b	56	0	0

^aNumber of IgH gene sequences with V_H replacement "footprint" motifs in the N1 regions divided by the total number of IgH gene sequences assigned to a V_H gene family.

^bFunctional IgH genes using the VH5-2/7183.2 gene were analyzed for potential V_H replacement footprints in the N1 regions.

^CThe frequency of V_H replacement products using VH2/Q52 family of V_H genes is significantly higher than the overall frequency of V_H replacement products in mouse IgH genes.

doi:10.1371/journal.pone.0057877.t003

products is 30%. These frequencies are significantly higher than that in the BALB/c or C57BL/6 mice (p < 0.05, two tailed Chisquare test) (Fig. 2A). The elevated levels of V_H replacement products in autoimmune prone mice suggest that V_H replacement products contribute to the generation of autoantibodies. Indeed, further analyses of the IgH genes encoding different antibodies showed that the frequencies of V_H replacement products are 12.1% in IgH genes encoding ANA antibody and 9.34% in IgH genes encoding anti-DNA antibodies. These levels are significantly higher than those in the BALB/c or C57BL/6 mice. As a negative control, the frequency of V_H replacement products in IgH genes obtained from mice immunized with NP is 3.66%, which is similar to that in the C57BL/6 mice. Taken together, these results provide the first information that V_H replacement products are highly enriched in IgH genes derived from different strains of autoimmune prone mice and in IgH genes encoding anti-DNA and ANA autoantibodies.

Using the V_HRFA program, we also analyzed the frequencies of $V_{\rm H}$ replacement products based on the 4- or 3-mer of $V_{\rm H}$ replacement footprints in IgH genes derived these diseased subcategories. Extending the assignment of V_H replacement products with considering the 4- and 3-mer V_H replacement footprints clearly increases the frequencies of V_H replacement products in IgH genes from all subcategories. With considering the 4-mer V_H replacement footprints, the frequencies of V_H replacement products in IgH genes derived from NZB/NZW, MRL/ lpr, SLE1, SLE1/SLE3 and IgH genes encoding anti-DNA and ANA antibodies are significantly higher than that in the BALB/c mice (p < 0.05, two tailed Chi-square test) (Fig. 2B); with considering the 3-mer V_H replacement footprints, the frequencies of V_H replacement products in IgH genes derived from NZB/NZW, NZM2410, MRL/lpr, SLE1, SLE1/SLE3, NOD/NOR and IgH genes encoding auto antibodies, anti-DNA antibodies, and ANA antibodies are significantly higher than that in the BALB/c mice ($p \le 0.05$, two tailed *Chi*-square test) (Fig. 2C). Taken together, these results showed that V_H replacement products are enriched in IgH genes derived from different strains of autoimmune prone mice and in IgH genes encoding autoantibodies.

The Identified V_H Replacement Footprints Preferentially Encode Charged Amino Acids

Our previous analysis of the identified V_H replacement products in human IgH genes showed that the V_H replacement footprints preferentially encode charged amino acids into the IgH CDR3 regions [31]. Here, analysis of the identified V_H replacement products from mouse IgH genes showed that 64% of the amino acids encoded by the identified V_H replacement footprints contribute charged amino acids, including K, R, D, E, N, and Q. Such frequency is significantly higher than the overall frequency of charged amino acids in the N1 regions (p < 0.0001) (Fig. 3A). Moreover, the frequencies of charged amino acids, including E, K, and R, encoded by the identified V_H replacement footprints are significantly higher than those encoded by the N1 regions of non-V_H replacement products (p < 0.0001) (Fig. 3B). The preferential contribution of charged amino acids by the $V_{\rm H}$ replacement footprints seems to be predetermined by the sequences at the 3' end of V_H germline genes following the cRSS sites. The frequencies of charged amino acids encoded by the 3' ends of V_H germline gene, including K, R, D, E, N, and Q, are significantly higher than those encoded by the D_H germline genes $(p \le 0.0001)$ (Fig. 3C). In non-functional IgH genes, the identified V_H replacement footprints also preferentially encode charged amino acids, although the usages of different charged residues are slightly different from those in the functional V_H replacement

Figure 2. Enrichment of V_H replacement products in IgH genes derived from different strains of autoimmune prone mice and IgH genes encoding autoantibodies. The frequencies of V_H replacement products in IgH genes derived from different strains of mice were analyzed using the V_HRFA program based on the keyword linked to each IgH gene in the NCBI database. V_H replacement products were assigned based on the identification of (A) 5-mer V_H replacement footprints, (B) 4-mer V_H replacement footprints, or (C) 3-mer V_H replacement footprints within the V_H-D_H junctions (N1 regions). The frequencies of V_H replacement products in different subcategories were compared with that in the *BALB/c* mice. *n*, number of IgH sequences in each subcategory. Statistical significance was determined using a twotailed Chi square test with Yate's correction. *p*<0.05 (*) is considered

significant and p < 0.0001 (**) is considered extremely significant. The detailed sequence analysis and the identified V_H replacement products with 5-mer V_H replacement footprints correlating with keywords are included in Table S6. doi:10.1371/journal.pone.0057877.g002

products (Fig. 3D). Such results are consistent with previous findings that the V_H replacement footprints identified in human or mouse V_H replacement products preferentially encoded charged residues [31,39].

The 3-mer V_H Replacement Footprints are Less Likely Contribute Charged Amino Acids to the CDR3 Regions

 $\rm V_{H}$ replacement was considered as a receptor editing process to change non-functional IgH rearrangements or IgH genes encoding autoantibodies [29,41]. Finding that the 5-mer $\rm V_{H}$ replacement footprints preferentially encoded charged amino acids, especially R and K residues, is contrast to the original goal of $\rm V_{H}$ replacement to eliminate autoreactive IgH genes. Because charged residues within the IgH CDR3 might contribute to autoreactivity. Interestingly, when we analyzed the amino acids encoded by the identified 3-mer $\rm V_{H}$ replacement footprints, the usages of charged residues, including R, K, and E, are significantly reduced; meantime, the usages of several neutral residues, including H, L, and Y, are significantly increased (Fig. 4A). These results showed that shorter $\rm V_{H}$ replacement footprints are less likely to encode charged residues.

V_H Replacement Products have Longer CDR3 Lengths

During V_H replacement products, a short stretch of nucleotides from previously rearranged V_H genes were left within the newly generated V_H-DJ_H junctions [31]. Comparison of the IgH CDR3 lengths of the identified V_H replacement products showed that the average CDR3 length of V_H replacement products with 5-mer footprints is significantly longer than that of V_H replacement products with 3-mer footprints; the average CDR3 length of V_H replacement products with 3-mer footprints is significantly longer than that of the total functional IgH genes in the NCBI database (p<0.0001, unpaired t test) (Fig. 4B). These results indicate that elongation of IgH CDR3 region is one of the intrinsic features of V_H replacement.

Selection of V_H Replacement Footprints Encoding Positively Charged Residues in Autoantibodies

The preferential contribution of charged amino acids by V_H replacement footprints is likely predetermined by the 3' end sequences of V_H germline genes. Based on the 3' end sequences of V_H germline genes, V_H replacement footprints can contribute almost equal numbers of positively or negatively charged residues (Fig. 5A). Indeed, in the identified V_H replacement products from IgH genes derived from BALB/c or C57BL/6 mice, the frequencies of positively and negatively charged amino acids encoded by the V_H replacement products are similar (Fig. 5A). However, in the identified V_H replacement products in IgH genes from autoimmune prone mice, including MRL/lpr and Sle1/Sle3 mice, the frequencies of positively charged residues encoded by the V_H replacement footprints are significantly higher than that in the control mice. Meantime, the frequencies of negatively charged residues encoded by the V_H replacement footprints are significantly lower than that in the control mice (Fig. 5A). The frequencies of negatively charged residues encoded by the identified V_H replacement footprints are significantly lower in IgH genes derived from C56BL/6/lpr mice and in IgH genes encoding anti-DNA or ANA antibodies (Fig. 5A). Detailed analysis of the functional versus non-functional IgH genes derived from MRL/lpr mice showed that the frequencies of positively charged residues encoded by the identified V_H replacement footprints were elevated in functional but not in non-functional IgH genes (Fig. 5B). These results indicate that the positively charged residues encoded by V_H replacement products were positively selected in these autoimmune prone mice.

The Identified V_H Replacement Products are Mutated

The accumulation of $V_{\rm H}$ replacement products in IgH genes derived from different strains of autoimmune prone mice and IgH genes encoding different autoantibodies suggested that $V_{\rm H}$ replacement products contribute to the generation of autoantibodies in mice. Analyses of the mutation status of these identified $V_{\rm H}$ replacement products showed that the enriched $V_{\rm H}$ replacement products in autoimmune prone mice or IgH genes encoding anti-DNA or ANA autoantibodies are mutated (Fig. 5C), indicating that these $V_{\rm H}$ replacement products are positively selected in these autoimmune prone mice.

Discussion

In the current report, we analyzed 17,179 mouse IgH gene sequences available from the NCBI database and provided a comprehensive view of the V_H, D_H, and J_H gene usages of these mouse IgH genes. Based on the identification of the pentameric V_H replacement footprints in the N1 regions, we estimated that the frequency of V_H replacement products in the 11309 unique mouse IgH gene sequences with identifiable D_H genes is 5.29%. Such result indicates a significant contribution of V_H replacement products to the diversification of murine antibody repertoire. This result is consistent with the previously estimated frequencies of V_H replacement products in human and mouse IgH genes [31,39]. It should be pointed out that such estimation is based on the identification of V_H replacement footprints with a minimal length of 5 nucleotides. In comparison to human V_H germline genes, many mouse V_H germline genes have fewer nucleotides following the cRSS sites. Out of the 150 functional mouse V_H germline genes with cRSS sites, 60 of them have only 5 nucleotides following the cRSS sites. If there is any exo-nuclease activity to remove one nucleotide at either the 3' or the 5' end of the V_H replacement footprint during primary V_H to DJ_H recombination or V_H replacement recombination, respectively, the remaining V_H replacement footprints will have less than 5 nucleotides and cannot be identified from this analysis. Based on this consideration, assigning V_H replacement footprints with 4 or 3 nucleotides might be a reasonable and accurate method to identify potential V_H replacement products in mouse IgH genes. If we consider the 4- or 3-mer V_H replacement footprints at the N1 regions to assign V_H replacement products, the frequencies of V_H replacement products in the mouse IgH gene sequences should be 16% or 32%, respectively.

It has been shown previously that in mice carrying two nonfunctional alleles of IgH genes, V_H replacement occurs efficiently to generate almost normal number of B cells with a diversified repertoire [32,33]. All these functional IgH genes in this mouse are generated through V_H replacement. However, only about 20% of the IgH gene sequences contain potential V_H replacement footprints (>3 mer). The other 80% of IgH gene sequences have no identifiable V_H replacement footprints [32,33]. This result indicates that most of the V_H replacement footprints are deleted during V_H replacement recombination. Thus, even if using the minimal length of V_H replacement footprints with 4 or 3

Figure 3. VH replacement footprints preferentially contribute charged amino acids to the CDR3 regions. (A) The frequencies of charged amino acids encoded by the identified pentameric V_H replacement footprints or the N1 regions of non-V_H replacement products were compared. Detailed amino acid sequences of the IgH CDR3 regions are listed in Table S6. (B) The frequencies of individual amino acid encoded by the identified V_H replacement footprints or the N1 regions of non-V_H replacement products were compared. *n*, amino acids encoded by the identified V_H replacement footprints or the N1 regions of non-V_H replacement products were compared. *n*, amino acids encoded by the identified V_H replacement footprints or the N1 regions of non-V_H replacement products. (C) The frequencies of individual amino acid encoded by the ³ end of V_H genes and D_H regions were compared. n, amino acids encoded by the ³ end of V_H genes and D_H regions were compared. n, amino acids encoded by the identified V_H replacement footprints in functional V_H replacement products and non-functional V_H replacement products. n, amino acids encoded by the identified V_H replacement footprints. Statistical significance was determined using a two-tailed Chi square test with Yate's correction. *n*, number of amino acid residues encoded by indicated sequences. *p*<0.05 (*) is considered significant and *p*<0.0001 (**) is considered extremely significant.

doi:10.1371/journal.pone.0057877.g003

nucleotides, we may still under-estimate the actual frequency of $\rm V_{H}$ replacement products in the murine IgH repertoire. Theoretically, 66.7% of the IgH rearrangements generated during V(D)J

recombination will be out of reading frame and cannot produce functional IgH proteins; about 44% of the pro B cells undergoing V(D)J recombination should carry non-functional rearrangements

Figure 4. Comparison of the amino acids encoded by V_H replacement footprints and the IgH CDR3 lengths of V_H replacement products. (A) The usages of different amino acids encoded by V_H replacement footprints with 5, 4, or 3 nucleotides were compared. *n*, number of amino acid residues encoded by the identified V_H replacement footprints with different lengths. Statistical significance was determined using a two-tailed Chi square test with Yate's correction. p < 0.05 (*) is considered significant and p < 0.0001 (**) is considered extremely significant. (B) Comparison of the IgH CDR3 lengths of V_H replacement products containing the 5-mer or the 3-mer V_H replacement products with the CDR3 length of the total functional IgH genes. *n*, number of IgH sequences or V_H replacement products with 3- or 5-mer V_H replacement footprints. Statistical significance was determined using inficance was determined using unpaired *t* test. p < 0.05 (*) is considered significant and p < 0.0001 (**) is considered extremely significant.

on both IgH alleles. If V_H replacement can efficiently rescue these pro B cells, at least 44% of the expressed IgH genes should be generated by V_H replacement.

We should also point out that this sequence analysis based approach in identification of V_H replacement footprints may have false positive calls. Theoretically, there are no V_H replacement footprints in the N2 regions. In some of the IgH sequences, we identified similar 3, 4, or 5 mer V_H replacement footprint motifs in the N2 regions, although the frequencies of such motifs in the N2 regions are significantly lower than those in the N1 regions. The presence of such V_H replacement footprint motifs in the N2 regions could be due to random nucleotide addition during V(D)J recombination. In this regard, a low frequency of identified footprints might be false positive.

If we use the 5-mer $V_{\rm H}$ replacement footprints to assign $V_{\rm H}$ replacement products, the frequencies of $V_{\rm H}$ replacement products in IgH genes derived from *BALB/C* or *C57BL/6* mice are about 5% or 3.2%, respectively, which may represent the basal level of $V_{\rm H}$ replacement product in these two strains of mice. Interestingly, the frequencies of $V_{\rm H}$ replacement products are significantly elevated in IgH genes derived from different strains of autoimmune prone mice, including *MRL/Lpr* and *Sle1/Sle3* mice. It has

been well demonstrated that these mice spontaneously produce anti-DNA or anti-ANA antibodies and develop lupus like symptom [42–49]. Indeed, V_H replacement products are significantly elevated in IgH genes encoding anti-DNA antibodies or ANA autoantibodies derived from mice with lupus glomerular nephritis. These results suggested a potential contribution of V_H replacement products to the generation of autoantibodies. When we consider the 4- or 3-mer V_H replacement footprints to assign V_H replacement products, the frequencies of V_H replacement products are elevated in all the sub-categories of IgH genes. Nevertheless, the frequencies of V_H replacement products in IgH genes derived from different strains of autoimmune prone mice and IgH genes encoding anti-DNA and ANA antibodies are significantly higher than that in the BALB/c mice.

Due to the location of the cRSS, V_H replacement will leave a short stretch of V_H replacement footprints to elongate the IgH CDR3 region [31,41]. Strikingly, the identified pentameric V_H replacement footprints preferentially encode charged amino acids in the newly formed CDR3 regions. Such features are commonly found in V_H replacement products identified from human and mouse IgH genes [31,39] and highly conserved in all the jawed vertebrates [50]. IgH genes with long CDR3 and charged residues

Figure 5. The enriched V_H replacement products identified in different strains of autoimmune prone mice or IgH genes encoding autoantibodies have been positively selected during autoimmune responses. (A) Analysis of the frequencies of positively charged versus negatively charged amino acids encoded by the 3' end V_H genes and the identified V_H replacement footprints from different strains of mice or IgH genes encoding autoantibodies. Statistical significance was determined using a two-tailed Chi square test with Yate's correction. p < 0.05 (*) is considered significant. (B) Comparison of the amino acids encoded by the identified V_H replacement footprints in *MRL/lpr* mice. *n*, numbers of amino acids encoded by the identified V_H replacement footprints in *MRL/lpr* mice. *n*, numbers of amino acids encoded by the identified V_H replacement products and non-V_H replacement products from different subgroups of IgH genes. doi:10.1371/journal.pone.0057877.g005

are frequently encoding autoantibodies or anti-viral antibodies [51]. Here, our results showed that the frequencies of $V_{\rm H}$ replacement products are significantly elevated in IgH genes encoding anti-DNA and ANA autoantibodies in mouse. Theoretically, the V_H replacement footprints can encode either positively or negatively charged residues. Analysis of the amino acids encoded by the identified V_H replacement products from different strains of autoimmune prone mice and IgH genes encoding autoantibodies showed that the frequencies of positively charged residues encoded by V_H replacement footprints are significantly elevated; while the frequencies of negatively charged residues encoded by V_H replacement footprints are significantly reduced. Previous studies have shown that positively charged residue like Arg within the IgH CDR3 is critical for DNA binding [52–54]. These results suggested that the identified V_H replacement products from autoimmune prone mice have been positively selected. Such notion is also supported by the accumulated mutations in these identified $V_{\rm H}$ replacement products.

 $V_{\rm H}$ replacement was originally recognized as a receptor editing process to change either non-functional IgH genes or IgH genes encoding autoreactive antibodies [20,55]. The enrichment of $V_{\rm H}$ replacement products in IgH genes from different strains of autoimmune prone mice and in IgH genes encoding autoantibodies are surprising findings from this study. Currently, it is not clear why $V_{\rm H}$ replacement products are accumulated in autoimmune prone mice. Like any recombination process, $V_{\rm H}$ replacement is a random process that can generate non-functional IgH genes or IgH genes encoding autoreactive antibodies. Previous studies have shown that V_H replacement products generated through replacing the knocked-in anti-DNA IgH genes can produce high affinity anti-DNA antibodies during chronic graft-versus-host (cGVH) response [56]. Theoretically, after V_H replacement recombination, the newly generated IgH genes should be subjected to strict negative selection again to eliminate B cells expressing autoreactive BCRs. The observed accumulation of V_H replacement products in autoimmune prone mice could be due to the defective negative selection processes in these mice. In autoimmune prone mice, the newly generated V_H replacement products encoding autoreactive antibodies cannot be efficiently eliminated, but are rather positively selected and contribute to the generation of autoantibodies. To this extend, the different strains of autoimmune prone mice will be excellent experimental models to dissect how the V_H replacement products are selected and enriched during early B cell development.

Our analyses of the amino acid residues encoded by the identified V_H replacement footprints also uncovered an interesting finding that short V_H replacement footprints, especially the 3-mer footprints, encode less charged residues. These results suggested that if the V_H replacement footprints were trimmed down to 3-mer during either primary or secondary recombination, they will be less likely to contribute charged amino acids into the IgH CDR3 regions. Given the fact that 33.55% of IgH genes contain 3-mer V_H replacement footprints at their N1 regions, it is reasonable to conclude that the majority of these V_H replacement products successfully edited the IgH genes without introducing of extra charged residues into the newly formed CDR3 regions. The

observed accumulation of V_H replacement products based on the identification of 5-mer footprints in the N1 regions in IgH genes derived from autoimmune prone mice may represent the failed V_H replacement attempts either due to defects in negative selection or defects in trimming down the V_H replacement footprints during primary or secondary recombination. Such findings raised several interesting questions that require further studies.

In conclusion, analysis of large number of mouse IgH gene sequences from the NCBI database provides a comprehensive view of the IgH repertoire of the available mouse IgH genes in the NCBI database and reveals a significant contribution of $V_{\rm H}$ replacement products to the diversification of mouse IgH repertoire. Identification of enriched $V_{\rm H}$ replacement products in IgH genes derived from different strains of autoimmune prone mice and IgH genes encoding autoantibodies indicated that abnormal regulation of $V_{\rm H}$ replacement may contribute to the generation of autoreactive antibodies.

Materials and Methods

Mouse IgH Sequences

Entrez IDs of mouse IgH sequences were provided by Igblast (http://www.ncbi.nlm.nih.gov/projects/igblast/) on May 07, 2011, which were used to download GenBank records of the sequences from NCBI. There were total 17,179 mouse IgH gene sequences retrieved at that time. The IDs of these IgH genes and their V_H , D_H , and J_H gene assignments are included in Table S1. After assignment of the potential germline V_H, D_H, J_H genes, clonally redundant sequences were stripped out based on their identical CDR3 regions. The resulting 11,308 unique sequences were further analyzed. Clonally related sequences with mutations within their CDR3 regions still remain. The 17179 mouse IgH sequences were derived from 861 published studies (Table S2). There were 1, 2, 4, 4, and 6 publications that contributed more than 500, 400-499, 300-399,200-299, and 100-199 sequences, respectively; 127 publications contributed 11-99 sequences; 717 publications contributed 10 or less than 10 sequences.

The V_HRFA Program

We developed a Java-based $V_H RFA$ program to incorporate assignments of the V_H , D_H , and J_H germline gene segments using the V-QUEST program (http://www.imgt.org/IMGT_vquest), identification of V_H replacement footprints with different lengths, analysis of amino acids encoded by the identified V_H replacement footprints, calculation of the amino acid usage encoded by the identified V_H replacement footprints, and correlation of the identified V_H replacement products with different keywords and publications associated with the sequences in the NCBI database.

V_H, D_H, and J_H Germline Gene Assignment

Mouse IgH sequences in the GenBank format were converted to FASTA format and submitted to IMGT/V-QUEST (http:// www.imgt.org/IMGT_vquest/share/textes/) for assign potential germline V_H , D_H , J_H genes, allowing 1 mutation at the 3' end of V_H genes and at the 5' end of J_H genes. All the IgH gene sequences were analyzed in batches containing 50 sequences each batch and the results were downloaded to a local computer as Excel files. These processes were conducted using the V_HRFA program.

Identification of V_H Replacement Footprint

All the rest steps were conducted on a local computer by the $V_H RFA$ program. First, a library file was generated, which contains all the potential V_H replacement footprints derived from

functional V_H germline reference genes from the IMGT database (Table S3). Basically, the 3' end segments following the cRSS sites from functional mouse V_H genes were sliced into different groups with 3, 4, 5, 6, 7, 8, 9, 10, and 11 nucleotides in length (Table S4). The V_HRFA program will use this library to search the N1 (V_H- $D_{\rm H}$ junction (N1) or $D_{\rm H}$ -J_H junction (N2, as negative control) regions of the IgH genes to identify matched footprint motifs. For each IgH gene, the V_HRFA program started by searching the longest footprint motifs (11 mer) from the 5' to 3' of the DNA sequences and then goes to search footprints with one nucleotide shorter. The identified footprints were listed if it does not overlap with any previously identified footprint within this region. For examples, the end results of footprint analyses of with specified 5 mer included all the footprints with 5, 6, 7, 8, 9, 10, and 11 mer from the V_H replacement footprint library. The end result was exported as a CVS file that contains the gene ID, functionality, V_H, D_H, J_H gene assignment, V_H replacement footprint in N1 (N1 signatures) or N2 (N2 signatures), together with other information from the original Excel file provided by the IMGT V-QUEST program. The identified footprints were shown in parenthesis within the N1 or N2 region sequences.

Analysis of the Amino Acid Encoded by V_H Replacement Footprints, Keyword and Publication Linked to Each Gene, and Mutation

After identification of the V_H replacement footprints within the N1 regions, the V_H RFA program further analyzed the amino acids encoded by the V_H replacement footprints and the usages of different amino acid. Each result was exported as an individual Excel file.

The V_HRFA program can also analyze the original GenBank file to correlate the keywords and publication information with each IgH gene sequence. Basically, the V_HRFA program parses the source GenBank file for keywords in the KEYWORDS and FEATURES sections of each entry sequence and output the keyword list in correlation with the sequence IDs, VDJ assignments, N1 footprints, and N2 footprints. Through this analysis, we can determine the distribution of V_H replacement products in different diseases.

For mutation analysis, the $V_H RFA$ program only calculated the mutation rate of IgH V_H genes with >80% similarities to the assigned germline V_H genes.

Statistical Analysis

Statistical significance was determined by using either the two tailed *Chi*-square test with Yates' correction or non paired student *t* test. Significant difference was determined if the *p* value <0.05.

Supporting Information

Table S1 Analyses of mouse IgH genes and identification of VH replacement products.

(XLSX)

Table S2Number of sequences from each publication.(XLSX)

Table S3Mouse VH genes containing the TACTGTG cRSS.(DOCX)

Table S4Potential mouse V_H replacement footprint motifs with
different length.(DOCX)

Table S5 Identification of 4-mer V_H replacement footprint motifs in mouse IgH sequences.

(DOCX)

Table S6 Identification of V_H replacement products in IgH genes correlating with different keywords. (DOCX)

References

- Schatz DG, Baltimore D (1988) Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53: 107– 115.
- Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59: 1035–1048.
- Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517–1523.
- Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109: S45–S55.
- Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24: 541–570.
- Lewis SM (1994) The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56: 27–150.
- Schatz DG, Swanson PC (2011) V(D)J recombination: mechanisms of initiation. Annu Rev Genet 45: 167–202.
- Ramsden DA, Baetz K, Wu GE (1994) Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res 22: 1785–1796.
- Swanson PC, Desiderio S (1998) V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9: 115–125.
- Karasuyama H, Kudo A, Melchers F (1990) The proteins encoded by the VpreB and lambda 5 pre-B cell-specific genes can associate with each other and with mu heavy chain. J Exp Med 172: 969–972.
- Karasuyama H, Rolink A, Melchers F (1993) A complex of glycoproteins is associated with VpreB/lambda 5 surrogate light chain on the surface of mu heavy chain-negative early precursor B cell lines. J Exp Med 178: 469–478.
- Karasuyama H, Rolink A, Shinkai Y, Young F, Alt FW, et al. (1994) The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77: 133–143.
- Lassoued K, Nunez CA, Billips L, Kubagawa H, Monteiro RC, et al. (1993) Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 73: 73–86.
- Burrows PD, Stephan RP, Wang YH, Lassoued K, Zhang Z, et al. (2002) The transient expression of pre-B cell receptors governs B cell development. Semin Immunol 14: 343–349.
- Karasuyama H, Nakamura T, Nagata K, Kuramochi T, Kitamura F, et al. (1997) The roles of preB cell receptor in early B cell development and its signal transduction. Immunol Cell Biol 75: 209–216.
- Jung D, Alt FW (2004) Unraveling V(D)J recombination: insights into gene regulation. Cell 116: 299–311.
- Burrows PD, Cooper MD (1997) B cell development and differentiation. Current Opin Immunol 9: 239–244.
- Nemazee D, Weigert M (2000) Revising B cell receptors. J Exp Med 191: 1813– 1817.
- Meffre E, Casellas R, Nussenzweig MC (2000) Antibody regulation of B cell development. Nature Immunol 1: 379–385.
- 20. Zhang Z (2007) $\rm V_{H}$ replacement in mice and humans. Trends Immunol 28: 132–137.
- Gay D, Saunders T, Camper S, Weigert M (1993) Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 177: 999–1008.
 Tiegs SL, Russell DM, Nemazee D (1993) Receptor editing in self-reactive bone
- marrow B cells. J Exp Med 177: 1009–1020. 23. Radic M, Zouali M (1996) Receptor editing, immune diversification and self-
- tolerance. Immunity 5: 505–511. 24. Melamed D, Nemazee D (1997) Self-antigen does not accelerate immature B cell
- apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc Natl Acad Sci U S A 94: 9267–9272.
- Melamed D, Benschop RJ, Cambier JC, Nemazee D (1998) Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92: 173–182.
- Casellas R, Shih TA, Kleinewietfeld M, Rakonjac J, Nemazee D, et al. (2001) Contribution of receptor editing to the antibody repertoire. Science 291: 1541– 1544.
- Reth M, Gehrmann P, Petrac E, Wiese P (1986) A novel V_H to V_HDJ_H joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 322: 840–842.
- Kleinfield R, Hardy RR, Tarlinton D, Dangl J, Herzenberg LA, et al. (1986) Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 322: 843– 846.
- Chen C, Nagy Z, Prak EL, Weigert M (1995) Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 3: 747–755.

Author Contributions

Conceived and designed the experiments: LH MDL KS ZZ. Performed the experiments: LH MDL ZZ. Analyzed the data: LH MDL YY SL ZZ. Contributed reagents/materials/analysis tools: YY SL KS. Wrote the paper: LH MDL YY SL KS ZZ.

- 30. Cascalho M, Wong J, Wabl M (1997) $\rm V_{H}$ gene replacement in hyperselected B cells of the quasimonoclonal mouse. J Immunol 159: 5795–5801.
- Zhang Z, Żemlin M, Wang Y-H, Munfus D, Huye LE, et al. (2003) Contribution of V_H gene replacement to the primary B cell repertoire. Immunity 19: 21–31.
- Koralov SB, Novobrantseva TI, Konigsmann J, Ehlich A, Rajewsky K (2006) Antibody repertoires generated by V_H replacement and direct V_H to J_H joining. Immunity 25: 43–53.
- 33. Lutz J, Muller W, Jack HM (2006) $\rm V_{H}$ replacement rescues progenitor B cells with two nonproductive VDJ alleles. J Immunol 177: 7007–7014.
- Chen C, Nagy Z, Radic MZ, Hardy RR, Huszar D, et al. (1995) The site and stage of anti-DNA B-cell deletion. Nature 373: 252–255.
- Chen C, Prak EL, Weigert M (1997) Editing disease-associated autoantibodies. Immunity 6: 97–105.
- Cascalho M, Ma A, Lee S, Masat L, Wabl M (1996) A quasi-monoclonal mouse. Science 272: 1649–1652.
- Watson LC, Moffatt-Blue CS, McDonald RZ, Kompfner E, it-Azzouzene D, et al. (2006) Paucity of V-D-D-J Rearrangements and V_H Replacement Events in Lupus Prone and Nonautoimmune TdT-/- and TdT+/+ Mice. J Immunol 177: 1120–1128.
- Davila M, Liu F, Cowell LG, Lieberman AE, Heikamp E, et al. (2007) Multiple, conserved cryptic recombination signals in V_H gene segments: detection of cleavage products only in pro B cells. J Exp Med 204: 3195–3208.
- Kalinina O, Doyle-Cooper CM, Miksanek J, Meng W, Prak EL, et al. (2011) Alternative mechanisms of receptor editing in autoreactive B cells. Proc Natl Acad Sci U S A 108: 7125–7130.
- Rogosch T, Kerzel S, Sikula L, Gentil K, Liebetruth M, et al. (2010) Plasma cells and nonplasma B cells express differing IgE repertoires in allergic sensitization. J Immunol 184: 4947–4954.
- Zhang Z, Wang YH, Zemlin M, Findley HW, Bridges SL, et al. (2003) Molecular mechanism of serial V_H gene replacement. Ann N Y Acad Sci 987: 270–273.
- Hang LM, Izui S, Dixon FJ (1981) (NZW x BXSB)F1 hybrid. A model of acute lupus and coronary vascular disease with myocardial infarction. J Exp Med 154: 216–221.
- Datta SK, Gavalchin J (1986) Origins of pathogenic anti-DNA idiotypes in the NZB X SWR model of lupus nephritis. Ann N Y Acad Sci 475: 47–58.
- Eilat D, Webster DM, Rees AR (1988) V region sequences of anti-DNA and anti-RNA autoantibodies from NZB/NZW F1 mice. J Immunol 141: 1745– 1753.
- Wloch MK, Alexander AL, Pippen AM, Pisetsky DS, Gilkeson GS (1997) Molecular properties of anti-DNA induced in preautoimmune NZB/W mice by immunization with bacterial DNA. J Immunol 158: 4500–4506.
- Furukawa F (1997) Animal models of cutaneous lupus erythematosus and lupus erythematosus photosensitivity. Lupus 6: 193–202.
- Mohan C, Morel L, Yang P, Watanabe H, Croker B, et al. (1999) Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest 103: 1685–1695.
- Gaffney PM, Moser KL, Graham RR, Behrens TW (2002) Recent advances in the genetics of systemic lupus erythematosus. Rheum Dis Clin North Am 28: 1111–126.
- Morel L (2010) Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol 6: 348–357.
- Sun Y, Liu Z, Lia Z, Lian Z, Zhao Y (2012) Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the V_H genes of jawed vertebrates. Front Immunol 3: 392.
- Yazici ZA, Behrendt M, Goodfield M, Partridge LJ, Lindsey NJ (1998) Does the CDR3 of the heavy chain determine the specificity of autoantibodies in systemic lupus erythematosus? J Autoimmun 11: 477–483.
- O'Keefe TL, Datta SK, Imanishi-Kari T (1992) Cationic residues in pathogenic anti-DNA autoantibodies arise by mutations of a germ-line gene that belongs to a large V_H gene subfamily. Eur J Immunol 22: 619–624.
- Suenaga R, Abdou NI (1993) Cationic and high affinity serum IgG anti-dsDNA antibodies in active lupus nephritis. Clin Exp Immunol 94: 418–422.
- Radic MZ, Mackle J, Erikson J, Mol C, Anderson WF, et al. (1993) Residues that mediate DNA binding of autoimmune antibodies. J Immunol 150: 4966– 4977.
- Zhang Z, Burrows PD, Cooper MD (2004) The molecular basis and biological significance of V_H replacement. Immunol Reviews 197: 231–242.
- Sekiguchi DR, Eisenberg RA, Weigert M (2003) Secondary Heavy Chain Rearrangement: A Mechanism for Generating Anti-double-stranded DNA B Cells. J Exp Med 197: 27–39.