
GigaScience, 8, 2019, 1–13

doi: 10.1093/gigascience/giz100
Technical Note

TE CHNICAL NO TE

rnaSPAdes: a de novo transcriptome assembler and its
application to RNA-Seq data
Elena Bushmanova , Dmitry Antipov, Alla Lapidus
and Andrey D. Prjibelski *

Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University,
St. Petersburg, 199004, 6 linia V.O. 11d, Russia
∗Correspondence address. Andrey D. Prjibelski, Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State
University, St. Petersburg, 199004, 6 linia V.O. 11d, Russia. E-mail: andrewprzh@gmail.com http://orcid.org/0000-0003-2816-4608

Abstract

Background: The possibility of generating large RNA-sequencing datasets has led to development of various
reference-based and de novo transcriptome assemblers with their own strengths and limitations. While reference-based
tools are widely used in various transcriptomic studies, their application is limited to the organisms with finished and
well-annotated genomes. De novo transcriptome reconstruction from short reads remains an open challenging problem,
which is complicated by the varying expression levels across different genes, alternative splicing, and paralogous genes.
Results: Herein we describe the novel transcriptome assembler rnaSPAdes, which has been developed on top of the SPAdes
genome assembler and explores computational parallels between assembly of transcriptomes and single-cell genomes. We
also present quality assessment reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools
using several evaluation approaches on various RNA-sequencing datasets, and briefly highlight strong and weak points of
different assemblers. Conclusions: Based on the performed comparison between different assembly methods, we infer that
it is not possible to detect the absolute leader according to all quality metrics and all used datasets. However, rnaSPAdes
typically outperforms other assemblers by such important property as the number of assembled genes and isoforms, and at
the same time has higher accuracy statistics on average comparing to the closest competitors.
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Background

While reference-based methods for RNA-sequencing (RNA-Seq)
analysis [1–6] are widely used in transcriptome studies, they are
subjected to the following constraints: (i) they are not applicable
when the genome is unknown, (ii) their performance deterio-
rates when the genome sequence or annotation is incomplete,
and (iii) they may miss unusual transcripts such as fusion genes
or genes with short unannotated exons. To address these con-
straints, de novo transcriptome assemblers [7–11] have emerged
as a viable complement to the reference-based tools. Although
de novo assemblers typically generate fewer complete transcripts
than the reference-based methods for organisms with accurate

reference sequences [12], they may provide additional insights
on aberrant transcripts.

While transcriptome assembly may seem to be a simpler
problem than genome assembly, RNA-Seq assemblers have to
address the complications arising from highly uneven read cov-
erage depth caused by variations in gene expression levels. How-
ever, this is the same challenge that we have addressed while
developing the SPAdes assembler [13,14], which originally aimed
at single-cell sequencing. Similarly to RNA-Seq, the multiple dis-
placement amplification (MDA) technique [15], used for genome
amplification of single bacterial cells, results in a highly un-
even read coverage. In view of similarities between RNA-Seq
and single-cell genome assemblies, we decided to test SPAdes
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Table 1: Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, SOAPdenovo-Trans, SPAdes, Trans-ABySS, and Trinity on mouse RNA-Seq
dataset (accession No. SRX648736)

Parameter BinPacker Bridger IDBA Bloom SOAP SPAdes ABySS Trinity

Transcripts 27,234 42,029 38,313 46,440 31,878 42,949 36,488 47,746
Misassemblies 947 923 387 732 37∗ 497 194 459
Duplication ratio 1.12 1.09 1.00∗ 1.33 1.00∗ 1.00∗ 1.09 1.15
Database coverage, % 14.4 16.3 16.9 13.8 15.1 17.7 16.2 18.2∗
50%-assembled genes 6,005 6,090 6,558 4,859 6,241 6,890∗ 6,321 6,633
95%-assembled genes 1,917 1,909 1,602 1,256 1,653 2,450∗ 1,798 2,272
50%-assembled isoforms 6,360 6,451 6,790 5,591 6,376 7,053 6,931 7,386∗
95%-assembled isoforms 1,992 1,982 1,602 1,346 1,655 2,450∗ 1,850 2,406

The annotated transcriptome of Mus musculus GRCm38.75 consists of 38,924 genes and 94,545 isoforms. All contigs shorter than 200 bp were filtered out prior to the
analysis. The best values for each metric are indicated with asterisk.

without any modifications on transcriptomic data. Even though
SPAdes is a genome assembler and was not optimized for RNA-
Seq data, in some cases it generated decent assemblies of quality
comparable to the state-of-the-art transcriptome assemblers.

To perform the benchmarking we have used the rnaQUAST
tool [16], which was designed for quality evaluation of de novo
assemblies with the support of a reference genome and its gene
database. For the comparison, we selected a few representa-
tive metrics such as (i) total number of assembled transcripts
(contigs), (ii) reference gene database coverage, (iii) number of
50%/95%-assembled genes/isoforms, (iv) number of misassem-
blies, and (v) duplication ratio. A detailed description of these
metrics can be found in the Supplementary material (section S1).

Table 1 compares the performance of different assembly
tools on a publicly available mouse RNA-Seq dataset. All tran-
scriptome assemblers were launched with default parameters;
SPAdes was run in single-cell mode owing to the uneven cov-
erage depth of RNA-Seq data. Table 1 shows that SPAdes gen-
erated more 50%/95%-assembled genes than any other tool and
yielded comparable gene database coverage. At the same time,
SPAdes produced a rather high number of misassembled tran-
scripts, which can be explained by the fact that algorithms for
genome assembly tend to assemble longer contigs and may in-
correctly join sequences corresponding to different genes when
working with RNA-Seq data. In addition, SPAdes generated the
same number of 95%-assembled genes and isoforms, which em-
phasizes the lack of an isoform detection step.

Benchmarking on other datasets also showed that SPAdes
successfully deals with non-uniform coverage depth and pro-
duces a relatively high number of 50%/95%-assembled genes in
most cases. However, it also confirmed the problem of a large
amount of erroneous transcripts as well as relatively few fully
reconstructed alternative isoforms in SPAdes assemblies. On
the basis of the obtained statistics we decided to adapt cur-
rent SPAdes algorithms for RNA-Seq data with the goal of im-
proving the quality of generated assemblies and develop a new
transcriptomic assembler called rnaSPAdes. In this article we
describe major pipeline modifications as well as several algo-
rithmic improvements introduced in rnaSPAdes that allow it
to avoid misassemblies and obtain sequences of alternatively
spliced isoforms.

To perform sufficient benchmarking of rnaSPAdes and the
other aforementioned transcriptome assemblers, we assembled
several simulated and publicly available real RNA-Seq datasets
from the organisms with various splicing complexity. For the
generated assemblies we present quality assessment reports
obtained with different de novo and reference-based evalua-
tion approaches. In addition, based on these results we discuss

strengths and disadvantages of various assembly tools and pro-
vide insights on their performance.

Data Description

To compare the performance of rnaSPAdes with that of the state-
of-the-art transcriptome assemblers we selected 2 simulated
and 6 real publicly available RNA-Seq datasets (Table 2) with dif-
ferent (i) read length, (ii) library size, (iii) strand specificity, and
(iv) organism splicing complexity. Simulated data were gener-
ated using the RSEM simulator [1] based on the real human and
mouse datasets used in this study (the exact commands are pro-
vided in Supplementary material section S3).

All downloaded public datasets were analyzed using
FastQC [17]. The reports showed that no dataset contains
adaptors or overrepresented sequences. The Human large
dataset was quality-trimmed using Trimmomatic [18] owing to
a decrease in quality towards the reads’ ends. All other datasets
were assembled without additional preprocessing. Although
the 8 datasets used in this article may not represent all kinds of
transcriptomic data, they are sufficient for comparing different
assembly tools and detecting their strengths and disadvantages.

Analyses

Selected datasets were assembled with BinPacker [19], Bridger
[20], IDBA-tran [10], RNA-Bloom [21], SOAPdenovo-Trans [11],
Trans-ABySS [7], Trinity [8], and rnaSPAdes using default pa-
rameters, and SPAdes [13] in single-cell mode. While rnaSPAdes
automatically calculates k-mer sizes based on the read length
(see Methods for details), other assemblers have fixed default k-
values. Indeed, varying k-value may affect the assembly in both
positive and negative ways. However, because detecting the best
k-mer sizes for all third-party assemblers requires additional
large-scale analysis and is outside the scope of this work, it re-
mains unclear how to properly select k for other tools. Thus, we
decided to stick to default k-values, which were used in the orig-
inal manuscripts or suggested in the user manuals by their de-
velopers and therefore are likely to be used by users.

For a fair comparison the same minimal contig length cut-off
was used for all tools (200 bp). For assemblers that have no such
option, sequences shorter than 200 bp were filtered out man-
ually. To evaluate the resulting assemblies we used rnaQUAST
[16], Transrate [22], BUSCO [23], and DETONATE [24]. From each
quality report we selected a few representative metrics that
would allow us to perform a complete comparison of different
assemblers. To make the results reproducible, we also specify
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Table 2: RNA-Seq datasets selected for comparison of different assembly tools

Dataset name Organism Tissue

No. of read
pairs

(millions) Strand-specific
Read length

(bp)
Insert size

(bp) Accession No.

Human Homo sapiens Prostate cancer cells 30 No 150 344 SRR5133163
Human large H. sapiens Blood 125 No 100 176 SRR1957703,

SRR1957706
Mouse Mus musculus Pancreatic islets 11 No 101 173 SRX648736
Worm Caenorhabditis

elegans
NA 45 No 90 186 SRR1560107

Corn SS Zea mays Endosperm 35 RF 100 242 SRR1588569
Arabidopsis SS

Arabidopsis thaliana
NA 118 RF 130 245 SRR5344669,

SRR5344670
Human simulated H. sapiens NA 30 No 150 340 NA
Mouse simulated M. musculus NA 11 No 101 170 NA

All datasets contain paired-end Illumina reads. RF stands for reverse-forward strand-specific data, i.e. when the first read in pair has the opposite strand from the

gene strand. NA stands for not available.

Table 3: Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes, Trans-ABySS, and Trinity on
Human simulated RNA-Seq dataset

Parameter BinPacker Bridger IDBA Bloom rnaSPAdes SOAP SPAdes ABySS Trinity

Transcripts 76,736 52,151 58,466 65,968 37,730 35,096 42,264 67,511 62,831
Misassemblies 7,919 3,512 174 358 309 198 443 126∗ 1,554
Duplication ratio 2.19 1.38 1.01 1.93 1.26 1.08 1.00∗ 1.24 1.74
Database coverage, % 20.9 18.5 21.4 24.6∗ 23.2 19.4 20.5 23.1 24.4
50%-assembled genes 11,828 11,476 13,175 12,869 14,075∗ 12,610 13,569 12,740 13,289
95%-assembled genes 7,320 6,417 2,729 8,910 10,934∗ 7,685 8,526 7,225 9,049
50%-assembled isoforms 17,415 15,423 18,181 21,035∗ 19,531 15,638 16,437 19,250 20,965
95%-assembled isoforms 9,091 7,298 2,744 12,108 13,387∗ 8,151 8,638 7,662 12,301

The annotated transcriptome of H. sapiens GRCh37.p13 consists of 57,820 genes and 196,520 isoforms. All contigs shorter than 200 bp were filtered out prior to the
analysis. The best values for each metric are indicated with asterisk.

the software versions and command lines used in this study in
the Supplementary material (sections S2 and S3).

In addition to statistics provided by different tools, we de-
cided to compute the fraction of 95%-assembled genes relative
to the number of genes detected by a reference-based method.
For this purpose we used genes assembled by kallisto [25] that
have nucleotide coverage >5. Coverage values were computed
using estimated fragment counts. While it remains unclear how
to select a proper coverage threshold for this experiment, the
number of genes/isoforms with coverage >5 seemed to be the
best upper bound estimate for most of the datasets (see Sup-
plementary Table S15 for details). Using the fraction of assem-
bled genes instead of raw numbers allows the data to be con-
veniently visualized in the same plot, average values to be com-
puted across all datasets, and, at the same time, the relative per-
formance of de novo assemblers to the reference-based tool to be
estimated.

Evaluating assemblers on simulated data

To simulate an RNA-Seq dataset we used RSEM simulator [1],
which allows reads to be generated on the basis of the real RNA-
Seq data. For this purpose we selected the Human and Mouse
datasets (Table 2). Table 3 presents a short quality assessment
report for Human simulated data. Complete evaluation reports
for both simulated datasets are presented in the Supplementary
material (Tables S1 and S2).

Table 3 shows that rnaSPAdes produced the most 95%-
assembled genes and isoforms, with Trinity and RNA-Bloom be-
ing the closest competitors. Trinity and RNA-Bloom also had the
highest gene database coverage, while rnaSPAdes and Trans-
ABySS are just slightly behind (1.5% difference at most). How-
ever, both Trinity and RNA-Bloom seemed to produce a lot of
excessive sequences, resulting in high duplication ratios (1.74
and 1.93, respectively), and Trinity also seemed to be somewhat
inaccurate in terms of misassembled sequences (5 times more
than rnaSPAdes). Among the tools with a high number of as-
sembled genes and isoforms, Trans-ABySS and SOAPdenovo-
Trans are the most accurate (126 and 198 misassemblies, re-
spectively); rnaSPAdes and RNA-Bloom follow with 309 and 358
misassembled contigs, respectively. Although IDBA also gener-
ated an accurate assembly (174 misassemblies), it seemed to be
fragmented (few 95%-assembled genes and isoforms). Although
both BinPacker and Bridger produced a comparable amount of
assembled genes and isoforms, they had the most misassem-
blies (>3,500). BinPacker also had the highest duplication ratio
(2.19).

Because the RSEM simulator provides read count for each
particular gene, we also computed the number of assembled
genes reported by rnaQUAST depending on their read cover-
age (Fig. 1). The figure demonstrates that rnaSPAdes, SPAdes,
and Trinity outperformed other tools on low-abundant tran-
scripts, with rnaSPAdes reaching the highest fraction of total
95%-assembled genes (52.2%).
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Figure 1: Cumulative plot showing how fraction of 95%-assembled genes in each
assembly of human simulated dataset depends on the gene coverage by reads
in TPM (transcripts per kilobase million) reported by RSEM simulator.

Evaluating assemblers on real RNA-Seq data

For comparison on real RNA-Seq reads we selected 4 non-
stranded and 2 strand-specific datasets (Table 2). The summary
for human assemblies is presented in Table 4, while complete
reports for all data are presented in the Supplementary mate-
rial (Tables S3–S8, respectively). In addition, we added BUSCO
reports (Supplementary Fig. S2) and presented various metrics
as bar plots (Fig. 2, Supplementary Figs S3–S5).

Table 4 indicates that while all assemblies had >10,000
genes that were 50%-assembled, the amount of 95%-assembled
genes significantly differs. RnaSPAdes, RNA-Bloom, and Trin-
ity were the best according to 95%-assembled genes and iso-
forms. Among these 3 assemblers, rnaSPAdes dominates with
16% and 31% more 95%-assembled genes than RNA-Bloom and
Trinity, respectively. Although both RNA-Bloom and Trinity had
the highest database coverage, they also have a very high du-
plication ratio (≥2). In addition, Trinity (along with BinPacker
and Bridger) generated a significant amount of misassemblies
(>5,000). SOAPdenovo-Trans and Trans-ABySS produced accu-
rate assemblies according to these parameters but generated
2,043 and 2,250 fewer 95%-assembled genes than rnaSPAdes.
IDBA-trans also had a rather small number of misassembled

contigs (1,015) but output a very fragmented assembly with the
fewest 95%-assembled genes/isoforms.

Fig. 2 demonstrates the fraction of 95%-assembled genes in
all generated assemblies and mean values for each assembler
across all datasets. RnaSPAdes, Trinity, and RNA-Bloom showed
stable performance across different datasets and had the high-
est fraction of 95%-assembled genes on average (0.500, 0.438,
and 0.406, respectively). While genomic SPAdes also had a high
average value (0.397), it was mostly achieved by decent perfor-
mance on simulated data. Fig. 2 shows that the fraction of 95%-
assembled genes for simulated datasets was typically higher
than the respective values for real data, most likely due to the
absence of sequencing artifacts. Additionally, de novo assem-
blies of complex organisms, such as H. sapiens and M. musculus,
tended to have lower fractions of assembled genes in compari-
son to C. elegans and A. thaliana. For example, the human large
dataset had smaller values than the ones for worm assemblies,
although the latter had almost 3× lower coverage.

Computational performance

To compare selected assemblers in terms of computational per-
formance, we measured their running time and RAM consump-
tion on the 2 largest datasets using system utilities rather than
log files. As Table 5 indicates, SOAPdenovo-Trans was ≥3 times
faster than any other assembler and had one of the lowest mem-
ory requirements (<30 GB for both datasets). Trans-ABySS and
rnaSPAdes had comparable performance, with rnaSPAdes being
slightly faster and more greedy regarding RAM consumption.
Other assemblers typically took longer (≥2 times longer than
rnaSPAdes in most cases) and required more memory. Among all
tools, BinPacker, Bridger, and Trinity had the highest peak RAM
usage, e.g., >100 GB with the Arabidopsis dataset.

Discussion

Quality reports provided in this article (Tables 3 and 4) and
the Supplementary material (Tables S1–S8, Figs S1–S5) contain
a large variety of metrics that reflect completely different as-
sembly properties, the importance of which may vary depend-
ing on the further analysis and the entire pipeline being used.
We believe that one of the key features of the de novo tran-
scriptome assembler is the ability to correctly capture the en-
tire transcript into a single contig (e.g., reflected by the number
of 95%-assembled genes/isoforms, contig recall). On the other
hand, such metrics as gene database coverage, number of cov-
ered reference proteins, and nucleotide recall do not reflect this
significant property because they account all contigs mapped to

Table 4: Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes, Trans-ABySS, and Trinity on real
human dataset

Parameter BinPacker Bridger IDBA Bloom rnaSPAdes SOAP SPAdes ABySS Trinity

Transcripts 144,598 191,459 173,330 239,912 167,710 140,769 223,917 190,798 234,074
Misassemblies 9,898 7,487 1,015 1,643 2,111 450∗ 3,190 916 5,183
Duplication ratio 2.03 1.61 1.02 2.75 1.36 1.12 1.01∗ 1.25 2.00
Database coverage, % 17.2 16.6 19.6 24.8∗ 21.3 18.5 18.4 22.5 24.2
50%-assembled genes 10,763 10,534 11,712 12,779 13,377∗ 12,154 12,395 12,621 12,902
95%-assembled genes 4,457 4,226 1,334 6,121 7,094∗ 5,051 4,427 4,844 5,398
50%-assembled isoforms 15,133 14,032 16,260 22,547∗ 18,619 15,302 15,533 19,817 21,876
95%-assembled isoforms 5,080 4,680 1,338 7,976 8,026∗ 5,259 4,455 5,046 6,753

The annotated transcriptome of H. sapiens GRCh38.82 consists of 57,820 genes and 196,520 isoforms. All contigs shorter than 200 bp were filtered out prior to the
analysis. The best values for each metric are indicated with asterisk.
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Figure 2: The fraction of 95%-assembled genes presented as bar plots for all generated assemblies. The values are computed relative to the number of genes reported
by kallisto [25] that have per-base coverage depth >5. The last columns show average values over all datasets. Note that Bridger failed to assemble the corn dataset.

Table 5: Running time and peak RAM usage for BinPacker, Bridger,
IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes,
Trans-ABySS, and Trinity on the Human large and Arabidopsis SS
datasets (125 and 118 million read-pairs, respectively)

Assembler
Human large Arabidopsis SS

Time RAM (GB) Time RAM (GB)

BinPacker 46 h 59 m 91 88 h 25 m 131
Bridger 65 h 54 m 88 49 h 58 m 126
IDBA 9 h 35 m 35 26 h 24 m 42
Bloom 37 h 52 m 38 34 h 42 m 40
rnaSPAdes 5 h 4 m 32 7 h 24 m 40
SOAP 1 h 21 m 28 1 h 58 m 20
SPAdes 11 h 39 m 39 14 h 58 m 52
ABySS 6 h 49 m 25 8 h 9 m 35
Trinity 18 h 8 m 50 8 h 30 m 123

All assemblers were launched in 16 threads on a server with 128 GB of RAM
and 56 Intel Xeon 2.0 GHz cores. BinPacker, which has no options for setting the

number of threads, was launched with default parameters.

a specific gene or protein and do not include assembly contigu-
ity. For example, high database coverage or nucleotide recall can
be achieved by a very fragmented assembly (or even raw reads),
which, indeed, does not suit well for further reference-free anal-
ysis.

Below we attempt to summarize these results and highlight
strong and weak points of different assemblers.

Comparison between SPAdes and rnaSPAdes

In comparison with the original version of SPAdes, rnaSPAdes
dominates by the majority of metrics. More precisely, it has sig-
nificantly better assembly completeness metrics: 26% higher av-
erage fraction of 95%-assembled genes, 18% larger database cov-
erage, 30% higher contig recall reported by REF-EVAL, and 18%
more detected BUSCOs. It also shows 18% higher contig preci-
sion on average, better reference coverage metrics reported by
Transrate (50%/95%-covered reference proteins, reference cover-
age) and typically fewer misassemblies (except for Corn SS and
Human large datasets). Due to an aggressive overlap removal
stage, SPAdes always has a smaller mean duplication ratio (2%
vs 32% for rnaSPAdes), fewer duplicated BUSCOs (1% vs 16% on
average), percentage of uncovered bases (2% vs 19%), and higher
nucleotide precision (0.66 vs 0.56).

The simulated Mouse dataset is the only one where the origi-
nal SPAdes generated more assembled genes and isoforms than
rnaSPAdes. Detailed investigation showed that the key reasons
are the low coverage of these data (11 million reads) and their ar-

tificial nature (rnaSPAdes assembles more genes on real mouse
data). By using small k = 21 during the first iteration SPAdes
manages to assemble extremely low-covered genes, where over-
laps between reads are short. Pitfalls of using small k-mer sizes
in transcriptome assembly are discussed in the Methods section.

Finally, due to the exclusion of the BayesHammer error cor-
rection module [26] and using only 2 k-mer sizes, the rnaSPAdes
pipeline seems to be about twice as fast and consumes less RAM
than usual SPAdes use.

Assembly completeness

In comparison with other assemblers, rnaSPAdes shows the
highest fraction of 95%-assembled genes and isoforms (0.50 and
0.32, respectively). Trinity (0.44 and 0.30) and RNA-Bloom (0.41
and 0.28) are ranked second and the third according to these
metrics (Supplementary Fig. S3). These numbers correlate with
the percentage of detected BUSCOs, for which rnaSPAdes also
has the best average value across all datasets (74%), followed by
Trinity (72%), Trans-ABySS (71%), and RNA-Bloom (68%).

The same assemblers typically form the top 4 according
to various coverage metrics, such as database coverage pro-
vided by rnaQUAST, reference coverage, number of 50%/95%-
covered reference proteins, and number of reference sequences
with CRBB (Conditional Reciprocal Best BLAST [27) hits re-
ported by Transrate (Supplementary Figs S3 and S5). For exam-
ple, according to mean gene database coverage computed by
rnaQUAST, Trinity has the highest value of 30.2%, with other as-
semblies having somewhat lower values: 29.6% for RNA-Bloom,
28.7% for rnaSPAdes, and 24.2% for Trans-ABySS. Exactly the
same ranking is defined by Transrate reference coverage: Trin-
ity (27.8%), RNA-Bloom (26.9%), rnaSPAdes (24.4%), and Trans-
ABySS (23.4%). Other assemblers typically show smaller values
for completeness-related metrics, generating fragmented as-
semblies, like IDBA-tran, or having lower database coverage, e.g.,
BinPacker.

Nucleotide and contig recall metrics reported by Detonate
generally support the aforementioned conclusions (Supplemen-
tary Fig. S4). Thus, Trinity and rnaSPAdes have the best aver-
age nucleotide recall values (0.86 and 0.84, respectively). The
maximal mean contig recall, however, is reported for RNA-
Bloom (0.097), followed by Trinity (0.089), Trans-ABySS (0.087),
and rnaSPAdes (0.079). To compute contig metrics Detonate
keeps only the most reliable alignments with mapped fraction
>99% (for both assembled and reference sequence). In contrast,
rnaQUAST assigns contigs to known genes/isoforms and then
counts those that have at least X% covered by a single assem-
bled contig. However, no cutoff is applied for mapped fraction of
the assembled sequences in rnaQUAST. This difference between
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algorithms might explain the absence of perfect correlation be-
tween contig recall and number of 95%-assembled isoforms.

Assembly correctness

According to the number of misassembled contigs, the most
accurate contigs are typically produced by SOAPdenovo-Trans,
Trans-ABySS, and IDBA-tran (see Supplementary Fig. S3d).
Among these 3, IDBA-tran, however, produces the most frag-
mented assemblies with the lowest average fraction of 95%-
assembled genes equal to 0.18. Supplementary Fig. S3d also sug-
gests that the highest numbers of misassemblies often belong to
BinPacker, Bridger, RNA-Bloom, and Trinity.

IDBA-tran, usual SPAdes, and SOAPdenovo-Trans tend to pro-
vide assemblies with the fewest duplicated sequences, which
is confirmed by rnaQUAST duplication ratio (average values are
1.02, 1.02, and 1.07, respectively), percentage of duplicated BUS-
COs (0.8%, 1.0%, and 4.7%), fraction of uncovered bases reported
by Transrate (0.018, 0.019, and 0.076), and Detonate’s nucleotide
precision (0.68, 0.66, and 0.66). The highest contig precision
equal to 0.133, however, belongs to rnaSPAdes, followed by 0.129
for SOAPdenovo-Trans. The most duplicated assemblies accord-
ing to these metrics are produced by RNA-Bloom, Trinity, and
BinPacker. In comparison with other assemblers, they have a
significantly higher mean duplication ratio (2.5, 1.77, and 1.71,
respectively) and fraction of duplicated BUSCOs (40.6%, 31.4%,
and 29.7%), as well as lowest average nucleotide precision (0.37,
0.46, and 0.46). As for rnaSPAdes, according to duplication met-
rics and misassemblies, it neither fails nor dominates, showing
a moderate average duplication ratio of 1.32 and fraction of du-
plicated BUSCOs equal to 16.7%.

Indeed, besides completeness-related metrics, such as num-
ber of assembled genes and isoforms, metrics discussed above
should also be considered during transcriptome quality evalu-
ation because erroneous and duplicated sequences may nega-
tively affect further transcriptome analysis, such as gene anno-
tation.

Read-based scores

According to the read-based scores reported by Transrate and
Detonate RSEM EVAL, which represent how well the assembly
corresponds to the initial reads, rnaSPAdes also shows good
results. Regarding the average Transrate contig score, conven-
tional SPAdes has the highest average score equal to 0.31, fol-
lowed by IDBA-trans and SOAPdenovo-Trans both having 0.17,
and rnaSPAdes with 0.16. As for the Detonate score, rnaSPAdes
has the best average (−3.45 · 109), with RNA-Bloom (−3.46 · 109)
and Trinity (−3.84 · 109) slightly behind. RNA-Bloom and Trin-
ity, however, have the lowest Transrate average scores among
all tools (0.026 and 0.084, respectively). Vice versa, SPAdes, IDBA,
and SOAPdenovo-Trans, which are the top 3 assemblers ac-
cording to mean Transrate score, have the lowest 3 RSEM EVAL
scores. Based on the complete quality reports presented in the
Supplementary material, it appears that Transrate score mostly
correlates with correctness-related metrics and is negatively
affected by the presence of duplicated sequences, which ex-
plains the highest average score for standard SPAdes. In con-
trast, RSEM-EVAL score seems to correlate with assembly com-
pleteness metrics.

Conclusion

Although every transcriptome assembler presented in this study
has its own benefits and drawbacks, the trade-off between
assembly completeness and correctness can be significantly
shifted by modifying the algorithms’ parameters. For example,
various thresholds for transcript filtration in rnaSPAdes (Ta-
ble S14 in the Supplementary material) result in assemblies with
different properties. Also, varying k-mer size or incorporating it-
erative de Bruijn graph construction in rnaSPAdes may signifi-
cantly affect the assembly quality (Tables S9–S11 in the Supple-
mentary material). Thus, the parameters of the assembly algo-
rithms can be varied in order to achieve the desired complete-
ness or correctness characteristics and make the method dom-
inant in a certain group of metrics.

While the developed algorithm, rnaSPAdes, typically shows
stable results across analyzed RNA-Seq datasets and often al-
lows the capture of more genes and isoforms than any other tool,
there is no clear winner according to all metrics. Thus, the se-
lection of the assembler may be varied depending on the goals
of the particular research project and the sample preparation
protocols being used, as well as secondary parameters, such as
usability and computational performance. Even with the aid of
specially developed tools, such as Transrate, DETONATE, BUSCO,
and rnaQUAST, the choice of a suitable assembly tool remains a
non-trivial problem and may require additional benchmarks in
each particular case.

Potential implications

Although the developed approach was initially designed for
RNA-Seq data obtained from a single organism, it can poten-
tially be applied for metatranscriptome assembly of samples
collected from bacterial communities. Indeed, metatranscrip-
tome assembly does not require reconstructing complex alter-
natively spliced isoforms but implies other computational chal-
lenges, such as repetitive patterns in different genes (includ-
ing homologous genes from various strains) and extreme dif-
ferences in messenger RNA (mRNA) quantities [28,29], which
are caused by both varying expression levels and abundances
of different species. Improving the assembly algorithms, as well
as designing an appropriate pipeline for quality evaluation of
metatranscriptomic assemblies, would be a way to build on this
work.

Recently emerged long-read protocols for mRNA sequencing
allow the capture of full-length transcripts without the assem-
bly [30]. However, the high error rate of Oxford Nanopore and
PacBio sequencers prevents using output reads directly as com-
plete transcripts. Typically, mapping to the reference genome,
additional error correction by short accurate Illumina reads, or
consensus construction is performed to obtain and further ana-
lyze high-quality sequences [31–35]. Combining rnaSPAdes with
the previously developed hybridSPAdes approach for joint as-
sembly of short and long reads [36] may result in a viable alter-
native to the existing methods for processing long error-prone
RNA reads.

In addition, benchmarking reports presented in this work can
be used by researchers for selecting the appropriate assembly
method that meets their specific criteria and for better under-
standing of transcriptome assembly quality evaluation, such as,
for example, correlation of different metrics.
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Methods

Most of the modern de novo genome assembly algorithms for
short reads rely on the concept of the de Bruijn graph [37]. While
the initial study proposed looking for an Eulerian path traversing
the de Bruijn graph in order to reconstruct genomic sequences, it
seemed to be rather impractical owing to the presence of com-
plex genomic repeats and sequencing artifacts, such as errors
and coverage gaps. Instead, genome assemblers implement var-
ious heuristic approaches, most of which are based on cover-
age depth, graph topology, and the fact that the genome cor-
responds to 1 or more long paths traversing the graph [14,38].
Indeed, the latter observation is not correct for the case of tran-
scriptome assembly, in which RNA sequences correspond to nu-
merous shorter paths in the graph. Thus, to enable high-quality
assemblies from RNA-Seq data the majority of procedures in the
SPAdes pipeline have to undergo major alterations.

The SPAdes genome assembler consists of the following ma-
jor steps: (i) construction of the condensed de Bruijn graph; (ii)
graph simplification, which implies removing chimeric and erro-
neous edges; (iii) mapping read pairs to the assembly graph; and
(iv) repeat resolution and scaffolding using aligned paired reads
with the exSPAnder algorithm [39,40]. While graph construction
and mapping paired reads do not depend on the dataset type
and require no change for RNA-Seq data, graph simplification
and repeat resolution procedures strongly rely on the properties
of genomic sequences and thus require significant modifications
and novel functionality for de novo transcriptome assembly. Be-
low we describe the key changes introduced in rnaSPAdes.

Simplification of the de Bruijn graph in rnaSPAdes

During the graph simplification stage erroneous edges are re-
moved from the de Bruijn graph based on various criteria in or-
der to obtain a clean graph containing only correct sequences
(referred to hereafter as an ”assembly graph”). In the SPAdes
pipeline the simplification process includes multiple various
procedures that can be classified into 3 types: (i) trimming ”tips”
(dead-end or dead-start edges), (ii) collapsing ”bulges” (alterna-
tive paths), and (iii) removing erroneous connections (chimeric and
other false edges). In this section we present alterations intro-
duced in the rnaSPAdes simplification pipeline. We also provide
comparison between initial and improved simplification proce-
dures on several RNA-Seq datasets in the Supplementary mate-
rial (Table S10).

Trimming tips
In the de Bruijn graph constructed from DNA reads the major
fraction of tips (edges starting or ending at a vertex without
other adjacent edges) typically correspond to sequencing errors
and thus have to be removed. Because only a few tips are correct
and either represent chromosome ends or are formed by cov-
erage gaps, the existing genome assemblers implement rather
aggressive tip-clipping procedures [13, 38], assuming that cov-
erage gaps appear rather rarely. However, in the de Bruijn graph
built from RNA-Seq data a significant amount of tips correspond
to transcripts’ ends and thus have to be preserved. To keep the
correct tips and obtain full-length transcripts, rnaSPAdes uses
lower coverage and length thresholds for the tip-trimming pro-
cedure than SPAdes (see details below).

In some cases, tips originate from sequencing errors in mul-
tiple reads from highly expressed isoforms and thus may have
coverage above the threshold. While genome assemblers may
also exploit a relative coverage cutoff to remove such tips, in

transcriptome assembly this approach may result in trimming
correct tips corresponding to the ends of low-expressed iso-
forms. However, erroneous tips typically have a small differ-
ence from the correct sequence without errors (e.g., 1–2 mis-
matches). To address this issue, we align tips to the alternative
(correct) edges of the graph (Fig. 3a) and trim them if the iden-
tity exceeds a certain threshold (a similar procedure is imple-
mented in truSPAdes, which was designed for True Synthetic
Long Reads assembly [41]). In the case where 2 tips correspond
to the starts/ends of alternatively spliced isoforms, it is highly
unlikely for them to have similar nucleotide sequences (Fig. 3b).
Such tips are preserved during the graph simplification proce-
dure, thus allowing the restoration of isoforms that differ only
by starting or terminating exons.

Another characteristic of RNA-Seq datasets is the large num-
ber of low-complexity regions that originate from poly-A tails
resulting from polyadenylation at the ends of mRNAs. To avoid
chimeric connections and non-informative sequences, we also
remove low-complexity edges from the de Bruijn graph (see ex-
act criterion below).

Below we summarize all conditions used in the tip-clipping
procedure, parameters for which were optimized on the basis
of our analysis of various RNA-Seq datasets. We define lT as the
length of the tip that is being analyzed and cT as its mean k-
mer coverage, and cA as the k-mer coverage of the alternative
edge (which is presumably correct). A tip is removed if any of
the following conditions is true:

� l < 2 · k and cT ≤ 1 (short tips with very low coverage);
� l < 4 · k, cT < cA/2, and the Hamming distance between the tip

and the alternative edge ≤3 (the tip containing sequencing
errors);

� the tip contains >80% of A/T nucleotides (low-complexity
tip).

Collapsing bulges
A simple bulge (2 edges sharing starting and terminal vertices)
in the de Burijn graph may correspond to 1 of the following
events: (i) a sequencing error, (ii) a heterozygous mutation or
another allele difference, or (iii) an alternative splicing event
(typical for transcriptomic data). The first 2 cases are character-
ized by the bulge edges having similar lengths and sequences.
However, edges formed by sequencing errors are typically short
and have significantly different coverage depth because it is un-
likely for the same error to occur numerous times at the same
position (Fig. 3c). Vice versa, in the case of allele difference
bulge edges usually have similar coverage. Thus, genome as-
sembly algorithms for bulge removal typically rely on the cover-
age depth [13,38]. Because the most typical difference between
2 alternatively spliced isoforms of the same gene is the inclu-
sion/exclusion of an exon (usually short), edges of the bulge
originating from these isoforms have different lengths (Fig. 3d).
At the same time, because the expression levels may vary for
such isoforms, the coverage depth may significantly differ. To
avoid missing alternatively spliced isoforms in the assembly,
rnaSPAdes does not use any coverage threshold for bulge re-
moval and collapses only bulges consisting of edges with similar
lengths (<10% difference in length).

Removing chimeric connections
While undetected tips and bulges formed by sequencing er-
rors result in mismatches and indels in the assembled contigs,
chimeric reads (typically corresponding to a concatenation of se-
quences from distant regions of the original molecules) may trig-
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a b

c d

Figure 3: Examples of tips and bulges in the condensed de Bruijn graph. Edges with similar colors have similar sequences; line width represents the coverage depth.
(a) Correct transcript (blue dashed line) traverses through edges e0 and e1. Edge e2 originates from the reads with the same sequencing error and thus has coverage
depth high enough not to be trimmed. However, because the sequence of edge e2 is very similar to the sequence of the alternative edge e1 (detected by alignment), e2

is eventually removed as erroneous. (b) In this case both paths (e0, e1) and (e0, e2) correspond to correct isoforms (blue and red dashed lines). Because the sequences of

e1 and e2 are likely to be different, neither of the correct tips is removed. (c) Correct sequence (red dashed line) traverses through edges e1, e, and e2. Edge e′ originates
from reads containing sequencing errors and thus has sequence similar to e but significantly lower coverage. (d) Both paths (e1, e, e2) and (e1, e′, e2) correspond to
different isoforms of the same gene (red and purple dashed lines); edges e and e′ typically have different length, coverage depth, and sequence.

a b

Figure 4: Examples of chimeric connections in the de Bruijn graph typical
for transcriptome assembly. Red and green indicate erroneous and correct se-
quences, respectively. (a) A chimeric loop (edge e2) connecting the end of the

correct transcriptomic edge e1 with itself. (b) An example of a chimeric hairpin,
where erroneous edge e2 connects a correct edge e1 with its reverse-complement
copy ẽ1. Because e2 connects a vertex and its reverse-complement, ẽ2 (the
reverse-complement of e2) also connects these 2 vertices.

ger more serious errors, such as incorrect junctions in the result-
ing contigs (often referred to as misassemblies). In conventional
genome assembly chimeric edges usually have low coverage and
thus can be easily identified [38]. Single-cell datasets, however,
feature multiple low-covered genomic regions and an elevated
number of chimeric reads, which result in numerous erroneous
connections having higher coverage depth than correct genomic
edges. Similarly, because true edges representing low-expressed
isoforms in the transcriptome assembly also have relatively low
coverage depth, cleaning the graph using a coverage threshold
will result in multiple missing transcripts in the assembly.

To detect chimeric connections in single-cell assemblies
SPAdes implements various algorithms, which mostly rely on
the assumption that each chromosome corresponds to a long
contiguous path traversing through the de Bruijn graph [14]. Be-
cause this assumption does not hold for transcriptomes consist-
ing of thousands isoforms, we had to disable most procedures
for chimeric edge detection in SPAdes and implement a new er-
roneous edge removal algorithm that addresses the specifics of
chimeric reads in RNA-Seq datasets.

Our analysis revealed that most of the chimeric connections
in RNA-Seq data can be divided into 2 groups: single-strand
chimeric loops and double-strand hairpins. In the first case, a
chimeric junction connects the end of a transcript sequence
with itself (Fig. 4a). The erroneous hairpin connects a correct
edge with its reverse-complement copy (Fig. 4b) and potentially

may result in a chimeric palindromic sequence in the assembly.
To avoid misassemblies, rnaSPAdes detects chimeric loops and
hairpins by analyzing the graph topology rather than nucleotide
sequences or coverage.

While it remains unclear whether these chimeric reads are
formed during transcription, RNA-Seq sample preparation, or
sequencing, similar chimeric connections have been observed in
the context of single-cell MDA. For example, when a DNA frag-
ment is amplified by MDA, the DNA polymerase moves along the
DNA molecule and copies it, but sometimes (as described in [15])
the polymerase may jump to a close position (usually on the op-
posite DNA strand) and proceed to copy from the new position.

Removing isolated edges
Another type of excessive edges that appear in the assembly
graph is isolated edges, i.e., that have no adjacent edges. They
typically appear in regions of extremely low coverage (includ-
ing DNA contamination), where overlaps between neighboring
reads are smaller than k-mer size, or originate from reads con-
taining zero correct k-mers owing to multiple sequencing errors.
The first type of isolated edges can possibly be connected with
other edges by means of a gap-closing procedure (described be-
low). The second type, on the other hand, may result in excessive
erroneous sequences in the assembly or even create ambiguities
during gap closing. Thus, during graph simplification we addi-
tionally remove isolated edges that have both (i) low coverage
(<2) and (ii) length smaller than or equal to read length.

Selecting optimal k-mer sizes
One of the key techniques that allows SPAdes to assemble con-
tiguous genomic sequences from data with non-uniform cover-
age depth is the iterative de Bruijn graph construction. During
each successive iteration, SPAdes builds the graph from the in-
put reads and sequences obtained at the previous iteration, sim-
plifies the graph, and provides its edges as input to the next iter-
ation that uses larger k-mer size. The assembly graph obtained
at the final iteration is used for repeat resolution and scaffold-
ing procedures, which exploit read-pairs and long reads [36,39].
In this approach small k-mer sizes help to assemble low-covered
regions where reads have short overlaps, and large k-values are
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a b

Figure 5: Examples of 2 transcripts having a common sequence (a) in the middle of the transcripts and (b) close to the start of one transcript and the end of another.
While in the first case the isoforms can be resolved using read-pairs, the latter may potentially result in a chimeric contig.

useful for resolving repeats and therefore obtaining a less tan-
gled graph. Although this method seems to be useful for restor-
ing low-expressed isoforms from RNA-Seq data, our analysis re-
vealed that it seems to be the main reason for the high num-
ber of misassembled contigs in SPAdes assemblies. Below we de-
scribe how these false junctions are formed.

When 2 transcripts (possibly from different genes) have a
common sequence in the middle, they form a typical repeat
structure in the de Bruijn graph (Fig. 5a), which may further
be resolved, e.g., using paired reads. However, if a common se-
quence appears close to the ends of the transcripts (Fig. 5b),
edges e2 and e3 appear to be rather short and may be trimmed
as tips (because coverage depth often decreases near the tran-
scripts’ ends) or may not be present at all. In this case, the re-
maining edges e1, e, and e4 will be condensed into a single edge
corresponding to chimeric sequence.

Indeed, because small k-mer size results in a higher chance
of creating such a chimeric junction, we decided to modify the
parameters for iterative graph construction. In rnaSPAdes we
decided to use only 2 k-values: a smaller one for restoring low-
covered regions with insufficient overlaps between reads and a
larger one for obtaining a less tangled graph.

To estimate the optimal k-values, we ran rnaSPAdes on sev-
eral RNA-Seq datasets with various read lengths sequenced
from organisms with different gene complexity. Because it re-
quires a tremendous amount of time to try all possible pairs of
k-mer sizes on multiple datasets, we first estimated an upper k-
value used for the main iteration and then selected the lower k
with the fixed upper one.

We assembled a number of datasets using only a single k-
mer size and selected the best assemblies according to num-
ber of assembled genes, database coverage, and number of mis-
assemblies. Although it may not be possible to choose a sin-
gle best k-value simultaneously for multiple datasets, nearly
optimal k-mer size was estimated as half of the read length
(more precisely, the largest odd number that does not exceed
read length/2 − 1). The smaller k-value was estimated in a sim-
ilar manner with the fixed upper k-mer size. Optimal lower k
was considered on the basis of the number of additional assem-
bled genes and misassemblies. Experiments showed that small
k-values (e.g., <29) tended to dramatically increase the number
of erroneous contigs due to the higher probability of 2 transcripts
sharing the same k-mer. Thus, the lower k-mer size was esti-

mated approximately as read length/3 with the minimum value
set to 29. Although estimated k-values may not provide the best
assembly for every dataset, they typically seem to be a good
trade-off between the number of recovered genes and generated
errors (see Supplementary Tables S7–S9).

In this work rnaSPAdes was launched with the default k-
values. Indeed, rnaSPAdes retains the possibility of setting the
k-mer sizes manually. While it is possible to set only 1 k-mer
size, assemblies obtained with a single k typically capture fewer
genes and isoforms (especially low-covered), but they also have
fewer misassembled contigs (see Supplementary material Ta-
bles S9-S11 for comparison).

To preserve correct connections that could be restored using
only small k-mer sizes, we carefully examined low-expressed
transcripts that were not completely assembled using default k-
mer sizes. The analysis revealed that the majority of such frag-
ments can be joined by the small overlap, which is often con-
firmed by the read-pairs. To perform the gap-closing procedure
rnaSPAdes glues 2 tips if 1 of the following conditions is true:

� tips have an exact overlap of length ≥Lov and are connected
by ≥Nov read pairs;

� tips are connected by ≥Nmin read pairs;

where the default parameters are Lov = 8 bp, Nov = 1, and
Nmin = 5. Although these parameters seem to be slightly ad hoc,
such a gap-closing procedure seems to be a viable alternative
to using small k-values and allows the restoration of more low-
expressed transcripts without increasing the number of misas-
semblies. Using smaller thresholds for gap closing often cre-
ates false connections and increases the amount of erroneous
transcripts, while larger values for these parameters result in a
smaller increase of reconstructed sequences.

Isoform reconstruction

Adapting repeat resolution algorithms
Genomic repeats present one of the key challenges in the de novo
genome assembly problem. Although mRNA sequences typically
do not contain complex repeats, transcriptome assembly has
a somewhat similar problem of resolving alternatively spliced
isoforms and transcripts from paralogous genes. Repeat resolu-
tion and scaffolding steps in the SPAdes genome assembler are
implemented in the exSPAnder module [39], which is based on
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a

b

Figure 6: Using coverage depth for isoform reconstruction. Line width represents conventional and strand-specific coverage depths in panels (a) and (b), respectively.
(a) Two isoforms of the same gene (red and blue dashed lines) have different expression levels and thus can be resolved using coverage depth. (b) Two transcripts T1

and T2 (red and blue bold dashed lines, respectively) share a reverse-complement sequence and thus can be resolved using strand-specific reads.

a simple path extension framework. Similar to other modules
of SPAdes, exSPAnder was designed to deal with highly uneven
coverage and thus can be adapted for the isoform detection pro-
cedure when assembling RNA-Seq data.

The key idea of the path extension framework is to itera-
tively construct paths in the assembly graph by selecting the
best-supported extension edge at every step until no extension
can be chosen. The extension is selected on the basis of the
scoring function, which may exploit various kinds of linkage in-
formation between edges of the assembly graph (different scor-
ing functions are implemented for different types of sequenc-
ing data). A situation when a path cannot be extended further
is usually caused by the presence of a long genomic repeat or
a large coverage gap. The extension procedure starts from the
longest edge that is not yet included in any path and is repeated
until all edges are covered.

More formally, a path extension step can be defined as fol-
lows. For a path P and its extension edges e1, . . . , en (typically,
edges that start at the terminal vertex of P) the procedure se-
lects ei as a best-supported extension if

i. ScoreP(ei) > C · ScoreP(ej) for all j �= i,
ii. ScoreP(ei) > �,

where C and � are the algorithm parameters and ScoreP(ei) is
a score of edge ei relative to path P (described by Prjibelski et al.
[39]).

In contrast to genome assembly, in which there is usually
only 1 true extension edge, in transcriptome assembly multiple
correct extensions are possible owing to the presence of alter-
natively spliced isoforms. Thus, the modified procedure is capa-
ble of selecting several edges ek1 , . . . ekm among all possible exten-
sions e1, . . . , en, which satisfy the following conditions:

i. ScoreP (eki ) > ScoreP (eM)/C for all i = 1. . . m,
M = argmaxj = 1..nScoreP(ej),

ii. ScoreP (eki ) > � for all i = 1. . . m.

Namely, all correct extension edges must have a score close
to the maximal one (C = 1.5 by default), and the second condition
remains the same. Afterwards, the algorithm extends path P by
creating new paths (P , ek1 ), . . . , (P , ekm), which are then extended
independently. Because the scoring function implemented in
exSPAnder does not strongly depend on the coverage depth,
there is no danger that highly expressed isoforms will be pre-
ferred over the low-expressed ones.

Finally, to avoid duplicating sequences in the genome assem-
blies, exSPAnder performs a rather aggressive overlap removal
procedure. However, because alternatively spliced isoforms may
differ only by a short exon, in order to avoid missing similar tran-
scripts the modified overlap detection procedure removes only
exact duplicates and subpaths.

Exploiting coverage depth
Varying coverage depth may seem to be an additional challenge
for de novo sequence assembly but can be also used as an ad-
vantage in some cases. For instance, if 2 alternatively spliced
isoforms of the same gene have different expression levels, they
can be resolved using coverage depth even when the read-pairs
do not help (e.g., shared exon is longer than the insert size). Al-
though using coverage values becomes more complicated when
a gene has multiple different expressing isoforms, our analy-
sis of several RNA-Seq datasets revealed that such cases are
rather rare and most of the genes have 1 or 2 expressing iso-
forms within a single sample.

To exploit the coverage depth we decided to add a simple but
reliable path extension rule. Let the path P = (e1, e2, e3) have ex-
tension edges e and e′ (Fig. 6a), such that cov(e) > cov(e′) and
cov(e2) > cov(e′

2), where cov(e) denotes the k-mer coverage of
edge e. To select a correct extension the algorithm detects a ver-
tex closest to the end of path P that has 2 incoming alternative
edges, 1 of which is included in P and the other is not (e2 and e′

2

in this example). Because edge e2 ∈ P has higher coverage than
the alternative edge e′

2 /∈ P , we select extension edge e as the one
with the higher coverage. However, if both isoforms have similar
coverage, this simple approach may chose a false extension (be-
cause the coverage depth is rarely perfectly uniform even along a
small region). Thus the difference in coverage should be signifi-
cant enough to distinguish between the isoforms. More formally,
the following conditions should be satisfied:

i. cov(e) > � · cov(e′);
ii. cov(e2) > � · cov(e′

2);
iii. � > cov(e2)/cov(e) > 1/�;
iv. cov(e) > Cmin,

where the default values of the algorithm parameters are � =
2, � = 10, and Cmin = 2. The first 2 conditions ensure that the ex-
tension edges (e and e′) and alternative edges (e2 and e′

2) have sig-
nificant coverage difference, condition iii requires the coverage
depth to remain relatively persistent along the path, and condi-
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tion iv prevents the algorithm from resolving low-covered iso-
forms (which may result in a misassembly). In the general case,
this procedure also uses only the last pair of alternative edges
and is applied only in the case when the path has 2 possible ex-
tension edges and the conventional read-pair extender fails to
extend the path.

Assembling strand-specific data
Another possible way to improve a transcriptome assembly is
to take advantage of strand-specific data when provided. To
use stranded RNA-Seq we introduce ”strand-specific coverage
depths” cov+(e) and cov−(e), which denote k-mer coverage of
edge e by forward and reverse reads, respectively. As opposed to
the conventional coverage cov(e), which is calculated by aligning
all reads and their reverse-complement copies to the edges of
the assembly graph [thus making cov(e) = cov(ẽ)], strand-specific
coverage is obtained by mapping reads according to their ori-
gin strand. For instance, if an RNA-Seq library is constructed in
such a way that reads have the same strand as the transcript
that they were sequenced from (sense/forward reads), we ex-
pect cov+(e) to be much higher than cov−(e) if the sequence of
e corresponds to the transcript, and vice versa if e is the reverse-
complement of the original transcript. Indeed, the situation be-
comes opposite when reads are sequenced from complemen-
tary DNAs that are reverse-complement to the original tran-
scripts (anti-sense/reverse reads). When working with paired-
end libraries, we assume that the type of library is defined by
the first read’s strand (i.e., forward-reverse or reverse-forward).
Thus, the second read in a pair is reverse-complemented
before mapping in order to match the strand of the first
read.

To extend the paths we apply the aforementioned path ex-
tension procedure for conventional coverage but use strand-
specific coverage values instead. Fig. 6b demonstrates a situ-
ation when 2 transcripts correspond to paths T1 = (e1, e, e2)
and T2 = (ẽ4, ẽ, ẽ3). If the repetitive edge e is longer than the in-
sert size and the conventional coverage depth of these 2 tran-
scripts is similar, the situation can be resolved neither by paired
reads nor by coverage. However, in the case of stranded data,
strand-specific coverage for actual transcripts’ paths will be
much higher than for their reverse-complement copies, i.e.,
cov+(T1)	 cov+(T̃1) and cov+(T2) 	 cov+(T̃2) (in this example
we assume that reads have the same stand as the transcripts
they come from). Moreover, edges corresponding to the reverse-
complement sequences only (ẽ1 and ẽ2 for T̃1, e3 and e4 for T̃2)
will have cov+(e) values close to zero. Therefore, the conditions
given for the coverage-based path extender (see previous sub-
section) will be satisfied for strand-specific coverage values, the
repetitive edge e will be resolved, and both transcripts will be
reconstructed.

To avoid collapsing transcripts from the opposite strands that
share common sequences at their ends, we also split edges that
have significantly different strand-specific coverage values at
their ends. More formally, edge e is split at position p if cov+(e[0,
p]) 	 cov−(e[0, p]) and cov−(e[p + 1, length(e)]) 	cov+(e[p + 1,
length(e)]) (or vice versa), where e[i, j] is defined as a region of
edge e starting from i and ending at j.

In addition, for stranded RNA-Seq data we output the paths
constructed by the exSPAnder algorithm according to the orig-
inal transcript’s strand. For example, in the example given in
Fig. 6b rnaSPAdes will output paths T1 and T2 because they have
higher strand-specific coverage than their reverse-complement
copies (T̃1 and T̃2, respectively).

Filtering assembled transcripts
Before outputting the paths constructed by the exSPAnder mod-
ule as contigs, we additionally apply various filtering proce-
dures to remove non-mRNA contigs, such as intergenic se-
quences, which often contaminate RNA-Seq datasets. Our anal-
ysis showed that the majority of such unwanted sequences have
low coverage and relatively small length and often correspond to
isolated edges in the assembly graph. However, applying filters
based on these criteria may also remove correct low-expressed
transcripts in some cases. Thus, we decided to implement 3 dif-
ferent presets of parameters for the filtration procedure (soft,
normal, and hard) and output 3 files with contigs (see exact pa-
rameters in Supplementary Table S12). Depending on the project
goal the researcher may choose more sensitive (soft filtration)
or more specific results (hard filtration). Table S13 in the Sup-
plementary material shows how the assembly quality depends
on the filtration parameters. In other tables we use default tran-
scripts with the normal level of filtering.

Availability of supporting source code and
requirements

Project name: rnaSPAdes
Project home page: cab.spbu.ru/software/rnaspades/, github.c
om/ablab/spades
Operating systems: Linux and MacOS
Programming language: C++, Python
Other requirements: no requirements for precompiled binaries;
g++ 5.3.1+, cmake 2.8.12+, zlib, and libbz2 are required for com-
piling from source code
License:GPLv2
RRID:SCR 016992

Availability of supporting data and materials

All real RNA-Seq datasets are available at the NCBI SRA (https:
//www.ncbi.nlm.nih.gov/sra) with the following accession num-
bers:

� Human: SRR5133163
� Human large: SRR1957703, SRR1957706
� Mouse: SRX648736
� Worm: SRR1560107
� Corn: SRR1588569
� Arabidopsis: SRR5344669, SRR5344670

Simulated data are available on the server:
H. sapiens: http://spades.bioinf.spbau.ru/rnaspades/simulated d
ata/human/
M. musculus: http://spades.bioinf.spbau.ru/rnaspades/simulated
data/mouse/

An archival copy of the code and other supporting data is avail-
able via the GigaScience database, GigaDB [42].

Additional files

Supplementary information: Supplementary Methods and Re-
sults are available via the additional file associated with this ar-
ticle. Addtional file contains the following information:
Section S1: Transcriptome assembly quality evaluation metrics;
Section S2: Software versions used in this work;
Section S3: Command lines for reproducing the analysis;
Tables S1–S2: Complete quality reports for all simulated
datasets;

http://cab.spbu.ru/software/rnaspades/
https://github.com/ablab/spades
https://scicrunch.org/resolver/RRID:SCR_016992
https://www.ncbi.nlm.nih.gov/sra
http://spades.bioinf.spbau.ru/rnaspades/simulated_data/human/
http://spades.bioinf.spbau.ru/rnaspades/simulated_data/mouse/
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Tables S3–S7: Complete quality reports for all real datasets;
Figure S1: Additional statistics for simulated datasets;
Figure S2: BUSCO results for all datasets;
Figures S3–S5: The most representative metrics reported by
rnaQUAST, DETONATE and Transrate across all datasets;
Tables S9–S11: rnaSPAdes results for different k-mer sizes;
Table S12: Graph simplification statistics;
Table S13: Path filtration parameters;
Table S14: rnaSPAdes results for different filtration levels;
Table S15: Kallisto results for all datasets.

Abbreviations

BUSCO: Benchmarking Universal Single-Copy Orthologs; MDA:
multiple displacement amplification; mRNA: messenger RNA;
CRBB: Conditional Reciprocal Best BLAST; NCBI: National Cen-
ter for Biotechnology Information; RAM: random access mem-
ory; RNA-Seq: RNA sequencing; SPAdes: St. Petersburg genome
assembler; SRA: Sequence Read Archive.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Russian Foundation for Basic
Research (grant No. 19-04-01074) and St. Petersburg State Uni-
versity (grant No. 15.61.951.2015).

Authors’ contributions

Software design and implementation was performed by E.B.,
D.A., and A.D.P. E.B. was responsible for data curation, assem-
bler benchmarking, and manuscript editing. A.L. supervised the
project and performed funding acquisition. A.D.P. wrote the
manuscript and managed the project. All authors read and ap-
proved the final manuscript.

Acknowledgments

We thank the staff of the following organizations for upload-
ing their data to public databases: Pfizer, Sun Yat-sen Univer-
sity, Shanghai University, Leipzig University, Northwestern Uni-
versity, and Medical University Vienna.

References

1. Li B, Dewey CN. RSEM: accurate transcript quantification
from RNA-Seq data with or without a reference genome.
BMC Bioinformatics 2011;12(1):323.

2. Trapnell C, Roberts A, Goff L, et al. Differential gene and
transcript expression analysis of RNA-Seq experiments with
TopHat and Cufflinks. Nat Protoc 2012;7(3):562.

3. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast uni-
versal RNA-Seq aligner. Bioinformatics 2013;29(1):15–21.

4. Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate align-
ment of transcriptomes in the presence of insertions, dele-
tions and gene fusions. Genome Biol 2013;14(4):R36.

5. Love MI, Huber W, Anders S. Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol 2014;15(12):550.

6. Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables
improved reconstruction of a transcriptome from RNA-seq
reads. Nat Biotechnol 2015;33(3):290.

7. Robertson G, Schein J, Chiu R, et al. De novo assembly and
analysis of RNA-seq data. Nat Methods 2010;7(11):909–12.

8. Grabherr MG, Haas BJ, Yassour M, et al. Full-length tran-
scriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol 2011;29(7):644–52.

9. Schulz MH, Zerbino DR, Vingron M, et al. Oases: robust de
novo RNA-seq assembly across the dynamic range of expres-
sion levels. Bioinformatics 2012;28(8):1086–92.

10. Peng Y, Leung HC, Yiu SM, et al. IDBA-tran: a more robust de
novo de Bruijn graph assembler for transcriptomes with un-
even expression levels. Bioinformatics 2013;29(13):i326–34.

11. Xie Y, Wu G, Tang J, et al. SOAPdenovo-Trans: de novo tran-
scriptome assembly with short RNA-Seq reads. Bioinformat-
ics 2014;30(12):1660–6.

12. Martin JA, Wang Z. Next-generation transcriptome assembly.
Nat Rev Genet 2011;12(10):671–82.

13. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome
assembly algorithm and its applications to single-cell se-
quencing. J Comput Biol 2012;19:455–77.

14. Nurk S, Bankevich A, Antipov D, et al. Assembling single-cell
genomes and mini-metagenomes from chimeric MDA prod-
ucts. J Comput Biol 2013;20:1–24.

15. Lasken RS. Single-cell genomic sequencing using mul-
tiple displacement amplification. Curr Opin Microbiol
2007;10:510–16.

16. Bushmanova E, Antipov D, Lapidus A, et al. rnaQUAST: a
quality assessment tool for de novo transcriptome assem-
blies. Bioinformatics 2016;32(14):2210–12.

17. Andrews S. FastQC: a quality control tool for high throughput
sequence data. 2010. http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/. Accessed on 1 Oct 2017.

18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexi-
ble trimmer for Illumina sequence data. Bioinformatics
2014;30(15):2114–20.

19. Liu J, Li G, Chang Z, et al. BinPacker: packing-based de novo
transcriptome assembly from RNA-seq data. PLoS Comput
Biol 2016;12(2):e1004772.

20. Chang Z, Li G, Liu J, et al. Bridger: a new framework for de
novo transcriptome assembly using RNA-seq data. Genome
Biol 2015;16(1):30.

21. Nip KM, Chiu R, Yang C, et al. RNA-Bloom provides
lightweight reference-free transcriptome assembly for sin-
gle cells. bioRxiv 2019, doi:10.1101/701607.

22. Smith-Unna R, Boursnell C, Patro R, et al. TransRate:
reference-free quality assessment of de novo transcriptome
assemblies. Genome Res 2016;2(8):1134–44.

23. Simão FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assess-
ing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics 2015;31(19):3210–2.

24. Li B, Fillmore N, Bai Y, et al. Evaluation of de novo tran-
scriptome assemblies from RNA-Seq data. Genome Biol
2014;15(12):553.

25. Bray NL, Pimentel H, Melsted P, et al. Near-optimal
probabilistic RNA-seq quantification. Nat Biotechnol
2016;34(5):525.

26. Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHam-
mer: Bayesian clustering for error correction in single-cell
sequencing. BMC Genomics 2013;14.
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