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Diabetic retinopathy (DR) is one of the most threatening complications in diabetic patients,
leading to permanent blindness without timely treatment. However, DR screening is not
only a time-consuming task that requires experienced ophthalmologists but also easy to
produce misdiagnosis. In recent years, deep learning techniques based on convolutional
neural networks have attracted increasing research attention in medical image analysis,
especially for DR diagnosis. However, dataset labeling is expensive work and it is
necessary for existing deep-learning-based DR detection models. For this study, a
novel domain adaptation method (multi-model domain adaptation) is developed for
unsupervised DR classification in unlabeled retinal images. At the same time, it only
exploits discriminative information from multiple source models without access to any
data. In detail, we integrate a weight mechanism into the multi-model-based domain
adaptation by measuring the importance of each source domain in a novel way, and a
weighted pseudo-labeling strategy is attached to the source feature extractors for training
the target DR classification model. Extensive experiments are performed on four source
datasets (DDR, IDRiD, Messidor, and Messidor-2) to a target domain APTOS 2019,
showing that MMDA produces competitive performance for present state-of-the-art
methods for DR classification. As a novel DR detection approach, this article presents
a new domain adaptation solution for medical image analysis when the source data is
unavailable.

Keywords: diabetic retinopathy classification, multi-model, domain adaptation, convolutional neural network, deep
learning

1 INTRODUCTION

Diabetic retinopathy (DR) is a complication of diabetic patients and a significant cause of blindness
globally among the working population (Antonetti et al., 2021). There are 451 million suffering from
DR in the world, and this is projected to increase to 639 million in 2045 (Cho et al., 2018). In
diabetics, blood is provided to all retina layers through micro blood vessels that are sensitive to
unrestricted blood sugar levels. DRmay cause no symptoms or only mild vision problems at first, but
it can cause blindness eventually. When substantial glucose or fructose is collected in the blood, blood
vessels begin to collapse due to insufficient oxygen supply to the cells. Occlusion in these blood
vessels can cause serious eye damage. As a result, metabolic rate decreases, and abnormal blood
vessels accumulate in DR (Dai et al., 2021). Microaneurysms (MAs) are the early signs of DR, which
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cause changes in the size (swelling) of the blood vessels.
Moreover, hemorrhages (HMs), exudates (EXs), and abnormal
blood vessel growth are the symptoms of DR. The International
Clinical Diabetic Retinopathy (ICDR) scale is one of the most
commonly used clinical scales and is composed of five levels of
DR: normal, mild, moderate, severe and proliferative (Bodapati
et al., 2021). Generally, diabetic retinopathy is divided into
referable diabetic retinopathy (RDR) and non-referable
diabetic retinopathy (NRDR).

Blindness can be completely avoided by early diagnosis. Annual
regular clinical examination for diabetics is strongly recommended,
especially for middle-aged and older adults (Mohamed et al., 2007;
Ferris, 1993). Nevertheless, researchers find that a considerable
number of people with diabetes failed to have annual eye
examinations due to very mild symptoms, long examination
time, and a shortage of ophthalmologists (Owsley et al., 2006;
MacLennan et al., 2014; Chou et al., 2014). Therefore, it is
necessary to adopt automatic DR diagnosis methods to lighten
the workload on eye specialists and shorten the detection time,
making patients understand the condition and get treatment in time.

Artificial intelligence (AI) is a popular technique for
computer-aided automatic DR diagnosis to overcome these
obstacles and deep learning has achieved progress in
biomedical image analysis (Meng et al., 2021b; Preston et al.,
2021; Meng et al., 2021a). Yoo and Park (2013) utilized ridge,
elastic net, and LASSO to perform validation on 1052 DR
patients. Roychowdhury et al. (2013) proposed a novel two-
step approach for DR detection, where non-lesions or normal
images are rejected in the first step, and bright and red lesions are
classified as hard exudates and hemorrhages, respectively in the

second step. In addition to the machine learning methods, the
deep learning method becomes very popular in DR screening in
recent years. For instance, Vo and Verma (2016) used a deep
neural network improved upon GoogLeNet and VGGNet for DR
recognition, aiming to learn fine-grained features of retinal
images. Moreover, He et al. (2020) combined two attention
blocks with a backbone network to solve the imbalanced DR
data distribution problem and capture more detailed lesion
information, respectively. Ai et al. (2021) proposed an
algorithm adopting deep ensemble learning and attention
mechanism to detect DR. However, both traditional machine
learning methods (Yoo and Park, 2013; Roychowdhury et al.,
2013) and supervised deep learning methods (Vo and Verma,
2016; He et al., 2020; Mohamed et al., 2021; Ai et al., 2021) require
a large amount of labeled retinal images to train their models,
which fail to new data from other domains. As an effective
solution, domain adaptation always requires source data,
which is usually difficult to access in practical applications
because of the strict privacy rules in medical image
management agencies.

To tackle this critical problem in supervised deep learning
methods, this article attempts to develop a multi-model domain
adaptation (MMDA) to conduct transfer learning for DR
classification without access to source data. As shown in
Figure 1, the proposed method can sufficiently utilize the
knowledge of source models and unlabeled target images to
improve the DR detection performance.

In the MMDA framework, the target model is initially
parameterized, and the trained source models are provided.
We propose a model weight determination module to estimate

FIGURE 1 | The work flow of our method.We train the target predictionmodel to simply use pre-trainedmultiple sourcemodels and unlabeled target retinal images.
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the importance of each source model by measuring the average
distance between two retinal feature groups extracted from the
source models and target model. This module is optimized by a
weight determination loss to output realistic model weights in
target feature learning. By using the weights of source models, the
pseudo label of the target images is obtained in a feature-level
clustering-based way. Finally, we optimize the target model by
cross-entropy loss and information maximization loss to
guarantee the performance of diabetic retinopathy detection.

To evaluate the performance of MMDA, we conduct extensive
experiments on five publicly available retinal image datasets: DDR,
IDRiD,Messidor, Messidor-2, and APTOS 2019, obtaining excellent
performance without access to source data. The results demonstrate
that our proposed method can effectively complete the DR diagnosis
task with only unlabeled target data.

2 MATERIALS AND METHODS

2.1 Data Acquisition
In order to validate our method for diabetic retinopathy diagnosis,
we trained four source models from publicly available datasets
(DDR, IDRiD, Messidor, and Messidor-2) and employed APTOS
2019 as the target domain.

DDR dataset (Diabetic retinopathy detection, 2015) involves
12,522 fundus images from a 45° field of view. In detail, it has
6,266 normal fundus images and 6,256 abnormal samples.
Moreover, the class distribution of the dataset is imbalanced in
that the normal images are more than the abnormal data.

The IDRiD dataset (Porwal et al, 2018) contains 516 fundus
images which were captured by an ophthalmologist from an
Indian eye clinic. It provides adequate quality and clinically
relevant fundus images with ground truths.

The Messidor dataset (Decencière et al., 2014) is a publicly
available diabetic retinopathy dataset provided by the Messidor
program partners, which consists of 1,200 retinal images, and for
each image, two grades, retinopathy grade, and risk of macular
edema, are provided.

TheMessidor-2 dataset (Decencière et al., 2014) has been globally
used by researchers for DR detection algorithm analysis, which is an
extension of Messidor. It contains 1,748 retinal images of 874
examinations. Although there are no official annotations for this
dataset, the third-party grades for 1,744 out of the 1,748 images
adjudicated by a panel of three retina specialists are available for
researchers (Messidor-2 dr grades, 2018).

The APTOS 2019 dataset (Khalifa et al., 2019) is the most
recent publicly available Kaggle dataset from the APTOS
Blindness Detection competition on Kaggle for DR detection.
It contains 3,662 labeled fundus photography images.

The above datasets are graded into five stages from 0 to 4 for
no DR, mild DR, moderate DR, severe DR, and proliferative DR,
respectively, according to the ICDR severity scale. The label
distribution of the datasets and the division of the referable
and non-referable DR are shown in Table 1. Moreover, the
APTOS 2019 dataset is regarded as the target domain, and the
other four datasets are used as source datasets to train source
models.

2.2 Data Preprocessing
When collecting retinal images, the differences in lighting
conditions and camera types may cause a large data
inconsistency (Graham, 2015). Data preprocessing mitigates
noise and enhances image details, reducing inconsistency and
playing a significant role in improving performance.

In order to eliminate these negative effects and make data
consistent, we perform data preprocessing in the following two
steps (Figure 2):

Step 1: Resize and crop.
Considering various resolutions of retinal images in different

datasets, we resize all images to 1,024 pixels if their width or height is
bigger than that size. Then, we crop as much of the black space by
identifying the center and radius of the circle in the retinal images.

Step 2: Image enhancement.
In DR detection, the observation of hard exudates,

hemorrhages, and cotton wools is significant for eye specialists
to diagnose. However, the variations of brightness and resolution
not only make ophthalmologists produce misdiagnoses but also
make it difficult for a model to compose robust features. To
address this problem, we perform image enhancement after
resizing and cropping by the following formula:

Io x, y; σ( ) � λG x, y; σ( )pI x, y( ) + ωI x, y( ) + δ (1)
where I (x, y) denotes the input retinal image, G (x, y; σ) is a
Gaussian filter with standard deviation σ, “p” represents the
convolution operator. λ, ω and δ are manually adjusted
variables. In our study, λ, ω and δ are set to 4, -4 and 128,
respectively. By improving image contrast with Eq. 1, the lesion
area is easier to distinguish.

2.3 Multi-Model Domain Adaptation
Architecture
This subsection elaborates on our proposed MMDA method,
which aims to address the central problem that the labeled image
data cannot always be obtained in automatic DR detection.

2.3.1 Overview
Domain adaptation is one of the branches of transfer learning in
computer science. For a vanilla multi-source unsupervised domain

adaptation task, we have n source domains with fundus images, and

Ni
s labeled samples {xj

i , y
j
i }
Ni

s

j�1 from the ith source domain are given,

where xj
i ∈ X i, y

j
i ∈ Yi, and alsoNt unlabeled retinal images {xj

t }
Nt

j�1

TABLE 1 | Label distributions of DDR, IDRiD, Messidor, Messidor-2, and APTOS
2019 datasets.

Dataset Type Non-referable Referable

No Mild Moderate Severe Proliferative

DDR Source 6,266 630 4,477 236 913
IDRiD Source 168 25 168 93 62
Messidor Source 546 153 247 254 —

Messidor-2 Source 1,017 270 347 75 35

APTOS 2019 Target 1,805 370 999 193 295
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from the target domainDt where x
j
t ∈ X t. Domain adaptation aims

to obtain a target model to predict the labels {yj
t }
Nt

j�1, where y
j
t ∈ Yt.

Here, the goal of MMDA is to learn a target prediction model for

function ht: X t → Yt and infer {yi
t}Nt

i�1, with only {xi
t}Nt

i�1 and the

source prediction models for function: hi: X i → Yi available. Note

that, only trained source models can be utilized, without access to

FIGURE 2 | Representative retinal images adopting our preprocessing techniques. From top to bottom, the representative images are sampled from no DR,
moderate DR, and proliferative DR, respectively. The parts (A–C) denote the original, resized and cropped, and enhanced retinal images.

FIGURE 3 | The overview of MMDA architecture. After preprocessing, we obtain the features of target retinal images by sourcemodels fi |ni�1 and target model ft, and
calculate the weight of each model μi using the single-layer neural network. The output of the target classifier is defined by the source classifiers with fixed parameters.
Pseudo labels ŷt for each retinal image xi are obtained after the process of feature-level clustering-based pseudo-labeling.
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their data. Figure 3 illustrates the overview of ourMMDAmodel for

referable DR detection.
Suppose that we have multiple trained source models for DR

classification and an ImageNet pre-trained target model. Each
model contains two modules: the feature encoding module
fi: X i → Rd and the classifier module pi: R

d → RK,
i.e., hi(x) = pi (fi(x)). Here, d is the dimension of the feature,
and K represents the number of categories. We extract the
features of retinal images using the source and target feature
encoding modules firstly. A single-layer neural network is
integrated to determine the weights of each source model
using euclidean distance and weight determination loss. By
employing the weights and source classifiers, target
prediction logits are obtained. Then the pseudo labels ŷt of
the target images are generated in a feature-level clustering-
based way. Finally, the whole network is optimized using cross-
entropy loss and information maximization loss to make the
target feature encoding module has excellent DR diagnosis
capability.

2.3.2 Source Model Generation
We consider producing several source backbone pre-trained
source models, i.e., hi = pi◦fi (i = 1, 2, /n), by optimizing
them using the following cross-entropy loss:

Li
src fi;X i,Yi( ) � −E xi,yi( )∈X i×Yi

∑
K

k�1
qk log σk hi xi( )( ) (2)

where σk(a) � exp(ak)∑i
exp(ai) denotes the kth element in the softmax

output of a K-dimensional vector a, and q is the one-hot encoding

of yi where qk is set to “1” if yi is the kth class and the rest is set to
“0”. In order to learn more discriminative feature representations
and further enhance the following target data alignment, we
adopt the label smoothing technique because it prevents the
model from becoming over-confident thus improving
generalization and performance (Müller et al., 2019). With
label smoothing, the objective loss function is modified as below:

Li
src,ls fi;X i,Y i( ) � −E xi,yi( )∈X i×Yi

∑
K

k�1
qk,ls log σk hi xi( )( ) (3)

where qk,ls = (1 − α)qk + α/K represents the smoothed label and α
is the smoothing factor which is set to 0.1 experientially.

2.3.3 Information Maximization Loss for Target Model
Due to the source classifier modules encoding the distribution
information of unseen source data, our framework is proposed to
learn the domain-specific feature encoding module while the
source classifier modules are fixed. Specifically, MMDA employs
the weighted source classifier modules during the target model
learning process:

pt ·( ) � ∑
n

i�1
μipi ·( ) (4)

where μi is the weight for the ith source model, which will be
explained in detail in the following subsection.

In essence, our goal is to obtain an optimal target feature
extractor ft: X t → Rd for target retinal images, in order that
the extracted target features can match source distributions well.
However, it is noteworthy that the source images are not
accessible in our study. As a result, there’s no way to
perform feature-level alignment since it is unfeasible to
estimate the source distribution in the absence of source
data. We look at the problem from a different angle that the
expected output logits of the target model should seem like one-
hot encoding but differ from each other if the domain gaps are
mitigated. To this end, we employ the information
maximization (IM) loss (Hu et al., 2017), which enhance the
certainty and diversity of target outputs. Specifically, we
optimize ft by IM loss LIM that consists of two objective
functions Lce and Ldiv:

Lce ft;X t( ) � −Ext∈X t ∑
K

k�1
σk ht xt( )( )log σk ht xt( )( )

Ldiv ft;X t( ) � ∑
K

k�1
Pk log Pk � DKL P,

1
K
1K( ) − log K

LIM � Lce + βLdiv

5)

where ht(x) = pt ( ft(x)) is the K-dimensional output logits of
each retinal images, 1K is an all-ones vector with K elements,
and P � Ext∈X t[σ(ft(xt))] represents the average output
probabilities of the whole target domain, β is the balance
factor. Information maximization would work better than
conditional entropy minimization (Grandvalet and Bengio,
2005) commonly used in traditional domain adaptation
works, since it can circumvent the trivial solution where
all unlabeled fundus images have the same one-hot
encoding via the fair diversity-promoting objective
function Ldiv.

2.3.4 Model Weight Determination
In the MMDA framework, a robust target feature encoder is
learned by bridging the domain gap between each source domain
and the target domain. However, the feature discrepancies
between each source domain and target domain are different.
To measure the feature discrepancies, we propose a Model
Weight Mechanism (MWM). Precisely, we first calculate the
average Euclidean Distance between the ith source domain
and the target domain:

τi � 1
Nt

∑
Nt

j�1
|fi xj( ) − ft xj( )| (6)

The closer the τi is, the more important the source model, i.e., the
greater the weight is. To this end, we integrate a single-layer neural
network, which is parameterized by a weight vector
w � (w1, w2,/wd) ∈ Rd×1. Formally, we learn model weight μi as

μi �
exp ReLU wTτi( )( )

∑N
j�1 exp ReLU( wTτj( ) (7)

where ReLU(·) = max (0, ·) is an activation function, which
guarantees the nonnegativity of μi. The role of the above softmax

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9189295

Zhang et al. Multi-Model Domain Adaptation

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


operation is to guarantee the model weight satisfy the following
property:

∑
n

i�1
μi � 1, μi ≥ 0 (8)

We optimize the weight vector of the single-layer neural
network w by minimizing the following loss function:

LWD w;X t( ) � 1
Nt

∑
n

i�1
∑
Nt

j�1
μi fi xj( ) − ft xj( )












22 (9)

That is, a larger distance ‖fi(xj) − ft(xj)‖2 between features fi(x)
and ft(x) enforces a smaller value μi.

2.3.5 Feature-Level Clustering-Based
Pseudo-Labeling
The role of IM loss in Eq. 5 is to enforce the similarity of one-hot
encoding output. Therefore, an accurate prediction network is
crucial to reduce this impact. For this purpose, a pseudo-labeling
strategy at the feature level is applied for better supervision during
the adaptation process.

First, the weighted features centroid of target retinal images
for each class is obtained, similar to weighted k-means
clustering.

m 0( )
k � ∑n

i�1∑xt∈X t
μiσk hi xt( )( )fi xt( )

∑xt∈X t
σk hi xt( )( ) (10)

These centroids can robustly and more reliably characterize
the distribution of different categories within the target domain.
Then, the pseudo labels can be attained via the nearest centroid
classifier:

ŷt � arg min
k

Dc ft xt( ), m 0( )
k( ) (11)

whereDc(a, b) � 1 − a·b
‖a‖‖b‖ represents the cosine distance between

vector a and b.
Based on generated ŷt previously , new centroids m(1)

k and
pseudo labels are computed:

m 1( )
k �

∑n

i�1∑xt∈X t
1 ŷt�k[ ]μifi xt( )

∑
xt∈X t

1 ŷt�k[ ]
ŷt � arg min

k

Dc ft xt( ), m 1( )
k( )

(12)

We refer to ŷt in Eq. 12 as the final pseudo labels.
To sum up, given n source models hi = pi◦fi (i = 1, 2, /n)

and the final pseudo labels ŷt generated from Eq. 12,
MMDA fixes the parameters of sources classifiers, pt(·) �
∑n

i�1μipi(·) and optimizes the feature extractor ft with the
overall loss as:

Loa ft( ) � LIM − γE xt,ŷt( )∈X t×Ŷt
∑K

k�1 1 k�ŷt[ ] log σk pt ft xt( )( )( )
(13)

where γ > 0 is a balancing hyper-parameter. The whole
implementation of MMDA model is shown in Algorithm 1.

Algorithm 1. Pseudo-code of MMDA training process

2.4 Implementation Details
In the experiments we first train the source models by corresponding
source retinal datasets, and eachmodel is designed following ResNet-
50 (He et al., 2016). As for the target model, it also employs ResNet-
50, initialized by pre-trained parameters from ImageNet (Deng et al.,
2009). We perform data argumentation by applying random
horizontal flips, vertical flips, and random rotation to prevent
overfitting. The input size of the MMDA is 224 × 224. We
trained 40 epochs for all the source models using the Stochastic
Gradient Descent (SGD) optimization algorithm (Kingma and Ba,
2014) with a learning rate decay factor of 1e−4. The learning rates for
DDR, IDRiD,Messidor, andMessidor-2 datasets are 5 × 10–3 equally.
For the target training, we adopt a mini-batch SGDwith momentum
0.9, weight decay 1e−4, and learning rate ζ = 1e−2. The balance factor
for IM loss β and the overall loss γ are set to 0.3 and 0.3, respectively.
In addition, a batch size of 64 is set for the entire experimental
process.MMDA is implemented on twoNVIDIARTX 2080TiGPUs
with 2 × 11 GB RAM using the PyTorch framework.

To validate the effectiveness of MWM (Section 2.3.4), we adjust
μi in Eqs 4, 10, 12. Moreover, hyper-parameters β in LIM and γ are
fine-tuned to analyze their influence on DR detection performance.
Details are described in Section 3.3 and Section 3.4. Note that we do
not integrate model weight mechanism and pseudo-labeling into the
target model until training the target model several epochs with IM
loss. That means we attach the model weight and pseudo-labeling
modules when the target model has a certain diagnosing capability.

3 RESULTS

3.1 Evaluation Metrics
To measure the performance of the MMDA model, we employ
accuracy and sensitivity as the measurements. The accuracy can be
defined as the percentage of correctly classified images. Sensitivity
measures the ability of a test to correctly identify samples with
referableDR,which is an effectivemetric tomeasure theDRdiagnosis.

This metric is calculated as follows. First, we compute the
accuracy by TP+TN

TP+FP+TN+FN, where TP is the correctly predicted
positive samples, TN denotes the correctly predicted negative
images, and FP represents the false predicted positive samples
and FN means the false predicted negative images. For the
sensitivity, it follows the formula,
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sensitivity � TP
TP + FN

(14)

3.2 Performance Compared With
Supervised Learning Methods
We first compare MMDA with the existing supervised learning
methods on the APTOS2019 dataset. Specifically, Xie et al. (2017)
present a simple, highly modularized network architecture for image
classification, which is often employed in DR detection; Vives-Boix
and Ruiz-Fernández (2021) conducted automated detection of DR by
directly interfering in both learning and memory by reinforcing less
common occurrences during the learning process; Narayanan et al.
(2020) proposed a hybridmachine learning architecture to detect and
grade the level of diabetic retinopathy; Farag et al. (2022) proposed an
automatic deep-learning-based model for severity detection by
utilizing a single color fundus photograph. From Table 2, it is

observed that MMDA achieves approving results with 90.6%
accuracy and 98.5% sensitivity. Our method performs a relatively
excellent accuracy compared with the compared methods, which
only remains a distance of 2.2%, and it presents the second-best
sensitivity of 98.5%, only weaker than Narayanan et al. (2020).
Although the results of MMDA are lower than these supervised
learning methods, huge amounts of labeled data are essentially
required in their training process. In contrast, we train MMDA
simply to utilize unlabeled retinal images and obtain satisfactory
performance, showing the superiority of our framework for DR
diagnosis.

3.3 Performance Analysis on Model Weight
Mechanism
We design a novel model weight mechanism (MWM) to assign a
learnable weight to each model. To verify the effect of the MWM,
we perform ablation studies to analyze the MWM for the source
classifier modules and the pseudo-labeling process using different
backbones.

MWM for source classifier modules: We fix the source classifier
modules, so we can fully utilize the source distribution information
in themodules when the source data is not available. Meanwhile, the
discrepancy between each source domain and the target domain
cannot be ignored. Specifically, we integrate the weight mechanism
into the classifiers by Eq. 4. To verify the effect of MWM in utilizing
the source distribution information, we conduct a study using
Average-weighted Classifier Multi-model Domain Adaptation
(ACDA), which is the MMDA model with μi � 1

n (i � 1, 2,/n)
in Eq. 4. As shown in Table 3, we obtain accuracy and sensitivity of
0.873 and 0.965 for VGG-16, 0.880 and 0.972 for RestNet-50, with
accuracy drops of 2.8%, 2.6% for VGG-16 and ResNet-50,
respectively, which demonstrates that MWM contributes huge
effectiveness on multi-model source distribution learning.

MWM for pseudo-labeling: To evaluate the contribution of
MWM in features centroid determination, we carry out an
experiment named APDA, which is a modified MMDA with μi �
1
n (i � 1, 2,/n) in Eqs 10–12. With this setting, this model performs
at accuracies of 0.882 and 0.902 for VGG-16 and ResNet-50

TABLE 3 | The DR classification results of MMDA with different backbones on the
APTOS 2019 dataset.

Backbone Method Accuracy Sensitivity δ Accuracy (%)

VGG-16 ACDA 0.873 0.965 ↓2.8
APDA 0.882 0.973 ↓1.9
MMDA 0.901 0.980 -

ResNet-50 ACDA 0.880 0.972 ↓ 2.6
APDA 0.902 0.960 ↓ 0.4
MMDA 0.906 0.985 -

The best results are in bold.

TABLE 4 | DR classification results using different β on the APTOS 2019 dataset.

β 0.1 0.2 0.3 0.4 0.5

Accuracy 0.899 0.903 0.906 0.902 0.851
Sensitivity 0.984 0.962 0.985 0.987 0.986

The best results are in bold.

TABLE 5 | DR classification results using different γ on the APTOS 2019 dataset.

γ 0.1 0.2 0.3 0.4 0.5

Accuracy 0.877 0.896 0.906 0.905 0.902
Sensitivity 0.976 0.982 0.985 0.966 0.963

The best results are in bold.

FIGURE 4 | ROC curve of DR diagnosis on the APTOS 2019 dataset.

TABLE 2 | Accuracy and sensitivity of MMDA for diabetic retinopathy diagnosis
compared with state-of-the-art supervised learning approaches on the
APTOS 2019 dataset.

Method Accuracy (%) Sensitivity (%)

Xie et al. (2017) 92.8 86.8
Vives-Boix and Ruiz-Fernández (2021) 94.5 90.0
Narayanan et al. (2020) 98.4 98.9
Farag et al. (2022) 97.0 97.0

MMDA (Ours) 90.6 98.5
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respectively. All results are lower than the original MMDA model.
This is because the average model weight cannot determine accurate
centroids of features, which results in incorrect pseudo labels and
failing to bridge the domain gap between each source domain and
target domain. With MWM, the importance of each source model
can be determined, which helps to obtain a more accurate pseudo
label and improve the model performance.

3.4 Performance Analysis on
Hyper-Parameters
To further validate the effectiveness of each component in
MMDA, we explore the influence of hyper-parameters on the
performance of our model.

The choice of β in LIM: β is a balancing factor that adjusts the
contribution of fair diversity-promoting objective Ldiv. The DR
classification performance of MMDA with β from 0.1 to 0.5 is
shown in Table 4. As reported, both accuracy and sensitivity is
improved with the increase of β, and MMDA achieves the best
performance when β is set to 0.3. However, when we further
increase the value of β, the results start to decrease. We consider
that the high β value weakens the effect of Lce, which leads the
decision boundary to go through the high-density region.

The choice of γ: γ is a balancing factor of the information
maximization loss LIM and the cross-entropy loss in the overall
loss Loa. In this section, we investigate the effectiveness of this
hyper-parameter. The results shown in Table 5 demonstrate that
MMDA achieves the highest effectiveness when γ is set to 0.3. The
cross-entropy loss in the overall loss Loa acts as a guide of the
target model. If γ is too small, the effect of the pseudo labels is
reduced. If γ is too large, the generalization of the target model
will be limited. In order to learn more discriminative features in
the target domain and enhance the DR diagnosis performance of
the model, it is necessary to adjust the best value of γ.

3.5 Visual Analysis of Model Performance
Furthermore, in order to prove the superiority of the MMDA
framework for practical applications, the ROC curve, and t-SNE
plot are adopted to visualize our model.

ROC curve: The receiver operating characteristic curve is a
graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The
ROC curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings.
In the ROC curve, the closer the apex of the curve toward the upper
left corner, the greater the discriminatory ability of the test. The ROC
curve of MMDA for diabetic retinopathy classification is drawn in
Figure 4, which obtains the area under the ROC curve of 0.94 and is
above the diagonal and close to the point in the upper left corner,
demonstrating thatMMDAhas a satisfying prediction performance.

t-SNE plot: t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a technique for dimensionality reduction that is
particularly well suited for the visualization of high-dimensional
data. It maps high-dimensional data to two or more dimensions
suitable for human observation. In order to validate the
effectiveness of MMDA, we perform a t-SNE plot using the
target image features extracted by the trained target feature
encoding module (ft). As shown in Figure 5, retinal images of
non-referable DR and referable DR are well separated, because
MMDA can learn discriminative features to detect referable
diabetic retinopathy. The relatively clear boundaries in Figure 5
suggest that it is practical to train a robust prediction model using
MMDA in the absence of labeled target data.

4 DISCUSSION

Retinal images are usually used to build an automatic diabetic
retinopathy diagnosis system (Gardner et al., 1996; Acharya et al.,

FIGURE 5 | The t-SNE plot of DR classification on the APTOS 2019 dataset.

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9189298

Zhang et al. Multi-Model Domain Adaptation

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


2009; Ram et al., 2010; Gulshan et al., 2016; Lam et al., 2018; Jiang
et al., 2019; Preston et al., 2021). However, whether using
traditional machine learning methods (Gardner et al., 1996;
Acharya et al., 2009; Ram et al., 2010) or deep supervised
learning methods (Gulshan et al., 2016; Lam et al., 2018; Jiang
et al., 2019; Preston et al., 2021), they all need a large amount of
labeled data during training. In the biomedical image analysis
field, labeling work is expensive and the privacy issue is highly
sensitive. To tackle this challenge, we consider developing an
unsupervised method that the DR diagnosis performance is
excellent but labeled retinal images are unnecessary.

In this article, we present a novel MMDA that incorporates
model weight mechanism into the MMDA technique. MMDA can
be trained in an end-to-end manner with merely unlabeled target
retinal images for DR classification. To the best of our knowledge,
MMDA is the first attempt to automatically diagnose diabetic
retinopathy by adopting an unsupervised domain adaptation
technique with multiple source models. The main advantage of
this article is that the MMDA can learn helpful knowledge only
from source models without any source data, which can relieve the
limitation of data privacy from different medical agencies.

Our proposed MMDA method aims to exploit the source
knowledge and relationship between the source models and the
target model, instead of learning from labeled retinal images
directly, thus helping protect the patients’ privacy and no need to
label images.

In order to fully explore the discrepancy between each source
domain and target domain, we propose a model weight mechanism.
By incorporating the mechanism into the source classifiers and
feature-level clustering-based pseudo-labeling process, the diagnosis
performance of the target model is improved.

Extensive experiments and ablation studies on the
APTOS2019 dataset demonstrate that MMDA achieves
competitive DR diagnosis performance in comparison with
state-of-the-art supervised learning methods. However, the DR
classification performance still has a distance from the advanced
supervised methods due to the discrepancy between source and
target models, especially for the invalid access to source data.

Model visualizations (Figures 4, 5) suggest that non-referable
(grade 0, 1) and referable cases (from grade 2 to 4) can be
diagnosed well. We will focus on the fine-grained classification
of the DR grading task (Zheng et al., 2017) in the future.

5 CONCLUSION

When incorporating deep learning techniques in the automatic DR
diagnosis system, time-consuming labeling work and privacy issues

are critical problems. The present study is designed to exploit
existing models and unlabeled retinal images for DR diagnosis to
resolve these issues. Ablation studies show the effectiveness of our
proposed modules, and the comparison with state-of-the-art
supervised learning approaches demonstrates the superiority of
our method. Moreover, model visualization indicates that our
method can effectively diagnose non-referable and referable
cases, with excellent diagnosing results.
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