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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A novel magnetic/fluorescent dual- 
modal LFIA for SARS-CoV-2 NP 
detection. 

• Magnetic beads with double QD shells 
are used as labels for dual signal 
generation. 

• The method has high quantitative anal-
ysis performance and can meet various 
needs. 

• The dual-modal LFIA has outstanding 
specificity, reproducibility, and 
stability.  
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A B S T R A C T   

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the 
early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow 
immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 
nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) 
as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core- 
shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content 
realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The 
LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for 
quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent 
signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL− 1 and 0.012 ng mL− 1, 
respectively. The recovery rates of the methods in simulated saliva samples were 91.36%–103.60% (magnetic 
signal) and 94.39%–104.38% (fluorescent signal). The results indicate the method has a considerable potential to 
be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.  
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1. Introduction 

The outbreak of coronavirus disease 19 (COVID-19), caused by the 
virus named severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), results the most influential pandemic in more than a century 
and is still impacting global societies [1,2]. According to World Health 
Organization (WHO) statistics, as of June 15, 2022, have been 534,495, 
291 confirmed cases of COVID-19, including more than 6 million deaths. 
Most patients with SARS-CoV-2 infection would show several ‘flu’-like 
symptoms such as fever, shortness of breath, dry and continuous cough, 
which could remind people to take countermeasures to avoid further 
transmission [3,4]. Unfortunately, there are other patients, who are 
asymptomatic or during the incubation period, have reportedly could 
spread the virus efficiently and may prove challenging for containing the 
pandemic [5,6]. Therefore, it is significant to sensitively and rapidly 
diagnose patients with SARS-CoV-2 in the early stage of infection. 

There are three main categories strategies developed to diagnose 
SARS-CoV-2 in the global pandemic including nucleic acid test, antibody 
test, and antigen test [7]. Nucleic acid testing with real-time polymerase 
chain reaction (RT-PCR) is the primary method to diagnose COVID-19 
[8]. Antibody detection and antigen detection have been great supple-
mentary methods for containing SARS-CoV-2 due to the advantages of 
rapid and low-cost. However, SARS-CoV-2 specific antibodies like IgM 
and IgG could detect between 7 and 14 days after symptom onset, which 
may not be suitable for screening in the early stage of infection [9,10]. 
Thus, antigen detection is more suitable for early detection, especially 
nucleocapsid protein (NP) detection [11,12]. NP is a structure protein of 
SARS-CoV-2 virus [13]. Compared with other structure proteins, NP has 
high immunogenicity and is more abundantly expressed in vivo during 
infection [14,15]. Hence, NP is a suitable marker for diagnosing 
SARS-CoV-2 in early infection. 

Enzyme-linked immunosorbent assay (Elisa) [16], chem-
iluminescence immunoassay (CLIA) [17], and electrochemical immu-
nosensor [18,19], are current methods to detect SARS-CoV-2 NP. These 
methods have high sensitivity and quantification advantages. However, 
high requirements for skilled operators and time-consuming steps limit 
their application for large-scale screening. Compared with these 
methods, lateral flow immunoassay (LFIA) owns its unique advantages 
of short reaction time, low-cost detection, portability, and 
user-friendliness which are suitable for screening, on-site, and rapidity 
to diagnose SARS-CoV-2 [20,21]. However, the traditional colloidal 
gold nanoparticles (AuNPs)-based LFIA has poor quantitative ability, 
high false negative rates and limited sensitive, due to the absence of 
readout system and the single signal of colorimetric [22–24]. With the 
development of nanomaterials, many novel materials, such as quantum 
dots (QDs) [25,26], up-conversion luminescence materials [27], fluo-
rescent microsphere [28], and magnetic nanobeads (MBs) [29] are used 
as labels in LFIA and greatly promote the development of LFIA and re-
alizes the quantitative detection of LFIA. Due to the strong photo-
stability, high quantum yield, and tunable fluorescent wavelength of 
QDs with a signal readout system for LFIA, the QDs-based LFIA could 
offer high sensitivity and quantitative analysis property [30]. However, 
the QDs-based LFIA also could only provide a single fluorescent signal, 
the detection result was easily influenced by the background color and 
complex environment [31,32]. Hence, it is attractive to introduce 
magnetic signal in the QDs-based LFIA, which can improve the quanti-
tative analysis performance and anti-interference capability of the 
immunoassay. Compared with other nanotags with optical signal, MBs 
with magnetic signal are not affected by the background color and op-
tical signals generated by field complex environmental samples [33]. By 
integrating the advantages of magnetic signal and fluorescent signal, the 
LFIA exhibits high sensitivity and excellent ability to conquer the 
interference from background color. In addition, dual-modal LFIA has a 
high flexibility of the overall detection due to the integration of two 
quantitative modals with different ranges of detection [34,35]. 

In this work, a novel dual-modal LFIA based on magnetic quantum 

dots with double QD shells (MagDQD) was fabricated for rapid and 
accurate detection of SARS-CoV-2 NP. The MagDQD was synthesized by 
electrostatic adsorption and EDC/NHS chemical. An electropositive PEI 
shell was introduced to combine a superparamagnetic Fe3O4 core with a 
large number of QDs. Based on the high loading density of QDs and 
superior magnetic content, MagDQD based LFIA realized dual signal 
readout modal with individual single nanolabel. With the combination 
of magnetic signal and fluorescent signal, the LFIA exhibited high 
quantitative analysis performance, and could meet various detection 
requirements. Thus, the dual-modal LFIA can be an effectively tool to 
rapid, sensitive, and accurate diagnose SARS-CoV-2. 

2. Experimental section 

2.1. Reagents and apparatus 

Ethylene glycol (EG), Poly (4-styrenesulfonic acid-co-maleic acid, SS: 
MA = 3:1, w = 20000) sodium salt (PSSMA), and polyethyleneimine 
(PEI, Mw = 25000, 50% aqueous solution) were obtained from Aladdin 
Reagent Co., Ltd. (Shanghai, China). Carboxyl functionalized CdSe/ZnS 
QDs (catalog no. CdSe-MPA-625) were purchased from Mesolight Inc 
(Suzhou, China). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide 
hydro (EDC), N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), 
casein, 2-(N-morpholino) ethanesulfonic (MES), Sodium chloride 
(NaCl), sodium dihydrogen phosphate (NaH2PO4), disodium hydrogen 
phosphate (Na2HPO4), ferric chloride hexahydrate (FeCl3⋅6H2O), Tween 
20, glycine, sucrose, sodium acetate trihydrate (NaAc⋅3H2O), trehalose, 
and maltose were obtained from Sigma-Aldrich (USA). SARS-CoV-2 NP, 
SARS-CoV-2 NP antibody 2D3 (Ab1), SARS-CoV-2 NP antibody 3F2 
(Ab2), goat anti mouse IgG, influenza A (Flu A, H1N1) NP, influenza B 
(Flu B) hemagglutinin, SARS-CoV-2 SP, SARS-CoV NP and middle east 
respiratory syndrome (MERS) NP were obtained from Shandong Langdu 
bio-sciences and technology Co., Ltd. (Shandong, China). Respiratory 
syncytial virus (RSV) glycoprotein was obtained from Beijing Yanbixin 
technology Co., Ltd. (Beijing, China). Lysis buffer was purchased from 
Beijing Biomed Gene technology Co., Ltd. Deionized water (18.2 MΩ cm, 
25 ◦C) was used in all the experimental processes. Nitrocellulose mem-
brane (NC membrane) (CN95, CN140), conjugated pad, sample pad, and 
absorbent pad were obtained from Millipore (St. Boston, MO, USA). 
Artificial saliva, polyvinyl pyrrolidone K-30 (PVP K-30), and bovine 
serum albumin (BSA) were obtained from Solarbio (China). 

Transmission electron microscope (TEM) images were characterized 
by using a Tecnai G2 F30 S-TWIN transmission electron microscope 
(FEI, Netherlands). The magnetic property was measured from Lake-
Shore7404 (USA). The fluorescent spectrum was obtained from FLS1000 
Photoluminescence Spectrometer (Edinburgh Instruments, English). 
The zeta potential was measured by Zetasizer Nano ZS90 (Malvern, 
English). The magnetic signal was obtained from immunomagnetic 
biosensor testing system which was developed by our laboratory. The 
fluorescent signal was obtained from fluorescent detector FD-100 
(Zuoan Technology Testing Co., China). BioDot XYZ3050 (BioDot 
Trading Shanghai Co., Ltd, China) dispense platform were used to spay 
antibody on NC membrane. BioDot CM4000 Strip cutting machine 
(BioDot Trading Shanghai Co. Ltd, China) was used to prepare the test 
trip. 

2.2. Preparation of MagDQD 

The synthesis route of the MagDQD composites was illustrated in 
Scheme 1A. At first, the 150 nm Fe3O4 nanoparticle were prepared by a 
modified solvothermal method [36]. In short, 1.25 g PSSMA, 1.35 g 
FeCl3⋅6H2O, and 7.22 g NaAc⋅3H2O were added in 50 mL EG and mixed 
fully under magnetic stirring. Then, the dark red solution was sealed in 
an autoclave and heated at 200 ◦C for 10 h. The black precipitates were 
magnetically collected and washed 3 times with deionized water and 
ethanol respectively, and then dried in vacuum at 60 ◦C for 12 h. The 
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particle size of Fe3O4 MBs was controlled by adjusting the amount of 
NaAc⋅3H2O added. Secondly, 100 mg Fe3O4 MBs was dispersed in 20 mL 
PEI aqueous solution (2.5 mg mL− 1) under sonication for 30 min. Then 
the Fe3O4@PEI MBs were washed 3 times with deionized water and 
ethanol respectively and magnetically collected. Subsequently, 20 mg 
Fe3O4@PEI MBs dispersed in 10 mL of water and add 140 μL CdSe/ZnS 
QDs (10 μM) and react for 1 h under sonication. In this process, 
numerous QDs would rapidly electrostatically self-assembled with 
Fe3O4@PEI MBs. The magnetic quantum dot (MagQD) was magnetically 
collected and redispersed in 10 mL MES solution (0.05 M borate buffer 
containing 0.5 M NaCl, pH 4.7). Then, 10 mg EDC, 10 mg NHS and 100 
μL CdSe/ZnS QDs (10 μM) were added in and reacted 40 min under 
sonication. A great number of QDs would combine with MagQD by 
EDC/NHS chemical. Finally, the MagDQD were washed 3 times with 
deionized water and redispersed in deionized water for further use. 

2.3. Preparation of immuno-MagDQD labels 

20 mg MagDQD was dispersed in 10 mL MES solution by ultrasound 
for 15 min. Then 1 mg EDC and 1 mg NHS were added in the solution to 
react at room temperature for 0.5 h with sonication, followed by 
washing 3 times with phosphate-buffered saline (PBS, 0.01 M, PH =
7.2–7.4). Next, MagDQD was dispersed in 1 mL PBS and 500 μg Ab1 was 
added in to react at 4 ◦C for 12 h with stirring. Then, the MagDQD was 
magnetically collected and blocked with 1 mL PBS (containing 1% BSA 
(w/v)) for 4 h with stirring. Finally, the prepared immuno-MagDQD 
(IMagDQD) was washed with PBST and dispersed in 40 mL release so-
lution (0.01 M PBS containing 10% sucrose (w/v), 5% maltose (w/v), 
and 5% D-Trehalose anhydrous (w/v)) for further use. 

2.4. Fabrication of the dual-modal LFIA based on MagDQD 

The dual-modal LFIA based on MagDQD was consisted of sample 
pad, conjugated pad, middle pad, NC membrane and absorbent pad five 
parts. The sample pads were soaked in PBS (containing 4% Triton-100, 
0.1% tween-20, and 0.1% PVP-30K (w/v)) for 1 h and then dried at 
37 ◦C for 6 h. The conjugated pads were soaked in PBS (containing 0.1% 

tween-20, 1% BSA (w/v), and 5% sucrose (w/v)) for 1h and then dried at 
37 ◦C for 6 h. Then, dropped 750 μL (0.5 mg mL− 1) MagDQD solution 
(dispersed in release solution) onto the conjugated pad (1 cm *15 cm), 
and freezing dried for further use. The middle pads were soaked in 
blocking buffer (0.01 M PBS containing 2.5% sucrose (w/v), 10 mg 
mL− 1 casein, and 1 M NaCl) for 1 h and then dried at 37 ◦C for 6 h. The 
test (T) line and control (C) line were sprayed by Ab2 (1.25 mg mL− 1) 
and goat anti mouse IgG (2 mg mL− 1) in PBS onto the NC membrane by 
BioDot XYZ3050 dispense platform at the amount of 1 mL cm− 1, 
respectively, and then dried at room temperature for 1 h. Finally, the 
plastic plate assembled with the sample pad, conjugated pad, middle 
pad, NC membrane, and absorbent pad were cut into 4 mm wide lateral 
strips by BioDot CM4000 Strip cutting machine for future use. 

2.5. Detection of SARS-CoV-2 NP 

A series of SARS-CoV-2 NP solutions with concentrations ranging 
from 0.05 ng mL− 1 to 1000 ng mL− 1 were prepared by using PBS. Then, 
100 μL prepared solution was added onto the sample pad of the dual- 
modal LFIA. In addition, PBS was used as the blank sample. After 10 
min, the magnetic signal was measured by the immunomagnetic 
biosensor and fluorescent signal was measured by the fluorescent de-
tector FD-100. 

2.6. Detection of simulated SARS-CoV-2 NP samples 

Saliva samples spiked with SARS-CoV-2 NP were mixed 1:4 with lysis 
buffer to prepare SARS-CoV-2 NP solutions of known concentration. The 
SARS-CoV-2 NP solution (10 μL) was added in PBS (90 μL) and mixed for 
15 min by stirring. After thoroughly mixed, the mixture was added onto 
the sample pad of the strips. After 10 min, the results could be quanti-
tative analyzed by measuring magnetic signal and fluorescent signal. 

Scheme. 1. (A) Schematic illustration for the synthetic route and structure of antibody modified MagDQD label. (B) mechanism of dual-modal LFIA for SARS-CoV-2 
NP detection. 
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3. Results and discussion 

3.1. Characterization of MagDQD labels 

In this work, a novel multifunctional nanocomposite with a 150 nm 
Fe3O4 core and numerous small QDs was synthesized, which had supe-
rior magnetic and fluorescent property. Scheme 1A illustrates the syn-
thesis route of MagDQD, which is a modified layer-by-layer assembly 
strategy that involves the electrostatic adsorption and EDC/NHS 
chemistry. The Fe3O4 core were fabricated by the modified solvothermal 
method. The TEM image (Fig. 1A) shows that the Fe3O4 core with a 
homogeneous size of 150 nm were well-dispersed in the solution. Fig. 1B 
displays the TEM image of Fe3O4@PEI MBs, which indicates Fe3O4@PEI 
MBs have good dispersion and narrow distribution. Owing to the strong 
positive electricity of PEI, a great number of QDs were coated on the 
Fe3O4@PEI rapidly and firmly. Fig. 1C shows the structure of MagQD. 
After further reaction through EDC/NHS chemistry, massive QDs were 
coated on the surface of MagQD via the binding between the amino 
group of MagQD and the carboxyl group of QDs. Fig. 1D clearly shows 
that a great number of QDs were stably combined with MagQD to form 
the second QD shell. Fig. 1E shows the zeta potential results which can 
further demonstrate the structure of MagDQD was successfully pre-
pared. After the PEI coated on Fe3O4, the zeta potential of Fe3O4@PEI 
increased from − 37.8 mV to 40.8 mV. The zeta potential of MagQD 
decreased to 20.00 mV due to the absorption of negatively charged QDs 
(− 7.93 mV). With the second QD shell combined with MagQD, the zeta 
potential of MagDQD decreased to 13.10 mV. The elemental mapping 
images (Fig. 1F) displays the elemental distribution of the MagDQD. 
Dense the elemental of Cd (blue), Se (purple), Zn (red), and S (orange) 
surrounded the Fe (yellow) and O (green) core. 

3.2. Performance of MagDQD labels 

Next, the magnetic property, fluorescent property, and stability of 
MagDQD were investigated. As shown in Fig. 2A, the saturation 
magnetization (MS) values of Fe3O4, Fe3O4@PEI, MagQD, and MagDQD 
were 62.51, 61.24, 54.57, and 47.86 emu g− 1, respectively. The MS 
values of the materials were decreased gradually due to the proportion 
of the Fe3O4 core was decreased gradually. But the MagDQD still had a 
good magnetization which can provide the magnetic signal for the 
detection of SARS-CoV-2 NP. Furthermore, the fluorescent spectra of 
Fe3O4, Fe3O4@PEI, MagQD, and MagDQD are shown in Fig. 2B. MagQD 
and MagDQD both exhibited excellent fluorescent property which had a 

narrow emission peak at 622 nm under a single UV light at 360 nm. And 
the fluorescent intensity of MagDQD was 1.7 times higher than MagQD 
due to the increasement of QDs content. The stability of MagDQD was 
tested in Fig. 2C. After stored at PBS for days, the fluorescent intensity of 
MagDQD remained stable, which proved that the MagDQD had a su-
perior stability to be a label for dual-modal LFIA. Furthermore, the size 
of Fe3O4 core has a great influence on the property (size, fluorescent 
intensity, and magnetic intensity) of MagDQD. Three kinds of core with 
size of 100 nm, 150 nm, and 200 nm were used to synthesize MagDQD. 
The TEM of these MagDQD were shown in Figs. S1A–C. Fig. S1D shows 
that the MagDQD with bigger size of Fe3O4 core exhibited stronger 
magnetic value, which can output stronger magnetic signal. However, 
the MagDQD with 200 nm Fe3O4 core was limited by the weak fluo-
rescent intensity, which would result weak fluorescent signal. Hence, 
the MagDQD with 150 nm Fe3O4 core was more suitable to build a dual- 
modal LFIA for SARS-CoV-2 NP detection. 

In this work, the fluorescent intensity and zeta potential has detected 
with different amounts of QDs for second QDs layer (Fig. S2A). The 
fluorescent intensity of MagDQD was increased with the increasing of 
the QDs amounts. However, the zeta potential of MagDQD was 
decreased with the increasing of the QDs amounts, which was unfa-
vorable to the stability of MagDQD. Hence, the MagDQD with 100 μL to 
form the second QDs layer was be chosen. 

3.3. Principle of the dual-modal LFIA 

The principle of the dual-modal LFIA is illustrated in Scheme 1B. The 
LFIA was built based on the formation of dual antibody immuno- 
sandwich format. The test sample was dropped onto the sample pad 
and flowed with the strip under the capillary action. The IMagDQD la-
bels on conjugated pad were rapidly and specifically combined with 
SARS-CoV-2 NP to form the immunocomplexes. The immunocomplexes 
were captured by Ab2 on T line. Subsequently, the free IMagDQD labels, 
which are not combined with SARS-CoV-2 NP, were captured by the 
goat anti mouse IgG on C line. After adding the samples for 10 min, the 
magnetic signal was measured by the immunomagnetic biosensor 
testing system, and the fluorescent signal was measured by the fluo-
rescent detector FD-100. The concentration of SARS-CoV-2 NP could be 
quantitative analyzed by the ratio of the magnetic signal on T line to the 
magnetic signal on C line (Magnetic T/C) and the ratio of the fluorescent 
signal on T line to the fluorescent signal on C line (Fluorescent T/C). 

Fig. 1. Structural characterization of the synthesized MagDQD. TEM images of (A) Fe3O4 MBs, (B) Fe3O4@PEI MBs, (C) MagQD and (D) MagDQD. (E) The zeta 
potential of (a) QDs, (b) Fe3O4, (c) Fe3O4@PEI, (d) MagQD and (e) MagDQD. Error bar = SD, n = 3. (F) Elemental mapping images of MagDQD. 
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3.4. Optimization of dual-modal LFIA 

In order to improve the capability of the dual-modal LFIA strips, the 
MagDQD, synthesized by 3 kinds of Fe3O4 with different size, were used 
in the dual-modal LFIA and were well-optimized. As shown in Fig. 3A, 
the dual-modal LFIA with a Fe3O4 core size of 150 nm had the highest 
ratio of signal to noise (SNR, the value of SNR is calculated by the ratio 
of the positive signal to the negative signal [37]) of magnetic signal 
(magnetic SNR), and the SNR of fluorescent signal (fluorescent SNR) was 
just slightly inferior to the LFIA prepared by the MagDQD with a Fe3O4 
core size of 100 nm. Thus, the dual-modal LFIA were fabricated based on 
the MagDQD with a 150 nm Fe3O4 core. As shown in Fig. S2A, the NC 
membrane types were optimized, and the results indicated the NC 
membrane type of CN95 is better than CN140. False positive has a great 
impact on the accuracy and sensitivity of the LFIA. To reduce the 

non-specific binding between the MagDQD labels with the antibody on T 
line to eliminate the false positive results, the casein was introduced into 
the blocking buffer. As show in Figs. S2C and D, under the blocking 
effect of casein, the magnetic T/C and the fluorescent T/C of negative 
sample were decreased significantly. This might be because the 
non-specific interaction between the IMagDQD with the antibody on NC 
membrane could be effectively blocked by macromolecular protein 
[38]. Fig. 3B reveals that the dual-modal LFIA blocked by 1 mg mL− 1 

casein had the highest magnetic SNR and fluorescent SNR. After opti-
mization, the photograph and fluorescent image were shown in Fig. S2D, 
the T line of the blank sample was completely invisible by the naked eye 
in the natural light and the UV light, and the T line of the positive sample 
could be clearly observed. 

Fig. 2. (A) Magnetic property and (B) Fluorescence spectra of the Fe3O4, Fe3O4@PEI, MagQD and MagDQD. (C) Fluorescent intensities of MagDQD dispersed in PBS 
over storage time. Error bar = SD, n = 3. 

Fig. 3. Effects of experimental conditions on the magnetic SNR and fluorescent SNR: (A) Fe3O4 core size and (B) Concentration of casein in the blocking buffer. 
Positive sample was SARS-CoV-2 NP (50 ng mL− 1) dispersed in PBS, and the negative sample was PBS. Error bar = SD, n = 3. 
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3.5. Properties of the dual-modal LFIA for SARS-CoV-2 NP 

After the optimization of the detection condition, the analytical 
performance of the dual-modal LFIA was examined with different con-
centration of the SARS-CoV-2 NP from 0.05 ng mL− 1 to 1000 ng mL− 1. 
Fig. 4A shows the photograph of the dual-modal LFIA strips used for the 
detection of different concentration of the NP. With the concentration of 
the NP decreased, the brown color on T line became lighter, and could 
just be visualized the T line with a concentration of 1 ng mL− 1. The 
quantitative analysis of SARS-CoV-2 NP was performed by measuring 
the magnetic T/C. The calibration curves of the magnetic signal were 
constructed by the sigmoidal function and were displayed in Fig. 4B. The 
limit of detection (LOD) of the magnetic signal was determined to be 
0.235 ng mL− 1, which was estimated by the IUPAC standard method 
(LOD, expressed as the concentration, cL is derived from the smallest 
measure, yL. The value of yL is given by the equation: yL = yblank 
+3SDblank, where yblank is the mean of magnetic T/C of the blank group; 
SDblank is the standard deviation) [39]. As shown in Fig. 4C, the detec-
tion results of the LFIA could be observed at the concentration of NP as 
low as 0.05 ng mL− 1 by naked eyes under UV light. Fig. 4D showed that 
the LFIA also exhibited a wide detection range at the concentration 
0.05–500 ng mL− 1 by measuring fluorescent T/C. And the LOD of 
fluorescent signal was as low as 0.012 ng mL− 1. Notably, both fluores-
cent signal and magnetic signal were more sensitive than colorimetric 
signal. There are two different quantitative analysis modals with 
different range of detection by measuring magnetic signal and fluores-
cent signal, respectively. Combining magnetic signal and fluorescent 
signal, the dual-modal LFIA could provide a lower LOD and wider 
detection range for detecting SARS-CoV-2 NP than single signal. 
Compared with other assays for SARS-CoV-2 NP detection listed in 
Table S1, the dual-modal LFIA owned dual-signal readout capacity, 
sensitive property, and a wide detection range. 

3.6. Specificity, reproducibility and stability 

Furthermore, the specificity of the dual-modal LFIA were evaluated 
by testing several viruses (Flu A (H1N1), Flu B, MERS, SARS-CoV and 
RSV) and the spike protein of SARS-CoV-2 with a high concentration 
(500 ng mL− 1). As shown in Fig. 5A and B, the phenomenon of these 
viruses was similar to blank, and both magnetic signal and fluorescent 
signal were smaller than yblank+3SDblank. The results demonstrated that 
the dual-modal LFIA had a great specificity for detecting SARS-CoV-2 
NP. In addition, the repeatability of the dual-modal LFIA was assessed 
by testing 10 independent samples. The results were exhibited in Fig. 5C. 
The relative standard deviation (RSD) of magnetic signal and fluores-
cence signal were 3.49% and 2.97% respectively, both lower than 5%, 
which showed that the method had a good reproducibility. The long- 
term stability of dual-modal LFIA strips was also accessed, and the re-
sults were displayed in Fig. 5D. The magnetic signal and the fluorescent 
signal were remained unchanged for 30 days after storing at 37 ◦C. 

3.7. Simulated SARS-CoV-2 NP samples analysis 

According to the previous experiments, these results indicated the 
excellent test performance, strong specificity, high repeatability, and 
good stability, which validated the feasibility of the dual-modal LFIA in 
practical application for detecting SARS-CoV-2 NP. To evaluate the 
property in actual sample detection of the dual-modal LFIA strips, re-
covery tests were conducted in simulated saliva samples. As exhibited in 
Table S2, the average recoveries of magnetic signal and fluorescent 
signal were 91.36%–103.60% and 94.39%–104.38% respectively, with 
the RSD of 1.23%–4.39%. The average recoveries and the low RSD 
proved that the dual-modal LFIA has considerable potential and pros-
pect for the practical detection of SARS-CoV-2 NP. 

Fig. 4. Analytical performance of the dual-modal LFIA. Photograph (A) and fluorescent images (C) of the LFIA strips with different concentrations of SARS-CoV-2 NP 
(0.05–1000 ng mL− 1) and negative sample. Corresponding calibration curves for SARS-CoV-2 NP by measuring magnetic signal (B) and fluorescent signal (D). Error 
bar = SD, n = 5. Blank sample was PBS. 
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4. Conclusion 

In summary, a dual-modal LFIA was developed for rapid and accu-
rate determination of SARS-CoV-2 NP based on MagDQD label. The 
MagDQD, consisted of a 150 nm Fe3O4 core, an electropositive PEI shell 
and numerous QDs, owned excellent magnetic and fluorescent property. 
Compared with colorimetric signal, both of magnetic signal and fluo-
rescent signal exhibited higher sensitivity with LODs at 0.235 ng mL− 1 

and 0.012 ng mL− 1, respectively. Taking advantages of the magnetic/ 
fluorescent dual-signal, the novel LFIA provided accurate and sensitive 
dual-modal quantitative analysis for determination of SARS-CoV-2 NP 
within 10 min. Besides, the LFIA not only had excellent specificity, 
reproducibility, stability, but also exhibited satisfactory recoveries in 
saliva samples. Given the remarkable analysis performances of the dual- 
model immunoassay, the method has a great potential for clinical 
diagnosis of SARS-CoV-2. 
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