
cells

Review

Cumulative Damage: Cell Death in Posthemorrhagic
Hydrocephalus of Prematurity

Riley Sevensky 1, Jessie C. Newville 1 , Ho Lam Tang 2, Shenandoah Robinson 2 and Lauren L. Jantzie 1,2,3,4,*

����������
�������

Citation: Sevensky, R.; Newville, J.C.;

Tang, H.L.; Robinson, S.; Jantzie, L.L.

Cumulative Damage: Cell Death in

Posthemorrhagic Hydrocephalus of

Prematurity. Cells 2021, 10, 1911.

https://doi.org/10.3390/cells10081911

Academic Editor: Claire Thornton

Received: 8 June 2021

Accepted: 25 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of
Medicine, Baltimore, MD 21205, USA; rileysevensky@gmail.com (R.S.); newvillejessie@gmail.com (J.C.N.)

2 Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of
Medicine, Baltimore, MD 21205, USA; holamtang@jhmi.edu (H.L.T.); srobin81@jhmi.edu (S.R.)

3 Department of Neurology and Developmental Medicine, Kennedy Krieger Institute,
Baltimore, MD 21205, USA

4 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
* Correspondence: LJantzie@jhmi.edu; Tel.: +1-410-614-4135

Abstract: Globally, approximately 11% of all infants are born preterm, prior to 37 weeks’ gestation. In
these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and
mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses
numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in
a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus
of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts
the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in
permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to
white and gray matter development. In this review, the relevant literature related to the diverse
mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial
cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within
the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets,
and downstream signaling pathways involved in excess cell death shed light on promising areas
for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the
consequential brain remodeling that occurs as a result of hydrocephalus and other components
of EoP.

Keywords: cell death; encephalopathy of prematurity; hydrocephalus; preterm birth; neurodevelop-
ment; inflammation; ependyma; glymphatic system; choroid plexus; ferroptosis

1. Introduction
1.1. A Broad Introduction to Infantile Hydrocephalus

During infancy, hydrocephalus is characterized by the accumulation of cerebrospinal
fluid (CSF) in the brain, progressive macrocephaly, ventriculomegaly, and increased in-
tracranial pressure (ICP) [1–3]. Infantile hydrocephalus most often arises in the setting
of infection, hemorrhage, trauma, and myelomeningocele, and less frequently from car-
diac and genetic defects [1,4,5]. Acquired hydrocephalus commonly requires the surgical
insertion of a shunt to drain excess CSF and relieve elevated ICP [6]. While necessary to
prevent decline from high ICP, shunt placement early in life is associated with an elevated
risk of shunt failure, increased number of shunt revisions over the lifetime, and heightened
probability of shunt-related infection, placing these young, vulnerable patients at even
greater risk of neurological complications [7–11]. Other possible therapeutic procedures
include endoscopic third ventriculostomies, with or without choroid plexus coagulation,
which also introduce similar concerns alongside varying reports of efficacy [12–15].
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Affecting nearly 1 of every 1000 live births, hydrocephalus presents a complex variety
of both etiology and pathogenesis [16]. Spanning from genetics to hemorrhage to infection
to trauma, the initiating factors are incompletely understood and exhaustive, yet often
overlapping. Additional conditions, such as chorioamnionitis and preterm birth, also
appear to influence evolution of hydrocephalus in infants.

1.2. Encephalopathy of Prematurity

Globally, preterm birth is one of the leading causes of neonatal death, with approx-
imately 15 million infants born preterm each year [17,18]. These staggering statistics
highlight a realm in which medical and scientific advances are critically needed. Compi-
lation of epidemiological data from the large EPICURE, EPIPAGE, and ELGAN studies
spanning Europe and the United States indicates that over a quarter of very preterm infants
(<28 weeks’ gestation) ultimately develop a neurological disorder [19–22]. While preterm
infants born later than 28 weeks face lower risk, a significant portion also develop some
form of encephalopathy [23]. As such, ongoing research efforts aimed at developing a more
thorough understanding of the myriad of neurological consequences affecting preterm
neonates is of great significance.

Encephalopathy of prematurity is a broad, overarching classification which encom-
passes a great multitude of distinct neurological injuries and illnesses that develop during
the critical perinatal developmental period [24,25]. While the pathophysiology of en-
cephalopathy of prematurity is complex and multivariate, principal etiological factors
include systemic inflammation and hypoxia-ischemia, which have the destructive potential
to result in deleterious lifelong neurological consequences [26–28].

1.3. Chorioamnionitis as a Driver of Dysfunction through the Maternal–Placental–Fetal Axis

Chorioamnionitis (CHORIO) is a major cause of preterm birth [29–32]. A compelling
40–70% of preterm births are complicated by CHORIO, compared to only 1–13% of full-
term births [33–35]. Propagated by inflammation through the maternal–placental–fetal
axis, chorioamnionitis creates a detrimental microenvironment for the developing nervous
system, and can cause significant neurological injury and alteration of neurodevelopmen-
tal trajectory.

CHORIO refers to acute intrauterine infection or inflammation (or both) involving the
chorioamnionic membranes of the placenta and the umbilical cord during pregnancy [30].
CHORIO can be classified as clinical or histological. Clinical CHORIO is indicated by
maternal symptomology of infection (fever, leukocytosis, tachycardia). By contrast, rather
than presenting with clinical symptoms, histological CHORIO is defined as pathologically
identified inflammation of the chorion, amnion, and placenta, and can present in a variety
of complex manners, including neutrophilia [36].

CHORIO is considered a common complication of pregnancy, and can have extensive
consequences, both for mother and fetus [37]. The intra-amniotic inflammation which
characterizes CHORIO has also been intricately linked to induction of encephalopathy
of prematurity, a doubled risk of intraventricular hemorrhage (IVH), and a heightened
probability of evolution to post-hemorrhagic hydrocephalus of prematurity (PHHP), all of
which will be explored further in this review [38–41].

1.4. Posthemorrhagic Hydrocephalus of Prematurity as a Severe Manifestation

Posthemorrhagic hydrocephalus of prematurity is the most prevalent form of hydro-
cephalus among preterm infants, and refers to the development of hydrocephalus following
an intraventricular hemorrhage (IVH) in a preterm neonate [7,42]. In very preterm neonates,
underdeveloped cerebral structures and incompletely refined vasculature combine to create
an environment which is particularly vulnerable to such insults [7,16]. Up to 20% of pre-
mature infants with low birth weight suffer from IVH [43]. Due to the rapid and ongoing
neurodevelopment during this sensitive period, hemorrhage and subsequent development
of hydrocephalus can have a multitude of consequences [42,44].
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While the transition from a post-hemorrhagic state to hydrocephalus is still an area
of active and robust investigation, hypoxic-ischemic conditions have been implicated
in activating a cascade of neuroinflammation that results in bidirectional activation of
the neonatal immune system [45,46]. Of note, these factors have been implicated in en-
cephalopathy of prematurity [24], suggesting PHHP may have mechanistic overlap with
encephalopathy of prematurity. Children with encephalopathy from very preterm birth are
at high risk for social and emotional challenges, in addition to cognitive difficulties [47].
Preterm infants who suffer from PHHP are at even greater risk of lifelong adverse impact
on quality of life due to the unpredictable durability of hydrocephalus treatment, and addi-
tional medical complexity [48]. While the cumulative challenges of living with PHHP are
daunting, greater recognition by the medical community will ideally allow families to cope
better [49]. The recent struggles with rationing of medical care have only highlighted the
need for more rigorous research to dissect the fundamental pathogenesis of hydrocephalus,
particularly PHHP.

1.5. Other Forms of Hydrocephalus

In addition to PHHP, there are other diverse forms of hydrocephalus prevalent in
neonates and young children. Primary congenital hydrocephalus is highly dependent
on a combination of genetic factors and abnormal structural development in the central
nervous system (CNS) [50]. One example of such a cerebral malformation is aqueductal
stenosis, in which CSF flow and drainage is inhibited by occlusion of the Aqueduct of
Sylvius [51,52]. Post-infectious hydrocephalus (PIH) refers to hydrocephalic progression
triggered by infection or severe inflammation in the brain tissue [16]. Most commonly,
postnatal contraction of meningitis can introduce external pathogens to the developing
nervous system and induce PIH [53–55]. Inflammation could also be conferred prior
to birth or during delivery, such as via TORCH infections, which initiate immune cell
activation along the maternal–placental–fetal axis, and can result in PIH [56–58]. While
less common in Europe and North America, infantile PIH represents the most common
cause of mortality related to hydrocephalus in both Asia and Africa [5,59,60]. Further, post-
traumatic hydrocephalus (PTH) is an additional form of acquired childhood hydrocephalus
initiated by traumatic brain injury (TBI) [61,62].

1.6. A Focus on Cell Death

Under the umbrella of brain injuries that contribute to encephalopathy of prematurity,
the vast majority involve hypoxic, ischemic, and inflammatory conditions [63]. For the
newly generated cells of the CNS in various stages of maturation, these noxious conditions
often induce severe damage [64]. For the developing CNS as a whole, widespread damage
and excess neural cell loss can be detrimental to neurodevelopment [65]. Specifically, excess
cell death in the setting of encephalopathy of prematurity carries substantial significance
due to the finality and downstream impacts of cell loss, especially in post-mitotic neural cell
populations [66–68]. Thus, cell death during the perinatal period can precipitate sustained,
detrimental, abnormal neurodevelopment [69]. Of note, the evolution of the components
of cerebral CSF dynamics directly overlaps with the timing of factors that contribute to
PHHP [70–75]. These overlapping insults, including systemic inflammation from CHORIO
and/or IVH, impact the maturation of neural cells, including the choroid plexus, ependyma,
and glymphatic system (Figure 1). The aim of this review is to explore the literature related
to cell death occurring in these CSF-related components within the setting of acquired
PHHP, to establish a basis for further investigation of related mechanistic pathways and
interventional targets. We suggest that a unifying pathophysiology around cell death
within the broader classification of perinatal hydrocephalus exists.
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phagocytic and ferroptotic forms of cell death due to high energy and metabolic demands, which 
will be explored in this review. Cell nuclei are labelled with Hoechst and in blue. (Scale bar = 20 
microns). 
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throughout brain development [70]. CSF is produced primarily by the choroid plexus, but 
also by the ependyma lining of the ventricular system [73,77]. Functioning as another key 
cerebrovascular interface, similar to the blood–brain barrier, choroidal epithelial cells are 
held together by apical tight junctions which highly regulate the movement of solutes be-
tween the blood and CSF [77,78]. This dynamic flux of solutes is key in maintaining elec-
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variety of transporters, channels, and receptors present along the apical and basolateral 
surfaces of the choroid plexus which allow for complex and coordinated control of solute 

Figure 1. Mitofusin mRNA expression in the ventricular system and the components of cerebral
CSF dynamics. Cells in the ependyma, choroid plexus and parenchyma have significant functional
metabolic requirements, and can therefore be visualized using RNAscope for mitofusin mRNA in
mitochondria (red). These components of the ventricular system are vulnerable to apoptotic, necrotic,
phagocytic and ferroptotic forms of cell death due to high energy and metabolic demands, which will
be explored in this review. Cell nuclei are labelled with Hoechst and in blue. (Scale bar = 20 microns).

2. Cell Death in the Choroid Plexus
2.1. Cellular Structure of the Choroid Plexus

Suspended within the cerebral ventricles, the choroid plexus is made up of a single
layer of cuboidal epithelial cells aligned in a highly organized fashion, surrounding stroma
containing clustered fenestrated capillaries [70]. Early in gestation, shortly after neural
tube closure, the choroid plexus forms and begins to secrete trophic factors, cytokines, and
CSF [70,76]. Indeed, the development and secretory function of the choroid plexus plays
an important role in fluid homeostasis and is thus a critical influencing factor throughout
brain development [70]. CSF is produced primarily by the choroid plexus, but also by the
ependyma lining of the ventricular system [73,77]. Functioning as another key cerebrovas-
cular interface, similar to the blood–brain barrier, choroidal epithelial cells are held together
by apical tight junctions which highly regulate the movement of solutes between the blood
and CSF [77,78]. This dynamic flux of solutes is key in maintaining electrolytic homeostasis
and transmission of ionic signaling factors. As such, there are a great variety of trans-
porters, channels, and receptors present along the apical and basolateral surfaces of the
choroid plexus which allow for complex and coordinated control of solute passage [79–81].
Transient receptor potential vanilloid-4 (TRPV4) is a known cation channel which plays a
notable role in this ion transport, due to its ability to serve as a hub of activity and drive
activation of several other transporters [82,83]. Numerous studies have illuminated the
complex, paradoxical function of TRPV4 channels in inflammatory cascades involving
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nuclear factor kappa beta (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin 1 beta
(IL-1β), transforming growth factor beta 1 (TGF-β1), and interleukin 6 (IL-6) [83–88]. As
such, the choroid plexus serves as the key junction between the circulation and the CNS.
Because the blood–brain barrier is immature in the developing brain, so too is the choroid
plexus, and thus transduction of systemic inflammation through the choroid plexus is
likely heightened [81,89–91].

2.2. Mechanisms of Choroidal Cell Death

The choroid plexus exhibits upregulated activity in the setting of inflammation [92–94].
In fact, it has been broadly hypothesized that hyperactivity of the choroid plexus, and the
resulting overproduction of CSF, contributes to impaired CSF dynamics in hydrocephalus
(Figure 2) [95,96]. Cell death within the choroid plexus has also been reported, secondary
to hemorrhage, infection, and neuroinflammation [97–99].
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Figure 2. Schematic illustrating loss of developmental homeostasis in the choroid plexus and ependyma in the context of
hydrocephalus. In the perinatal brain, dysregulation of the ventricular microenvironment encompasses loss of ependymal
motile cilia, choroid plexus injury, and changes in the neurogenic niche. These changes are concomitant with choroid plexus
cell death and ependymal cell death. (Ctx = cortex, CC = corpus callosum).

Following IVH and related ventricular dilation in a preterm rabbit pup model of
IVH, upregulation of several inflammatory mRNAs has been reported in choroid plexus
cells, at both 24 and 72 h post-hemorrhage (Figure 2) [100]. These transcripts include
NF-κβ, IL-1β, IL-6, TNFα, toll-like receptor 4 (TLR4), Fas cell surface death receptor (FAS),
interleukin 8 (IL-8), and C-C motif chemokine ligand 2 (CCL-2). In conjunction with excess
pro-inflammatory mRNAs, cell death was visualized in the epithelial cells of the choroid
plexus, as evidenced by structural fragmentation and caspase expression [100]. These re-
sults indicate that high levels of inflammation associated with PHHP are likely detrimental
to the choroid plexus. Both apoptotic and necrotic processes have been recognized in vitro
in choroidal epithelial cells as a result of oxidative stress and upregulation of inflammatory
mediators [100,101].

Further, choroid plexus cell death was also found to result from exposure to CSF con-
taminated by hemorrhage-related components, including factors resulting from hemoglobin
breakdown [102]. This introduces a concept known as ferroptosis, cell death associated
with lipid peroxidation related to iron metabolism.
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3. Cell Death in the Ependyma
3.1. Cellular Structure of the Ependyma

The ependyma is a single-celled lining present along the interior surface of the cere-
bral ventricular system [103,104]. This thin layer is made of ependymal cells, a supportive
neuroepithelia responsible for providing a barrier between brain parenchyma and CSF,
in addition to supporting the function of neural cells [3]. Ependymal cells are derived
from radial glial cells, a type of embryonic neural stem cell, and develop in a gradient-like
fashion from the caudal to the rostral regions of the brain during the embryonic period
of neurodevelopment [74,105–107]. The ependymal layer is fully generated by 22 weeks’
gestation, after which the cells continue to mature through 6 months postnatally [108,109].
Notably, this corresponds to the timepoint most commonly associated with, and impacted
by, preterm birth. Mature ependymal cells are post-mitotic epithelial cells that possess a
severely limited capacity for additional proliferation or repair [105,106,110,111]. Ependy-
mal cells are tightly spatially organized across the ventricular surface, forming characteristic
pinwheel structures in which ependymal cells surround small apical endings of neuronal
and glial progenitor cells [109,112–114]. Along the ventricular walls, ependymal cells are
held together by desmosome junctions, forming an uninterrupted epithelial layer which
allows for restricted diffusion of CSF into the CNS [115].

Of great significance, the ependymal cells which line the cerebral ventricles are mul-
ticiliated [116]. Ependymal cells can possess tufts consisting of hundreds of motile cilia
that move in a coordinated whip-like motion to propel CSF across the ependymal sur-
face [117]. During the process of differentiation from radial glial cells, centrioles assemble
and anchor at the apical plasma membrane, eventually forming the basal bodies of motile
cilia, which initially project from the cellular surface in disorganized orientations into the
ventricular lumen [116,118]. As the maturation process progresses, the cilia grow longer
and the basal bodies align in a direction according to cellular polarity and propelled fluid
motion [119–122]. The subsequent metachronic beating of these cilia tufts creates regu-
lar, directed flow patterns of cerebrospinal fluid circulation near the ependymal surface
within each ventricle [70,123–128]. The proper development and function of motile cilia
on ependymal cells is crucial in maintaining fluid homeostasis within the CNS, and as
such has critical implications in both brain development and function [129–133]. Defective
ependymal cells involving diminished or asynchronous ciliary movements have been
found in several major neurological disorders, including hydrocephalus [41,134].

In relation to infantile hydrocephalus, the synchronous beating of ependymal motile
cilia is imperative to assure proper CSF circulation and prevent excess CSF accumulation
under pressure [129]. Conditions that impair ependymal cilia motility can contribute
to the onset of hydrocephalus [129,135,136]. Specifically, imaging of cilia in posthem-
orrhagic hydrocephalus model systems has provided visual evidence both of cilia loss
and of the flattening or tangling of the remaining cilia [41]. Further, genetically induced
ciliopathies which reduce ciliary motile function have also been found to induce hydro-
cephalus [121,129,135,137–143]. While ciliary function is of great concern in the study of
hydrocephalic pathophysiology, it is imperative that the overall health of the underlying
ependymal cells also be given ample consideration. Here, the damage, denudation, and
death of ependymal cells in the setting of PHHP will be discussed.

3.2. Mechanisms of Ependymal Cell Death

The importance of healthy and fully functional ependymal cells with their motile
cilia during the embryonic and postnatal periods cannot be understated. While a loss of
ependymal cells or destruction of the ependymal layer is well recognized, very few reports
have investigated the path to depletion of ependymal cells. Here, the limited existing
literature will be reviewed as a starting point for further investigation.

Ependymal cell death could ensue via two distinct paths in PHHP: (1) as a causative
force, or (2) as an exacerbating manifestation. First, ependymal cell loss, and the con-
comitant loss of ependymal motile cilia, could hinder normal CSF circulation through the
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ventricular system, and therefore act as an initiating contributor to the onset of hydro-
cephalus [70,124]. Second, cell death in the ependyma could occur as a downstream effect
within hydrocephalus pathology, and exacerbate a pre-existing problem [144]. Given the
diverse agents, pathologies, and presentations of childhood hydrocephalus, it is quite likely
that ependymal cell death occurs in either sequence of events.

Ependymal denudation, or the process in which ependymal cells of the ventricular
epithelium vacate their position on the ventricular surface, has been widely reported in
cases of hydrocephalus both in model systems and in pediatric patients (Figure 2) [145–148].
While there have been some conflicting data on whether the evacuated ependymal cells
are dead or simply detached, a growing amount of evidence suggests that cell death in the
process of denudation is commonplace [3,146].

3.2.1. Ependymal Cell Death Precipitates Hydrocephalus

There is a substantial body of research which supports the concept that ependymal
death precipitates hydrocephalus, via loss of ciliary propulsion resulting in excess CSF
accumulation [135,143,149].

On a molecular level, vascular endothelial growth factor (VEGF) is present in the CSF
of humans with hydrocephalus, and causes ventriculomegaly and ependymal changes
in rats [115]. In model systems with VEGF-induced hydrocephalus, E-cadherin levels
have been found to be modified [115]. Interestingly, E-cadherin is replaced by N-cadherin
in the process of neurulation [150]. N-cadherin is understood to play a role in the cell
junctions of mature ciliated ependymal cells, and experimental blockage has been found to
induce widespread apoptotic ependymal cell death [151,152]. Therefore, it is possible that
N-cadherin levels may also be affected during fetal neural development via VEGF.

Ependymal cell death via necrosis has also been reported in relation to hydrocephalus.
It was found that deletion of the selective protease UBP43 in mice results in spontaneous
necrosis of ependymal cells, the collapse of the cerebral aqueduct, and subsequent develop-
ment of hydrocephalus [153]. In this investigation, cellular lysis and intact, uncondensed
nuclear materials were identified in the lumen of the ventricle, refuting apoptosis but
confirming ependymal cell necrosis [153].

Providing more evidence for ependymal death contribution to hydrocephalus, sorting
nexus family member 27 (SNX27)-deficient mice were found to have ependymal layer
defects in the form of reduced ciliary and ependymal cell density on the ventricular surface,
which led to the evolution of severe postnatal hydrocephalus [149]. Similarly, mice with a
knock-out of vacuolar protein sorting-associated protein 35 (VPS35), a protein known to be
critical for ependymal cell survival, developed enlarged lateral ventricles and microglial
activation redolent of hydrocephalus [154]. In addition, it has been found that p73 is an
important molecule and its dysregulation can result in ependymal cell death and hydro-
cephalus [155–157]. p73 knockout mice exhibit ependymal cell death with the development
of hydrocephalus and Afadin knockout mice develop ventricular walls which are almost
totally barren due to ependymal cell detachment prior to hydrocephalus onset [155–160].
Of note, p73 is extremely versatile and is involved in multiciliogenesis and in the induction
of apoptosis, while Afadin is a factor in cell-cell adhesion [161,162]. In another related
study, programmed embryonic ependymal wall denudation in hyh hydrocephalic mutant
mice was found be nearly completed prior to induction of hydrocephalus [163].

Ependymal cells are highly sensitive to infection by a variety of viral vectors [106].
This outlines a clear avenue for ependymal cell death induction in the initiation of post-
infectious hydrocephalus. One study found evidence of ependymal cell necrotic death
occurring as a result of intracerebral inoculation of vesicular stomatitis virus (VSV) [164].
Hydrocephalic development then followed as a result of the destruction of the ependymal
layer. A review by Sarnat published in 1995 also heavily stressed that viral, non-sterile
infection of the ependymal layer could lead to hydrocephalus [144]. Further, this pathway
could play an initiating or exacerbating role in post-hemorrhagic hydrocephalus, where
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leakage of blood into the ventricular system may introduce contaminants formerly retained
by the blood–brain barrier [163,165].

3.2.2. Ependymal Cell Death Exacerbates Hydrocephalus

In some cases, rather than ependymal cell death serving as the primary driver of
hydrocephalus, ependymal cells undergo cell death within a broader pathological pro-
cess. For example, a study characterizing a lysophosphatidic acid (LPA)-induced model
of fetal-onset hydrocephalus found evidence of ependymal cell death, phagocytosis, and
denudation [3]. Following fetal intracerebral administration of LPA, a blood-borne compo-
nent of infection, destruction of the ciliary microtubule axis and pervasive damage to cell
membrane integrity were found via transmission electron microscopy. At later timepoints,
scanning electron microscopy also showed abnormal cell morphology on the ependymal
surface, later identified as microglial macrophages of the innate immune system recruited
to the site of ependymal cell damage [3]. Apoptosis of the ependymal cells was also noted
shortly after, identified via fluorescent staining for caspase activation [3]. Similarly, sig-
nificant loss of ependymal cells on the ventricular walls was also noted in swine models
of hydrocephalus following intraventricular hemorrhage [166]. Overall, these findings
present a compelling theory that progression from CNS insult to hydrocephalus includes
primarily innate immune cell mobilization in response to damage, followed by apoptotic
death of ependymal cells and denudation of the ventricular wall (Figure 2).

Ependymal cells are generally susceptible to inflammation [167–170]. Locally ac-
tivated microglia have been implicated in pathological roles related to ependymal cell
health and survival [154]. Ependymal cells also possess receptors which have binding
affinity for specific cytokines, including C-X-C motif chemokine ligand 12 (CXCL12) and
interferon alpha (INFα) [170]. Further, T-helper cells bind directly to ependymal cells
via Fas-FasL binding, which could play a role in both ependymal cell dysfunction and
death [171]. In hydrocephalus, an inflammatory response is activated regardless of the
causative agent (e.g., hemorrhage, infection, trauma, genetics). As such, the possibility
that factors essential to the persistence of inflammation could provoke ependymal cell
death stands to support the idea that ependymal loss may not be a causative factor in the
development of hydrocephalus, but instead may contribute to the worsening pathology as
the disease progresses.

Ependymal cell loss is greater in neonates who experience both IVH and hydrocephalus,
compared to those who recover from IVH without progression to hydrocephalus [172]. Flat-
tening or loss of the ependymal layer has been hypothesized as the result of increased
intracerebroventricular pressure and ventricular stretching exerting a compressive and
atrophic force directly upon the ependymal cells [144,173,174]. Specifically, histological
evidence of ependymal destruction following extensive ventricular dilation exists [144,175].
The degree of ependymal cell damage and death correlates markedly with the degree of
ventricular enlargement, more than with underlying etiology [144]. These data support the
hypothesis that ependymal loss can result from the evolution of hydrocephalus and, there-
fore, can serve as an exacerbating factor in progression and persistence of hydrocephalus.

In sum, the ependymal layer normally serves a multitude of roles [144,176]. Despite
this critical function, the single-celled layer is understood to be inherently quiescent and
has been found to lack the ability to self-renew [177]. Therefore, it is not able to regenerate
to repair itself after injury or pathogenic exposure [106]. As such, the death or loss of
ependymal cells due to hydrocephalus early in development will likely have lasting
effects beyond the implicit disruption of CSF dynamics. Ependymal damage is associated
with abnormal neurogenesis and functional brain development especially in neonates in
clinical studies [178,179]. Preventing such damage should be a high priority in future
research efforts.
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3.3. Downstream Impacts of Ependymal Cell Loss

A critical concept to consider when evaluating the multi-fold impact of ependymal
cell death includes the differentiation between cell loss resulting in damage and death, and
loss resulting in consequences of impaired development. As a result of the age of onset
of hydrocephalus, repercussions occur at critically sensitive timepoints in neurogenesis
and neurodevelopment [180]. Therefore, regardless of the initiating factors inducing
ependymal cell death, it is clear that loss of the ependyma can have widespread and
long-lasting consequences on the immature CNS, in addition to those which are inherent
to hydrocephalus.

Most directly, ependymal cell death eliminates the multi-ciliated surface of the ependyma.
As discussed earlier, loss of these crucial cilia and their synchronous beating pattern results
in uncoordinated, unpropelled movement of CSF through the ventricular system, and
excess CSF accumulation. Stagnant CSF flow may promote hydrocephalus [3,135]. While
aberrant CSF circulation is undoubtedly an important outcome, loss of ependymal cells
can also have significant impact on neurodevelopment.

In addition to losing cilia and inhibiting CSF pulsatility, loss of the ependyma re-
sults in the migration of reactive glia into locations previously occupied by ependymal
cells [144,181,182]. Increased expression of genes involved in astrocytosis and microgliosis
has also been reported, including those related to cytokine signaling and apoptotic path-
ways [183]. It is likely that this robust glial response serves as an exacerbating factor in the
pathology of hydrocephalus, abnormal neurogenesis, and persistent inflammation.

Additionally, the fetal ependyma is thought to act as a secretory structure during
neurodevelopment and plays a role in the proliferation of nearby neural progenitors [184].
Ependyma which has accumulated significant damage may not be able to adequately regu-
late the movement of fluid, ions, and small molecules between the CSF in the ventricular
lumen and the surrounding brain parenchyma [144].

Furthermore, it has been found clinically that ependymal cell loss disrupts several
underlying periventricular regions critical for advancing neurogenesis [108]. The germinal
matrices found in the ventricular zone (VZ) and subventricular zone (SVZ) are crucial
for brain development [108,185]. Denudation of the ependymal layer in fetuses with
hydrocephalus results in immediate loss of the VZ, structural anomalies which expose
the SVZ, and aberrant exodus of immature neuroblasts into the ventricular lumen [181].
The disorganization of these germinal zones has severe consequences for the renewal,
maturation, and distribution of radial glial cells and other stem-like neural cell precur-
sors [186,187]. Specifically, it has been found that neural progenitor cells can be cultured
from the CSF of premature infants with hydrocephalus, indicating abnormal localization of
neuroblasts [188]. Changes in cell lineages following SVZ disorganization have also been
described [94]. Additionally, ependymal cilia facilitate transport of developing neural cells
to their final destinations in the cerebral framework [130]. As such, ependymal cell death
results in downstream damage to the germinal VZ and SVZ as well as loss of cilia which
assist migration, thereby precipitating abnormal neurogenesis in addition to the evolution
of hydrocephalus pathology.

4. Cell Death in the Glymphatic System
4.1. Cellular Structure of the Glymphatic System

The glymphatic system, which has recently gained wider recognition, is a waste
clearance system for the CNS [189]. The CNS lacks the lymphatic drainage system found
throughout the remainder of the human body. Thus, the dynamic glymphatic system
fills the gap in solute and fluid elimination within the brain, and assists in maintenance
of the high metabolic rate. Termed the glymphatic system as a description of its “glial
lymphatic” nature, meningeal lymphatic endothelial cells (LECs) form lymphatic vessels
in the dural sinuses which branch inferiorly [190]. Below, the functional structure forms
a series of perivascular channels surrounding the penetrating arterioles which branch
off from the pial arteries in the subarachnoid space (Figure 3) [189,191]. These created
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spaces are known as Virchow–Robin spaces, and are filled with CSF [192]. They are bound
on one side by the leptomeningeal cells which coat the blood vessel, and on the other
by astrocytic endfeet [193]. As the vessel extends deeper into the cerebrum, it becomes
continuous with the basal lamina before reaching the capillary level at the termination of
the vessel. At this depth, the endothelial cells forming the vessels and the neighboring
pericytes are separated from the astrocytic endfeet by the thin extracellular matrix of the
basal lamina [194]. These endfeet form the boundary of the perivascular space and highly
express aquaporin-4 (AQP4) [191,195,196].
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Functionally, this diverse collection of cell types and unique structural architecture
provide for the flow of CSF from the subarachnoid Virchow–Robin spaces down to the
AQP4 channels of the astrocytic endfeet [197]. Facilitated transport into the deep brain
parenchyma allows for exchange of CSF with interstitial fluid (ISF) [191]. Driven by pres-
sure gradients and aided by the porous basal lamina and plentiful aquaporin channels,
these cerebral fluids are convectively pushed towards the perivenous spaces [191]. Accu-
mulating in this space adjacent to the deep cerebral veins, the ISF is directed superficially,
out of the CNS, and eventually drains into the cervical lymphatic system [198].

In a healthy CNS, the glymphatic system clears waste and assists with fluid circulation
and distribution [199]. The glymphatic system is most active during sleep, with the
activity surrounding the convective flow of fluids suspended during wakefulness [200].
Disruptions to the glymphatic system may contribute to the pathogenesis of neurological
diseases and disorders, either chronic or acute [201,202].

The glymphatic system provides a critical avenue of fluid interchange and transport in
CSF dynamics and serves as a potential region for intervention for hydrocephalus. Death
of the astrocytes, pericytes, and endothelial cells which comprise the neurovascular units
of the glymphatic system are reviewed in the context of hydrocephalus early in life, and
the impact of such loss on disease progression and subsequent neurodevelopment will be
discussed (Figure 3).
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4.2. Mechanisms of Glymphatic Cell Death
4.2.1. Pericytes

Pericytes are a type of capillary-associated mural cell which wrap around the vessel-
forming endothelial cells throughout the body, with the highest proportion found within
the CNS [203–205]. In the CNS, they fortify vessel walls and interact with astrocytes as
part of the blood–brain barrier (BBB) [206]. Similar to ependymal cell loss, pericytic cell
death has been shown to serve both as an initiating factor in the onset of hydrocephalus,
as well as an exacerbating factor in the development of hydrocephalus, specifically via
phagocytosis [207–209].

Within the neurovascular unit of the glymphatic system, astrocytes, pericytes, and
endothelial cells all produce and secrete unique isoforms of laminin in formation of the
basal lamina [210,211]. Specifically, endothelial and astrocytic-derived laminins regulate
vascular integrity at different points across the lifespan. Pericytic laminin plays a significant
role in the development of ventricular size, as well as in constructing and maintaining
the BBB [209]. In a mouse mutant with conditional knockout of pericytic laminin, BBB
failure and hydrocephalus onset occurred in a significant proportion [209]. These results
suggest that pericyte death, and the subsequent loss of pericytic laminin in the extracellular
matrix of the glymphatic system, contributes to hydrocephalus [211], and suggests a
possible causative relationship between pericyte cell death and subsequent development
of hydrocephalus.

Spontaneous excess pericyte death is highly unlikely to occur without stimuli. In PHHP,
IVH could fill this role as a precipitating factor in inducing pericytic cell death [212–214]. In
very preterm infants, IVH is thought to occur in the setting of transient hypoxia-ischemia
events, which may also impact the rest of the parenchyma [215]. Pericytes have been found
to be particularly vulnerable to ischemia, in addition to other microenvironmental stressors
including inflammation and reactive oxygen species, and are more likely than other neural
cells types to die in low-oxygen environments [216]. In fact, a lack of oxygen leads to
widespread pericyte cell death and persistent pericyte contraction [216,217]. This initiates
what is termed the “no-reflow phenomenon” and has been widely observed, including
among patients suffering diverse types of cerebral hemorrhage [205,218,219]. With the
ischemic death of pericytes in the neurovascular unit, the local capillaries become fixed in
a constricted shape, prohibiting the return of blood flow and instead causing a period of
prolonged vasoconstriction which worsens oxygen deprivation in the surrounding brain
parenchyma [217,220]. Pericytic cell death also has been found to result in dysfunction
of the glymphatic system as a whole, preventing efficient transport of fluid and waste,
and further contributing to hydrocephalic fluid buildup in the brain and increased ICP
(Figure 3) [221,222].

4.2.2. Astrocytes

In addition to the direct impact that the loss of pericytes has on the BBB and cere-
bral vasculature, pericytic death has also been found to have significant impacts on the
function of astrocytes, another key element of the neurovascular units which make up the
glymphatic system [223].

Astrocytes are the most ubiquitous cell type in the CNS [224]. Like ependymal
cells, astrocytes are responsible for fulfilling a variety of roles spanning from structural
support of neuronal axons to directing the flow of fluid and blood [225]. In the glymphatic
neurovascular unit specifically, astrocytic foot processes form a loose sheath around the
cerebral vessels. In a healthy CNS, the processes are heavily lined with peri-microvessel
aquaporin-4 channels which facilitate the transport of brain water, and have also been
suggested to have a role in movement of ions, metabolites, and soluble proteins [195,226].

Astrocytes are implicated in hydrocephalus in a myriad of ways, in alignment with
their multi-functionality in the CNS. There is some evidence that altered astrocyte function-
ality may be implicated in hydrocephalus pathophysiology, although the direct pathways
have yet to be completely elucidated. One study involving Gi-coupled Ro1 and double
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transgenic mice found that activating specific astrocytic G-protein-coupled receptor (GPCR)
signaling pathways could initiate hydrocephalus [227]. On the contrary, reactive gliosis
is common in hydrocephalus, serving as an exacerbating factor spurred on by neuronal
damage as a result of trauma, infection, or ischemia, among other agents [228]. Gliosis
refers to the heightened proliferation of glial cells in the CNS in nonspecific response to
damage (Figure 3). Indeed, it has been found that glial fibrillary acidic protein (GFAP) RNA
levels, characteristic of astrocytes, rise along with the evolution of hydrocephalus [227]. In
the glymphatic system, astrocytosis occurring within the parenchymal space between the
arterial and venous perivascular spaces is problematic. Rapid and widespread proliferation
of astrocytes can functionally obstruct the flow and interchange of CSF and ISF [1,193].
This reduction in fluid drainage via the glymphatic system can in turn have an additive
effect on impaired CSF dynamics (Figure 3). Additionally, the change in morphology that
accompanies astrogliosis can redistribute the essential AQP4 channels, leading to reduced
CSF flow [229]. These mechanisms reflect an increase in the number and altered morphol-
ogy of astrocytes rather than a loss. Astrocytic cell death, while more rarely reported in the
literature, has also been identified and could have significant implications on hydrocephalic
progression [230,231]. Acknowledging the limited access to human pathological samples,
astrocytic cell death amongst specific subtypes or regions may have more impact during
neurodevelopment than is currently appreciated, and would benefit from future study.

Most existing reports of astrocytic cell death emphasize an ischemic environment as
a critical, inciting factor [232–234]. As discussed previously, in hydrocephalus resulting
from IVH or trauma, cerebral blood flow can be disturbed, resulting in minimal transfer of
glucose and oxygen to surrounding tissues. In such a toxic microenvironment, neural cells
of any type, including astrocytes, can undergo necrotic death [235]. While astrocytes are
generally more resistant to stressors than neurons, upregulation of caspases has shown that
subsets of astrocytes undergo apoptosis in such conditions, particularly in an immature
brain [230,236]. Additional investigation involving cell cultures has also shown that
astrocytes can be triggered to undergo many types of programmed cell death precipitated
by cytokine dysregulation and oxidative stress [230,237]. These factors are implicated in
the progression from precipitating etiology to hydrocephalus.

After a CNS insult, in addition to astrocytic population shifts, aquaporin-4 channels
are also lost. A reduction in AQP4 reduces rates of water diffusion in the CNS [238,239].
Aqp4 knockout mice exhibit increased water content in the extracellular matrices of the
parenchymal space, indicating that AQP4 channel loss could impair fluid homeostasis and
drainage [240,241]. In these same Aqp4 null mice, lack of AQP4 channels resulted in a
~70% increase in ISF solutes, demonstrating that both fluids and protein accumulate in the
parenchyma without the proper clearance mechanisms [191]. Upregulation of AQP4 is a
homeostatic countermeasure employed in the setting of hydrocephalus in order to help to
disburse accumulated CSF and reduce high ICP. Specifically, elevated expression of AQP4
in astrocytic endfeet at the brain–fluid interface was detected, correlative with evolving
congenital hydrocephalus in a rat model [242]. Similarly, in a rat model of communicating
inflammatory hydrocephalus, the degree of AQP4 upregulation trended closely with the
volume of CSF present, providing evidence that upregulation of aquaporin channels in
astrocytic endfeet may occur to counteract excess CSF and increased ICP [243]. While
human studies are more limited, it was also found that AQP4 protein levels in CSF were
elevated in communicating hydrocephalus samples compared to controls [244].

Without the ability to self-correct in this way, a glymphatic system lacking appropriate
astrocytes is unable to drain CSF and ISF as necessary, and has been implicated in the
progression of hydrocephalus. Further, astrocytic death will also have negative impacts on
the structure of the extracellular matrix itself. Without astrocytic-produced laminin, the
basement membrane responsible for the BBB is weakened [245]. Additional hemorrhage
can result from such structural defects, which can in turn further damage the cells making
up the glymphatic neurovascular unit [246].
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4.2.3. Endothelial Cells

Endothelial cells constitute the cerebral vasculature and are responsible for physically
forming the first layer of the BBB [247]. Joined together by tight junctions which prevent
the passage of any fluid or solute, endothelial cells form the innermost layer of the vessels
responsible for transporting blood throughout the brain, and therefore come into direct
contact with blood components [248,249].

As with the other cellular components of the glymphatic neurovascular unit, hem-
orrhage and trauma can create a toxic microenvironment and cause endothelial cell
death [250]. Further, since endothelial cells are located directly at the site of extrava-
sation, they die first [251]. Specifically, apoptosis was identified in 10% of local endothelial
cells within 10 min after hemorrhage, demonstrated by increased quantities of anti-cleaved
caspase-3 positive cells colocalized with the endothelial marker RECA-1 [252]. Vascu-
lar endothelial cells are directly affected by the increased ICP characteristic of hydro-
cephalus [242]. Additionally, complement activation in the setting of inflammation has also
been shown to result in formation of the membrane attack complex, which can form holes in
cell membranes and lead to endothelial cell lysis and death following hemorrhage [253,254].

Such a sizeable loss of endothelial cells affects the glymphatic system as a whole.
Endothelial laminin, laminin-alpha4, is essential in the embryonic and neonatal stages
of development [255]. In the setting of PHHP, hemorrhage-induced loss of endothelial
cells results in underproduction of this endothelial laminin at a critical timepoint in the
development of neurovasculature, just when it is needed to promote the organization and
integrity of basement membranes surrounding newly generated microvessels. As such,
the basement membranes of the glymphatic system can become destabilized, and may
contribute to faulty drainage of cerebral fluids and wastes, exacerbating the propagation of
hydrocephalus (Figure 3) [256,257].

5. Cell Death via Ferroptosis
5.1. Ferroptosis Described

Hemoglobin (Hgb) is a carrier molecule found in blood circulation which transports
both oxygen and carbon dioxide to sustain respiration [258]. Structurally, it is made up of
four subunits, each with its own polypeptide globin chain and a heme group, which con-
tains ferrous iron atoms for binding cargo [259]. Ferroptosis refers to a form of programmed
cell death involving lipid peroxidation which is iron-dependent [260,261]. Unique in sig-
naling pathways and cell morphology from apoptosis, necrosis, and autophagy, ferroptosis
occurs due to Fenton reaction-driven accumulation of lipid-based reactive oxygen species
(ROS) [262]. This type of cell death can be identified in cells with an intact cell membrane
and nuclear structure, but with abnormal changes to the mitochondrial membrane, includ-
ing outer membrane rupture, shrinkage, increased density, and loss of cristae [263,264].
Alteration of lipid peroxidation appears to have numerous genetic mediators, and can be
induced by a growing number of agents, including erastin, glutamate, RSL3, DPI7, FIN56,
and FIN02 [260,261,265].

5.2. The Role of Ferroptosis in PHHP

Aberrant levels of iron in the body can have significant effects on normal physiology
and function [266]. Ferroptosis has been previously shown to play a role in a variety of
tumor-related diseases, kidney injury, and neurological diseases [267–270]. Specifically, in
the setting of PHHP, the hemoglobin-associated hemes found in blood are degraded by
heme-oxygenase to produce free iron [263]. This has been clinically confirmed by findings
of higher unbound iron in neonates with post-hemorrhagic ventricular dilation compared
to neonates without [271]. The toxic microenvironment created by an intraventricular
hemorrhage, germinal matrix hemorrhage or periventricular hemorrhagic infarction results
in iron deposition directly into tissues. This increase in the level of iron present has the
potential to induce ferroptosis in neighboring cells [272].
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Experimentally, intraventricular injection of iron results in damage to the ependyma
and ventricular enlargement, as does injection of lysed red blood cells [273]. IVH in
rats also results in increases in free iron, iron-associated proteins, heme-oxygenase 1,
and ferritin [274]. In one model, lateral ventricular dilation was identified within 24 h
of hemorrhage [94]. Additionally, glutathione peroxide 4 (GPX4), a developmentally
regulated enzyme associated with mitigating BBB damage, oxidative stress, and inflam-
mation, is drastically reduced by increased iron concentrations [275]. The role of free iron
ions in IVH-induced hydrocephalus may be closely interwoven with the inflammatory
response [102,276]. In addition, in instances involving traumatic brain injury such as
post-traumatic hydrocephalus, upregulation of genes involved in ferroptosis and ROS
accumulation occur biologically secondary to the initial TBI [277].

A great majority of the literature describing ferroptosis in PHHP is focused on
ferroptosis-driven neuronal and white matter cell death [278,279]. Ferroptosis likely also
directly impacts cells of the choroid plexus, ependyma, and glymphatic system. Further-
more, ferroptosis has been implicated in glial cell death [280]. As such, investigation into
ferroptosis-mediated ependymal, glymphatic, and choroidal cell death will benefit from
further research.

6. Cell Death in White Matter

White matter in the CNS refers to the myelin-coated axonal projections which are
found in the deeper, subcortical tissues of the brain [281,282]. Myelin wrapping, via oligo-
dendrocytes, enables saltatory conduction and nerve impulse propagation, in addition
to providing metabolic support to axons [283–285]. Cell death in white matter has been
more widely studied than cell death in other cerebral regions in the setting of hydro-
cephalus [286,287]. Diverse forms of encephalopathy can have adverse effects on white
matter, and trigger cell death mechanisms spanning from apoptosis and necrosis, to au-
tophagy and even ferroptosis [231,288–290]. Cell death in white matter is generally thought
to be due to a destructive outcome of hydrocephalus, rather than as an exacerbating factor
that contributes the progression of hydrocephalus.

7. Cell Death in Other Neural Components

Similar to white matter, cell death in other neural components within the developing
nervous system occurs. Of note, transient neonatal neuronal populations, specifically the
GABAergic neurons, are particularly vulnerable to the toxic microenvironmental conditions
which can be induced following IVH [291]. These late migrating neurons have been found
to have increased levels of apoptosis in the cerebral tissue of premature infants with
perinatal brain injury and white matter lesions [292]. As GABAergic subpopulations
contribute to the formation of the networks of cortex and thalamus, loss due to early cell
death may result in underdevelopment or disorganization of the cortical and thalamic
regions [282].

8. Discussion of Future Directions

The physiological structures, tissue organization, and causative mechanisms discussed
in this review summarize the literature on cell death in the setting of PHHP. Inflammation
and iron-related metabolites likely contribute to alterations of CSF dynamics via the choroid
plexus, ependyma, and glymphatic system.

In addition to further refining initiating causes of CSF overproduction by the choroid
plexus, cell death in this important organ should also be investigated to elucidate down-
stream consequences, both in the initiation and progression of hydrocephalus, as well as
possible lifelong impacts resulting from loss of choroid plexus tissue. The choroid plexus
secretes multiple trophic factors critical for both neurodevelopment and maintenance of
the healthy mature CNS [293,294].

With respect to the ependyma, deeper investigation into ependymal cell death is
necessary. A more comprehensive understanding of the mechanisms involved in the de-
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nudation of the ventricular wall could lead to prevention of ependymal cell and associated
motile cilia loss. Preservation of proper, coordinated ciliary movement could pave the way
towards the rescue of abnormal CSF flow patterns and promotion of CSF drainage, helping
to halt the evolution of hydrocephalic pathology after neural injury or inflammation.

Changes in the glymphatic system after injury require extensive investigation. Im-
proved understanding of fluid exchange pathways and signaling involved in regulation
is needed. Additionally, mechanisms of cell death occurring in each component of the
neurovascular unit—pericytes, astrocytes, and endothelial cells—require further charac-
terization to identify new targets for intervention. Another key line of investigation is to
identify changes that may be prompted simply by excess CSF pressure, rather than by the
precipitating insult. It is quite likely that alterations in glymphatic function may play a
pathophysiological role in numerous neurodevelopmental and neurological diseases and
disorders as a result of the eminent roles of the blood–brain and CSF–blood interfaces in
fluid and signaling homeostasis [295–297].

Finally, investigation into elucidating the critical signaling pathways associated with
ferroptosis as a mechanism of cell death are of paramount importance. Ferroptosis likely
contributes not only to white matter injury and neuronal loss in the cortex and deep gray
matter, but also to loss of neural cells which regulate CSF dynamics, including microglia,
astrocytes, and the specialized cells that comprise the choroid plexus, ependyma, and
glymphatic system.

As research on hydrocephalus advances, developing an improved, more comprehen-
sive understanding of cell death as an exacerbating factor in pathogenesis is imperative.
This review focuses on the context of PHHP, however many of the pathways and factors
discussed are also plausible in other forms of infantile hydrocephalus as well. As such,
we propose that there exists unifying pathophysiology of both inflammation-related and
iron-related cell death across many forms of infantile hydrocephalus, independent of the
initiating insult.

Cell death represents a permanent, and often irreversible, loss of vital components
within a rapidly developing neurological system. As an effect of hydrocephalus, systemic
inflammation and loss of integral cellular components of the CNS serve as pivotally
destructive insults in neonates. On a broader scale, continued studies to achieve a better
understanding of all diseases falling under the umbrella of encephalopathy of prematurity
are of paramount importance in the mission to reverse, and even prevent, perinatal brain
injury in millions of infants around the globe.
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