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Abstract

Information of subcellular locations of proteins is important for in-depth studies of cell biology. It is very useful for proteomics,
system biology and drug development as well. However, most existing methods for predicting protein subcellular location can
only cover 5 to 12 location sites. Also, they are limited to deal with single-location proteins and hence failed to work for
multiplex proteins, which can simultaneously exist at, or move between, two or more location sites. Actually, multiplex
proteins of this kind usually posses some important biological functions worthy of our special notice. A new predictor called
‘‘Euk-mPLoc 2.0’’ is developed by hybridizing the gene ontology information, functional domain information, and sequential
evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify
eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6)
cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12)
hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19)
plasma membrane, (20) plastid, (21) spindle pole body, and (22) vacuole. Compared with the existing methods for predicting
eukaryotic protein subcellular localization, the new predictor is much more powerful and flexible, particularly in dealing with
proteins with multiple locations and proteins without available accession numbers. For a newly-constructed stringent
benchmark dataset which contains both single- and multiple-location proteins and in which none of proteins has §25%
pairwise sequence identity to any other in a same location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is
more than 24% higher than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is freely
accessible at http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/. For a query protein sequence of 400 amino acids, it will take
about 15 seconds for the web-server to yield the predicted result; the longer the sequence is, the more time it may usually
need. It is anticipated that the novel approach and the powerful predictor as presented in this paper will have a significant
impact to Molecular Cell Biology, System Biology, Proteomics, Bioinformatics, and Drug Development.
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Introduction

With the avalanche of protein sequences generated in the post-

genomic era, numerous efforts have been made to develop various

methods for predicting protein subcellular localization based on

the sequence information (see, e.g., [1,2,3,4,5,6,7,8] as well as a

long list of references cited in two comprehensive review articles

[9,10]). However, relatively much less efforts have been made to

address those proteins which may simultaneously exist at, or move

between, two or more different subcellular locations. Actually,

proteins with multiple locations or dynamic feature of this kind are

particularly interesting because they may have some very special

biological functions worthy of our notice [11,12]. Particularly, as

pointed out by Millar et al. [13], recent evidences indicate that an

increasing number of proteins have multiple locations in the cell.

About two years ago, a web-server predictor [14] was developed

for dealing with the eukaryotic systems that contain both single-

location and multiple-location proteins. The predictor is called

Euk-mPLoc, where ‘‘m’’ stands for ‘‘multiple’’ meaning it can be

used to deal with multiplex proteins as well. The Euk-mPLoc
predictor was established by hybridizing the ‘‘higher-level’’ GO

(gene ontology [15]) approach and PseAAC (pseudo amino acid

composition [16,17]) approach. Its power mainly came from the

GO approach because proteins formulated in the GO database

space would be clustered in a manner much better reflecting the

distribution of their subcellular locations, as elucidated in [18].

However, the existing version of Euk-mPLoc has the following

shortcomings. (1) In order to make the prediction engine able to

use the advantage of the GO approach, the accession number for a

query protein is required as a part of input; many proteins, such as

synthetic and hypothetical proteins, or newly-discovered sequences

without being deposited into databanks yet, do not have accession

numbers, and hence cannot be treated with the GO approach. (2)
Even though their accession numbers are available, it is not always
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certain for them to be meaningfully formulated in a GO space

because the current GO database is far from complete yet. (3)
Although the PseAAC approach, a complement to the GO

approach in Euk-mPLoc, can take into account some partial

sequence order effects, the original PseAAC [16,19] missed the

functional domain and sequential evolution information that may

considerably affect the prediction quality.

The present study was devoted to develop a new and more

powerful predictor for predicting eukaryotic protein subcellular

localization by addressing the above three problems.

Materials and Methods

Protein sequences were collected from the Swiss-Prot database

at http://www.ebi.ac.uk/swissprot/. The detailed procedures are

basically the same as described in [14]; the only difference is: in

order to establish a more updated benchmark dataset, instead of

version 50.7 of the Swiss-Prot database released on 9-Sept-2006,

the version 55.3 released on 29-Apr-2008 was adopted. After

strictly following the procedures as described in [14], we finally

obtained a benchmark dataset S containing 7,766 different

protein sequences that are distributed among 22 subcellular

locations (Fig. 1); i.e.,

S~S1|S2|S3|S4|S5|S6| � � �|S22 ð1Þ

where S1 represents the subset for the subcellular location of

‘‘acrosome’’, S2 for ‘‘cell membrane’’, S3 for ‘‘cell wall’’, and so

forth; while | represents the symbol for ‘‘union’’ in the set theory.

A breakdown of the 7,766 eukaryotic proteins in the benchmark

dataset S according to their 22 location sites is given in Table 1.

To avoid redundancy and homology bias, none of the proteins in

S has §25% pairwise sequence identity to any other in a same

subset. The corresponding accession numbers and protein

sequences are given in Online Supporting Information S1.

Because the system investigated now contains both the single-

location and the multiple-location proteins, some of the proteins in

S may occur in two or more location sites. Therefore, it is

instructive to introduce the concept of ‘‘virtual sample’’, as

illustrated as follows. A protein sample coexisting at two different

location sites will be counted as 2 virtual samples even though they

have an identical sequence; if coexisting at three different sites, 3

virtual samples; and so forth. Accordingly, the total number of the

different virtual protein samples is generally greater than that of

the total different sequence samples. Their relationship can be

formulated as follows

N(vir)~N(seq)z
XM
L~1

L{1ð ÞN(Q) ð2Þ

where N(vir) is the number of total different virtual protein

Figure 1. Illustration to show the 22 subcellular locations of eukaryotic proteins. The 22 location sites are: (1) acrosome, (2) cell wall, (3)
centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus,
(12) hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19) plasma membrane, (20)
plastid, (21) spindle pole body, and (22) vacuole. Reprinted from [14] with permission.
doi:10.1371/journal.pone.0009931.g001
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samples in S, N(seq) the number of total different protein

sequences, N(1) the number of proteins with one location, N(2)
the number of proteins with two locations, and so forth; while M is

the number of total subcellular location sites (for the current case,

M~22 as shown in Fig. 1 and Table 1).

For the current 7,766 different protein sequences, 6,687 occur

in one subcellular location, 1,029 in two locations, 48 in three

locations, 2 in four locations, and none in five or more locations.

Substituting these data into Eq.2, we have

N(vir)~N(seq)z(1{1)|6687z(2{1)|1029

z(3{1)|48z(4{1)|2z
X22

L~5

(L{1)|0

~7766z0z1029z96z6z0~8897

ð3Þ

which is fully consistent with the figures in Table 1 and the data

in Online Supporting Information S1.

As stated in a recent comprehensive review [20], to develop a

powerful method for statistically predicting protein subcellular

localization, one of the most important things is to formulate the

sample of a protein with the core features that have intrinsic

correlation with its localization in a cell. Since the concept of

pseudo amino acid composition (PseAAC) was proposed [16], it

has provided a very flexible mathematical frame for investigators

to incorporate their desired information into the representation of

protein samples. According to its original definition, the PseAAC is

actually formulated by a set of discrete numbers [16] as long as it is

different from the classical amino acid composition (AAC) and that

it is derived from a protein sequence that is able to harbor some

sort of its sequence order and pattern information, or able to

reflect some physicochemical and biochemical properties of the

constituent amino acids. Since the concept of PseAAC was

proposed, it has been widely used to deal with many protein-

related problems and sequence-related systems (see, e.g.,

[21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]

and a long list of PseAAC-related references cited in a recent

review [20]). As summarized in [20], until now 16 different

PseAAC modes have been used to represent the samples of proteins

for predicting their attributes. Each of these modes has its own

advantage and disadvantage. In this study, we are to formulate the

protein samples by hybridizing the following three different modes

of PseAAC.

1. GO (Gene Ontology) Representation Mode
GO database [15] was established according to the molecular

function, biological process, and cellular component. Accordingly,

protein samples defined in a GO database space would be

clustered in a way better reflecting their subcellular locations

[10,18]. However, the way of using GO mode to represent a

protein sample in the original Euk-mPLoc predictor [14] was

derived through its accession number from the GO database [43].

Thus, when using Euk-mPLoc to perform prediction, the

accession number of a query protein would be indispensable. To

avoid such a requirement, the following different procedures are

proposed to derive the GO representation mode.

Step 1. Use BLAST [44] to search the homologous proteins

of the query protein P from the Swiss-Prot database (version 55.3),

with the expect value Eƒ0:001 for the BLAST parameter.

Step 2. Those proteins which have §60% pairwise sequence

identity with the query protein P are collected into a set, SP-homo,

called the ‘‘homology set’’ of P. All the elements in SP-homo can be

deemed as the ‘‘representative proteins’’ of P. Because they were

retrieved from the Swiss-Prot database, these representative

proteins must each have their own accession numbers.

Step 3. Search each of these accession numbers collected in

Step 2 against the GO database at http://www.ebi.ac.uk/GOA/

to find the corresponding GO numbers [43].

Step 4. The current GO database (version 70.0 released 10

March 2008) contains 60,020 GO numbers, thus the query protein

P can be expressed via its representative proteins in S
P-homo

by the

following formulation

PGO~ DG
1 DG

2 � � � DG
i � � � DG

60020

h iT

ð4Þ

where T is the transposing operator, and

Table 1. Breakdown of the eukaryotic protein benchmark
dataset S derived from Swiss-Prot database (release 55.3)
according to the procedures described in the Materials section.

Subseta
Subcellular
location

Number of
proteins

S1 Acrosome 14

S2 Cell membrane 697

S3 Cell wall 49

S4 Centrosome 96

S5 Chloroplast 385

S6 Cyanelle 79

S7 Cytoplasm 2186

S8 Cytoskeleton 139

S9 Endoplasmic reticulum 457

S10 Endosome 41

S11 Extracell 1048

S12 Golgi apparatus 254

S13 Hydrogenosome 10

S14 Lysosome 57

S15 Melanosome 47

S16 Microsome 13

S17 Mitochondrion 610

S18 Nucleus 2320

S19 Peroxisome 110

S20 Spindle pole body 68

S21 Synapse 47

S22 Vacuole 170

Number of total virtual
proteins N(vir)

8,897b

Number of total different
proteins N(seq)

7,766c

None of the proteins included here has §25% sequence identity to any other
in a same subcellular location.
aSee Fig. 1 and Eq.1 as well as the relevant text for the definitions of the subsets
listed in this table.

bSee Eqs.2–3 for the definition about the number of virtual proteins, and its
relation with the number of different proteins.

cOf the 7,766 different proteins, 6,687 belong to one subcellular location, 1,029
to two locations, 48 to three locations, and 2 to four locations. See Online
Supporting Information S1 for the protein sequences.

doi:10.1371/journal.pone.0009931.t001
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DG
i ~

1, if a hit is found against the i-th GO number

for any of the proteins in SP-homo

0, otherwise

8><
>: ð5Þ

Through the above steps, we can use the GO information

derived from its representative proteins in S
P-homo

to formulate

the query protein P. The rationale of so doing is based on the fact

that homology proteins generally share similar attributes, such as

structural conformations and biological functions [45,46,47].

Thus, the accession number is no longer indispensable for the

input of the query protein even if using the high-level GO

approach to predict its subcellular localization as required in Euk-
mPLoc [14].

The above homology-based GO extraction method is particu-

larly useful for studying those proteins which do not have UniProt

accession numbers. However, it would still fail to work under any

one of the following situations: (1) the query protein does not have

significant homology to any protein in the Swiss-Prot database,

i.e., SP-homo~1 meaning the homology set is an empty one; (2)
its representative proteins do not contain any useful GO

information for statistical prediction based on a given training

dataset.

Therefore, it is necessary to consider the following representa-

tion modes for those proteins which fail to be meaningfully defined

in the GO space.

2. FunD (Functional Domain) Representation Mode
FunD is the core of a protein that plays the major role for its

function. That is why in determining the 3-D (dimensional)

structure of a protein by experiments (see, e.g., [48,49]) or by

computational modeling (see, e.g., [47,50]) the first priority was

always focused on its FunD. Actually, using the FunD information

to formulate protein samples for statistical predictions was

originally proposed in [51,52], and quite encouraged results were

achieved. In that time, the 2005 FunDs in the SBASE-A database

[53] were used as bases to formulate the protein samples. Since

then, a series of follow-up protein FunD databases were

established, such as COG [54], KOG [54], SMART [55], Pfam

[56], and CDD [57]. Of these databases, CDD contains the

domains imported from COG, Pfam and SMART, and hence is

relatively much more complete [57]. The version 2.11 of CDD

contains 17,402 characteristic domains. Using each of these

domains as a base vector, we can define a FunD space with 17,402

dimensions. Thus, by following the similar procedures in [51], a

protein sample can be uniquely defined through the steps

described below:

Step 1. Use RPS-BLAST (Reverse PSI-BLAST) program

[44] to conduct sequence alignment of the protein sequence with

each of the 17,402 domain sequences in the CDD database.

Step 2. If the significance threshold value (expect value) is

ƒ0:001 for the i-th domain meaning that a ‘‘hit’’ is found, then

the i-th component of the protein in the 17402-D space is assigned

1; otherwise, 0.

Step 3. The protein sample P in the FunD space can thus be

formulated as

PFunD~ DD
1 DD

2 � � � DD
i � � � DD

17402

h iT

ð6Þ

where T is the transpose operator, and

DD
i ~

1, when a hit is found for P in CDD

0, otherwise

�
ð7Þ

Defined this way, the protein sample becomes corresponding to

a 17402-D vector PFunD with each of the 17402 functional domain

sequences as a base for the vector space. By using such a

representation, not only some sequence-order effects but also some

functional information is included. Since the function of a protein

is closely related to its subcellular location, the FunD formulation

of Eq.6 would naturally incorporate those factors that might be

directly correlated with the protein subcellular location.

3. SeqEvo (Sequential Evolution) Representation Mode
Since biology is a natural science with historic dimension, all

biological species have actually developed continuously starting

out from a very limited number of ancestral species. It is quite

typical for protein sequences [47]. Their evolution involves

changes of single residues, insertions and deletions of several

residues, gene doubling, and gene fusion. With such changes

accumulated for a long period of time, many similarities between

initial and resultant amino acid sequences are eliminated, but the

corresponding proteins may still share many common attributes,

such as their location site in a cell. Therefore, to catch the core

feature and intrinsic relationship from a huge number of

complicated protein sequences, it is particularly important to take

into account the evolution effects. To realize this, here we are to

incorporate the evolution information through the ‘‘Position-

Specific Scoring Matrix’’ or ‘‘PSSM’’ [44], i.e., to express the

protein P by a 20|L matrix as formulated by

PEvo~

E1?1 E1?2 � � � E1?20

E2?1 E2?2 � � � E2?20

..

. ..
. ..

. ..
.

EL?1 EL?2 � � � EL?20

2
66664

3
77775 ð8Þ

where L is the length of P (counted in the total number of its

constituent amino acids), Ei?j represents the score of the amino

acid residue in the i-th position of the protein sequence being

changed to amino acid type j during the evolutionary process.

Here, the numerical codes 1, 2, …, 20 are used to denote the 20

native amino acid types according to the alphabetical order of

their single character codes. The L|20 scores in Eq.8 were

generated by using PSI-BLAST [44] to search the Swiss-Prot

database (version 55.3 released on 29-Apr-2007) through three

iterations with 0.001 as the E-value cutoff for multiple sequence

alignment against the sequence of the protein P, followed by a

standard conversion given below:

Ei?j~
E0

i?j{
�EE0

i

SD �EE0
i

� � (i~1, 2, � � � , L; j~1, 2, � � � , 20) ð9Þ

where E0
i?j represent the original scores directly created by PSI-

BLAST [44] that are generally shown as positive or negative integers

(the positive score means that the corresponding mutation occurs

more frequently than expected by chance, while the negative means

just the opposite); the symbol �EE0
i means taking the average of E0

i?j

over j (1, 2, � � � , 20), and SD �EE0
i

� �
means the corresponding

standard deviation. The converted values obtained by Eq.9 will have

Protein Subcellular Location
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a zero mean value over the 20 amino acids and will remain

unchanged if going through the same conversion procedure again.

However, according Eq.8, a protein with L length is corresponding to

a matrix of L rows. Hence, proteins with different lengths will

correspond to matrices of different dimensions. This will become a

hurdle for us to develop a predictor able to unanimously cover

proteins of any length. To overcome such a hurdle, one possible

avenue is to represent a protein sample P by

�PPEvo~ �EE1
�EE2 � � � �EE20

� �T ð10Þ

where

�EEj~
1

L

XL

i~1

Ei?j (j~1, 2, � � � , 20) ð11Þ

where �EEj represents the average score of the amino acid residues in

the protein P being changed to amino acid type j during the

evolutionary process. However, if �PPEvo of Eq.10 was used to

represent the protein P, all the sequence-order information during

the evolutionary process would be erased. To avoid completely

erasing the sequence-order information, the concept of PseAAC as

originally proposed in [16] was utilized; i.e., instead of Eq.10, let us

use the pseudo position-specific scoring matrix as given by

Pl
PseEvo~ �EE1

�EE2 � � � �EE20
�EEl

1
�EEl

2 � � � �EEl
20

� �T ð12Þ

to represent the protein P, where

El
j ~

1

L{l

XL{l

i~1

Ei?j{E(izl)?j

� �2
(j~1, 2, � � � , 20; lvL) ð13Þ

meaning that E1
j is the correlation factor by coupling the most

contiguous position-specific scoring matrix scores along the protein

chain for the amino acid type j; E2
j that by coupling the second-most

contiguous position-specific scoring matrix scores; and so forth.

Note that, as mentioned in the Material section of [14], the length of

the shortest protein sequence in the benchmark dataset is L~50,

and hence the value allowed for l in Eq.13 must be smaller than 50.

When l~0, El
j becomes a naught element and Eq.12 is

degenerated to Eq.10.

A hybridization of the above three different PseAAC modes,

i.e., Eq.4, Eq.6, and Eq.12, will be used to represent protein

samples for establishing a new classifier for predicting eukaryotic

protein subcellular localization, as described below.

4. Prediction Engine C
E

and Computing Procedures
The prediction engine used in this study is the ensemble

classifier C
E

formed by fusing many individual OET-KNN

(Optimized Evidence-Theoretic K-Nearest Neighbor) classifiers

[58,59]. According to the underlying rule of the OET-KNN

classifier, a query protein should be assigned to the class the

majority of its K nearest neighbors belongs to. However, for most

benchmark datasets, when Kw10 the success rate thus obtained

would decrease markedly. Therefore, our consideration for K can

be confined within the range from 1 to 10. Accordingly, the

ensemble classifier C
E

can be formulated as

C
E~C 1ð ÞVC 2ð ÞV � � � VC 9ð ÞVC 10ð Þ~V10

K~1C(K) ð14Þ

where the symbol V denotes the fusing operator, C 1ð Þ is the individual

OET-KNN classifier based on K~1 nearest neighbor, C 2ð Þ that

based on K~2 nearest neighbors, and so forth. The detailed

mathematical formulations for OET-KNN and CE have been given

in Eqs.22–29 in [10], where it has also been clearly elaborated how the

ensemble classifier CE worked during the process of prediction. To

avoid redundancy, we are not to repeat the details here.

Figure 2. A flowchart to show the prediction process of Euk-mPLoc 2.0.
doi:10.1371/journal.pone.0009931.g002
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The prediction is processed according to the following order.

Step 1. If the query protein P can be expressed as a

meaningful or productive descriptor in the GO database via its

representative proteins in its homology set S
P-homo

, then PGO of

Eq.4 should be input into the prediction engine for identifying its

subcellular location site(s); i.e.

C
E
4P~C

E
4PGO~V20

K~1C Kð Þ4PGO

~

Outcome by fusing the 10

outputs yielded by C 1ð Þ, C 2ð Þ,

� � � , C 10ð Þ on PGO,respectively

ð15Þ

where 4 represents the identification operator, and the fusion is

made via a voting operation as formulated by Eqs.32–35 in [10].
Step 2. If the query protein P does not have significant

homology to any protein in the Swiss-Prot database, i.e.,

SP-homo~1 (empty set), or its representative proteins in

S
P-homo

do not contain any useful GO information, then both

the FunD representation PFunD of Eq.6 and the pseudo position-

specific scoring matrix representation Pl
PseEvo of Eq.12 should be

inputted into the prediction engine C
E

. The output will be

determined by fusing many preliminary outcomes associated with

different K of C
E

(cf. Eq.14) and different possible l of the pseudo

sequential evolution descriptor (cf. Eq.12); i.e.,

CE
4P~

CE
4PFunD

CE
4Pl

PseEvo

 !

Outcome by fusing the 10 outputs

~yielded by CE on PFunD and

10|50~500 outputs on Pl
PseEvo

ð16Þ

where the factor 10 is because K in CE can be 1, 2, � � � , 10 and

the factor 50 is because l in Pl
PseEvo can be 0, 1, 2, � � � , 49 (cf.

Eqs.12–13).

Step 3. To make Eqs.15–16 capable to handle proteins with

multiple locations as well, the ensemble classifier C
E

needed to be

modified to C
E(h), where h is a threshold parameter for

controlling the count of multiple location sites and optimizing

Figure 3. Semi-screenshot to show the prediction steps. (a) The top page of the Euk-mPLoc 2.0 web server at http://www.csbio.sjtu.edu.cn/
bioinf/euk-multi-2/. (b) The input of a query protein in FASTA format. (c) The output predicted by Euk-mPLoc 2.0 for the query protein 1 in the
Example window. (d) The output for the query protein 2 in the Example window.
doi:10.1371/journal.pone.0009931.g003
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the predicted results, as formulated by Eqs.39–48 in [10] where it

was also elaborated how to evaluate the overall success rate when

using CE(h) on a benchmark dataset containing both single and

multiple location proteins.

The entire ensemble classifier thus established is called ‘‘Euk-
mPLoc 2.0’’, where ‘‘2.0’’ refers to an updated version evolved from

Euk-mPLoc [14]. To provide an intuitive picture, a flowchart is given

in Fig. 2 to illustrate the prediction process of Euk-mPLoc 2.0.

Protocol Guide
For the convenience of experimental scientists, a user-friendly

web-server was established for Euk-mPLoc 2.0. Below, let us

give a step-by-step guide on how to use it to get the desired results.

Step 1. Open the web server at http://www.csbio.sjtu.edu.

cn/bioinf/euk-multi-2/ and you will see the top page of the

predictor on your computer screen, as shown in Fig. 3a. Click on

the Read Me button to see a brief introduction about Euk-
mPLoc 2.0 predictor and the caveat when using it.

Step 2. Either type or copy and paste the query protein sequence

into the input box at the center of Fig. 3a. The input sequence should

be in the FASTA format. A sequence in FASTA format consists of a

single initial line beginning with a greater-than symbol (‘‘.’’) in the

first column, followed by lines of sequence data. The words right after

the ‘‘.’’ symbol in the single initial line are optional and only used for

the purpose of identification and description. All lines should be no

longer than 120 characters and usually do not exceed 80 characters.

The sequence ends if another line starting with a ‘‘.’’ appears; this

indicates the start of another sequence. Example sequences in FASTA

format can be seen by clicking on the Example button right above the

input box. For more information about FASTA format, visit http://

en.wikipedia.org/wiki/Fasta_format.

Step 3. Click on the Submit button to see the predicted result.

For example, if you use the sequence of query protein 1 in the

Example window, the input screen should look like the illustration

in Fig. 3b; after clicking the Submit button, you will see ‘‘Cell
membrane; Cytoplasm; Nucleus’’ shown on the predicted result

window (Fig. 3c), meaning that the protein is a multiplex one,

which can simultaneously occur in ‘‘cell membrane’’,

‘‘cytoplasm’’, and ‘‘nucleus’’ organelles, fully consistent with

experimental observations. However, if using the sequence of

query protein 2 in the Example window as an input, you will

instead see ‘‘Cytoplasm’’ shown on the predicted result window

(Fig. 3d), meaning that the protein is a single-location one

residing in ‘‘cytoplasm’’ compartment only, also fully consistent

with experimental observations. It takes about 15 seconds for a

protein sequence of 400 amino acids before the predicted result

appears on your computer screen; the longer the sequence is, the

more time it is usually needed.

Step 4. Click on the Citation button to find the relevant

papers that document the detailed development and algorithm of

Euk-mPLoc 2.0.

Step 5. Click on the Data button to download the benchmark

datasets used to train and test the Euk-mPLoc 2.0 predictor.

Caveat. To obtain the predicted result with the expected success

rate, the entire sequence of the query protein rather than its fragment

should be used as an input. A sequence with less than 50 amino acid

residues is generally deemed as a fragment. Also, if the query protein

is known not one of the 22 locations as shown in Fig. 1, stop the

prediction because the result thus obtained will not make any sense.

Results and Discussion

In statistical prediction, it would be meaningless to simply say a

success rate of a predictor without specifying what method and

benchmark dataset were used to test its accuracy. The following

three cross-validation methods are often used to evaluate the

accuracy of a statistical predictor: independent dataset test, sub-

sampling (K-fold) test, and jackknife test [60]. Of these three, the

jackknife test is deemed the most objective because the

independent dataset test and sub-sampling test cannot avoid

arbitrariness, as elaborated in a comprehensive review [10].

Therefore, the jackknife test has been increasingly and widely

adopted to examine the power of various predictors (see, e.g.,

[23,24,25,27,29,31,34,37,61,62,63,64,65,66,67]). However, even

if tested by the jackknife cross-validation, a same predictor can still

yield different success rates for different benchmark datasets. This

is because the more stringent of a benchmark dataset in excluding

homologous sequences, or the more subcellular locations it covers,

the more difficult for a predictor to yield a high overall success

rate. For instance, ProtLock [2] and HSLPred [68] are two

predictors developed for identifying protein subcellular localiza-

tion. Both were reported with the success rates over 70–80%

[2,68] when tested by the benchmark datasets that allow inclusion

of homologous proteins with up to 90% pairwise sequence identity

and cover only 4 or 5 subcellular location sites. However, when the

Table 2. A comparison of Euk-mPLoc 2.0 with Euk-PLoc in the
jackknife cross-validation test on the benchmark dataset
covering 22 location sites where none of the eukaryotic
proteins included has §25% pairwise sequence identity to
any other in a same location.

Subcellular location
site Success rate by jackknife cross-validationa

Euk-mPLoc Euk-mPLoc 2.0

Acrosome 0/14 = 0.00% 1/14 = 7.14%

Cell membrane 262/697 = 37.58% 452/697 = 64.85%

Cell wall 4/49 = 8.16% 6/49 = 12.24%

Centrosome 9/96 = 9.38% 22/96 = 22.92%

Chloroplast 117/385 = 30.39% 318/385 = 82.60%

Cyanelle 12/79 = 15.19% 47/79 = 59.49%

Cytoplasm 918/2186 = 41.99% 1418/2186 = 64.87%

Cytoskeleton 4/139 = 2.88% 44/139 = 31.65%

Endoplasmic reticulum 115/457 = 25.16% 348/457 = 76.15%

Endosome 1/41 = 2.44% 2/41 = 4.88%

Extracell 678/1048 = 64.69% 858/1048 = 81.87%

Golgi apparatus 5/254 = 1.97% 56/254 = 22.05%

Hydrogenosome 0/10 = 0.00% 2/10 = 20.00%

Lysosome 5/57 = 8.77% 26/57 = 45.61%

Melanosome 0/47 = 0.00% 0/47 = 0.00%

Microsome 0/13 = 0.00% 1/13 = 7.69%

Mitochondrion 143/610 = 23.44% 427/610 = 70.00%

Nucleus 1212/2320 = 52.24% 1501/2320 = 64.70%

Peroxisome 1/110 = 0.91% 56/110 = 50.91%

Spindle pole body 0/68 = 0.00% 23/68 = 0.3382

Synapse 0/47 = 0.00% 0/47 = 0.00%

Vacuole 7/170 = 4.12% 101/170 = 59.41%

Total 3493/8897 = 39.26% 5709/8897 = 64.17%

aNote that in order to make the comparison under exactly the same condition,
only the sequences of proteins in the Online Supporting Information S1 but
not their accession numbers were used as inputs during the prediction.

doi:10.1371/journal.pone.0009931.t002
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two predictors were tested by the stringent dataset covering 16

different subcellular locations in which none of proteins included

has §25% pairwise sequence identity to any other in a same

subset, the overall jackknife success rate achieved by ProtLock [2]

would drop down to 28.7% and that by HSLPred [68] down to

33.1%, as reported in [58].

Now the current benchmark dataset is even more stringent

because, in addition to the same threshold to rigorously exclude

the homologous sequences, it covers even more, i.e., 22 location

sites. Besides, to the best of our knowledge, except Euk-mPLoc
[14], so far there is no other web-server predictor whatsoever that

can be used to predict a system with both single- and multiple-

location proteins distributed among 22 different location sites.

Accordingly, to demonstrate the advantage of Euk-mPLoc 2.0, it

would be sufficient to simply compare the success rates achieved

by the new predictor with those by Euk-mPLoc [14].

Listed in Table 2 are the results obtained with Euk-mPLoc
[14] and Euk-mPLoc 2.0 on the benchmark dataset S (cf.

Table 1) by the jackknife cross-validation test. During the testing

process, only the sequences of proteins in Online Supporting

Information S1 but not their accession numbers were used as

inputs in order to make the comparison between the two

predictors under exactly the same condition. During the course

of the jackknife cross-validation by Euk-mPLoc 2.0 and Euk-
mPLoc, the false positives (over-predictions) and false negatives

(under-predictions) were also taken into account to reduce the

scores for calculating the success rate. Note that it is more

complicated to count the over-predictions and under-predictions

for a system containing both single-location and multiple-location

proteins. For the detailed calculation process, refer to Eqs.43–48 as

well as Fig. 4 in a comprehensive review [10]. As we can see from

Table 2, for such a stringent and multiplex benchmark dataset,

the overall success rate achieved by Euk-mPLoc 2.0 is over 64%,

which is about 25% higher than that by Euk-mPLoc.

Finally, it should be pointed out that although Euk-mPLoc 2.0
is more powerful than the existing predictors in identifying the

subcellular locations of eukaryotic proteins, there is much room for

further improvement in future studies. As shown in Table 2, the

success rates by Euk-mPLoc 2.0 for proteins belonging to

‘‘melanosome’’ and ‘‘synapse’’ locations are very low. This is

because of that, compared with the most of the other 20 location

sites, the numbers of proteins in the two sites are not sufficiently

large (cf. Table 1 and Online Supporting Information S1) to train

the prediction engine in a more effective way. It is anticipated that

with more experimental data available for the two sites in the

future, the situation will be improved and Euk-mPLoc 2.0 will

become even more powerful.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0009931.s001 (4.45 MB

PDF)

Acknowledgments

The authors wish to thank the tree anonymous reviewers for their

constructive comments, which are very helpful for strengthening the

presentation of this paper.

Author Contributions

Conceived and designed the experiments: KCC HBS. Performed the

experiments: KCC HBS. Analyzed the data: KCC HBS.

References

1. Nakashima H, Nishikawa K (1994) Discrimination of intracellular and

extracellular proteins using amino acid composition and residue-pair frequen-

cies. J Mol Biol 238: 54–61.

2. Cedano J, Aloy P, P’erez-Pons JA, Querol E (1997) Relation between amino acid

composition and cellular location of proteins. J Mol Biol 266: 594–600.

3. Chou KC, Elrod DW (1999) Protein subcellular location prediction. Protein

Engineering 12: 107–118.

4. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting

subcellular localization of proteins based on their N-terminal amino acid

sequence. Journal of Molecular Biology 300: 1005–1016.

5. Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins.

PROTEINS: Structure, Function, and Genetics 50: 44–48.

6. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: A tool for rapidly

screening proteomes for N-terminal targeting sequences. Proteomics 4:

1581–1590.

7. Matsuda S, Vert JP, Saigo H, Ueda N, Toh H, Akutsu T (2005) A novel

representation of protein sequences for prediction of subcellular location using

support vector machines. Protein Sci 14: 2804–2813.

8. Pierleoni A, Martelli PL, Fariselli P, Casadio R (2006) BaCelLo: a balanced

subcellular localization predictor. Bioinformatics 22: e408–416.

9. Nakai K (2000) Protein sorting signals and prediction of subcellular localization.

Advances in Protein Chemistry 54: 277–344.

10. Chou KC, Shen HB (2007) Review: Recent progresses in protein subcellular

location prediction. Analytical Biochemistry 370: 1–16.

11. Smith C (2008) Subcellular targeting of proteins and drugs. http://

wwwbiocomparecom/Articles/TechnologySpotlight/976/Subcellular-Targeting-

Of-Proteins-And-Drugshtml.

12. Glory E, Murphy RF (2007) Automated subcellular location determination and

high-throughput microscopy. Dev Cell 12: 7–16.

13. Millar AH, Carrie C, Pogson B, Whelan J (2009) Exploring the function-location

nexus: using multiple lines of evidence in defining the subcellular location of

plant proteins. Plant Cell 21: 1625–1631.

14. Chou KC, Shen HB (2007) Euk-mPLoc: a fusion classifier for large-scale

eukaryotic protein subcellular location prediction by incorporating multiple sites.

Journal of Proteome Research 6: 1728–1734.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,

Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,

Sherlock G (2000) Gene ontology: tool for the unification of biology. Nature

Genetics 25: 25–29.

16. Chou KC (2001) Prediction of protein cellular attributes using pseudo amino

acid composition. PROTEINS: Structure, Function, and Genetics (Erratum:

ibid, 2001, Vol44, 60) 43: 246–255.

17. Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict

enzyme subfamily classes. Bioinformatics 21: 10–19.

18. Chou KC, Shen HB (2008) Cell-PLoc: A package of web-servers for predicting

subcellular localization of proteins in various organisms. Nature Protocols 3:

153–162.

19. Shen HB, Chou KC (2008) PseAAC: a flexible web-server for generating various

kinds of protein pseudo amino acid composition. Analytical Biochemistry 373:

386–388.

20. Chou KC (2009) Pseudo amino acid composition and its applications in

bioinformatics, proteomics and system biology. Current Proteomics 6: 262–

274.

21. Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-

amino acid composition and support vector machine for prediction of enzyme

subfamily classes. Journal of Theoretical Biology 248: 546–551.

22. Zhang GY, Li HC, Fang BS (2008) Predicting lipase types by improved Chou’s

pseudo-amino acid composition. Protein & Peptide Letters 15: 1132–1137.

23. Nanni L, Lumini A (2008) Genetic programming for creating Chou’s pseudo

amino acid based features for submitochondria localization. Amino Acids 34:

653–660.

24. Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on

amino acid composition distribution and Chou’s amphiphilic pseudo amino acid

composition. Journal of Theoretical Biology 253: 310–315.

25. Zeng YH, Guo YZ, Xiao RQ, Yang L, Yu LZ, et al. (2009) Using the

augmented Chou’s pseudo amino acid composition for predicting protein

submitochondria locations based on auto covariance approach. Journal of

Theoretical Biology 259: 366–372.

26. Qiu JD, Huang JH, Liang RP, Lu XQ (2009) Prediction of G-protein-coupled

receptor classes based on the concept of Chou’s pseudo amino acid composition:

an approach from discrete wavelet transform. Analytical Biochemistry 390:

68–73.

27. Lin H, Wang H, Ding H, Chen YL, Li QZ (2009) Prediction of Subcellular

Localization of Apoptosis Protein Using Chou’s Pseudo Amino Acid

Composition. Acta Biotheor 57: 321–330.

Protein Subcellular Location

PLoS ONE | www.plosone.org 8 April 2010 | Volume 5 | Issue 4 | e9931



28. Lin H, Ding H, Feng-Biao Guo FB, Zhang AY, et al. (2008) Predicting

subcellular localization of mycobacterial proteins by using Chou’s pseudo amino
acid composition. Protein & Peptide Letters 15: 739–744.

29. Lin H (2008) The modified Mahalanobis discriminant for predicting outer

membrane proteins by using Chou’s pseudo amino acid composition. Journal of
Theoretical Biology 252: 350–356.

30. Li FM, Li QZ (2008) Predicting protein subcellular location using Chou’s pseudo
amino acid composition and improved hybrid approach. Protein & Peptide

Letters 15: 612–616.

31. Jiang X, Wei R, Zhang TL, Gu Q (2008) Using the concept of Chou’s pseudo
amino acid composition to predict apoptosis proteins subcellular location: an

approach by approximate entropy. Protein & Peptide Letters 15: 392–396.
32. Georgiou DN, Karakasidis TE, Nieto JJ, Torres A (2009) Use of fuzzy clustering

technique and matrices to classify amino acids and its impact to Chou’s pseudo
amino acid composition. Journal of Theoretical Biology 257: 17–26.

33. Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins:

approached from Chou’s pseudo amino acid composition and other specific
sequence features. Amino Acids 34: 103–109.

34. Ding H, Luo L, Lin H (2009) Prediction of cell wall lytic enzymes using Chou’s
amphiphilic pseudo amino acid composition. Protein & Peptide Letters 16:

351–355.

35. Esmaeili M, Mohabatkar H, Mohsenzadeh S (2010) Using the concept of Chou’s
pseudo amino acid composition for risk type prediction of human papilloma-

viruses. Journal of Theoretical Biology 263: 203–209.
36. Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to

predict subcellular localization of apoptosis proteins: an approach with immune
genetic algorithm-based ensemble classifier. Pattern Recognition Letters 29:

1887–1892.

37. Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure
content by using the concept of Chou’s pseudo amino acid composition and

support vector machine. Protein & Peptide Letters 16: 27–31.
38. Gonzalez-Diaz H, Gonzalez-Diaz Y, Santana L, Ubeira FM, Uriarte E (2008)

Proteomics, networks, and connectivity indices. Proteomics 8: 750–778.

39. Gonzalez-Diaz H, Prado-Prado F, Perez-Montoto LG, Duardo-Sanchez A,
Lopez-Diaz A (2009) QSAR Models for Proteins of Parasitic Organisms, Plants

and Human Guests: Theory, Applications, Legal Protection, Taxes, and
Regulatory Issues. Current Proteomics 6: 214–227.

40. Gonzalez-Diaz H, Prado-Prado F, Ubeira FM (2008) Predicting antimicrobial
drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem

8: 1676–1690.

41. Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and
bioinformatics - current trends in drugs discovery with networks topological

indices. Curr Top Med Chem 10: 1015–1029.
42. Perez-Montoto LG, Prado-Prado F, Ubeira FM, Gonzalez-Diaz H (2009) Study

of Parasitic Infections, Cancer, and other Diseases with Mass-Spectrometry and

Quantitative Proteome-Disease Relationships. Current Proteomics 6: 246–261.
43. Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, et al. (2003) The

Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-
PROT, TrEMBL, and InterPro. Genome Res 13: 662–672.

44. Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, et al. (2001)
Improving the accuracy of PSI-BLAST protein database searches with

composition-based statistics and other refinements. Nucleic Acids Res 29:

2994–3005.
45. Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, et al. (2009)

Protein function annotation by homology-based inference. Genome Biol 10:
207.

46. Gerstein M, Thornton JM (2003) Sequences and topology. Curr Opin Struct

Biol 13: 341–343.
47. Chou KC (2004) Review: Structural bioinformatics and its impact to biomedical

science. Current Medicinal Chemistry 11: 2105–2134.

48. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel
of influenza A virus. Nature 451: 591–595.

49. Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and
functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16:

1267–1271.

50. Chou KC (2004) Insights from modelling the 3D structure of the extracellular

domain of alpha7 nicotinic acetylcholine receptor. Biochemical and Biophysical
Research Communication 319: 433–438.

51. Chou KC, Cai YD (2002) Using functional domain composition and support
vector machines for prediction of protein subcellular location. Journal of

Biological Chemistry 277: 45765–45769.

52. Cai YD, Zhou GP, Chou KC (2003) Support vector machines for predicting
membrane protein types by using functional domain composition. Biophysical

Journal 84: 3257–3263.

53. Murvai J, Vlahovicek K, Barta E, Pongor S (2001) The SBASE protein domain

library, release 8.0: a collection of annotated protein sequence segments. Nucleic
Acids Research 29: 58–60.

54. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003)
The COG database: an updated version includes eukaryotes. BMC Bioinfor-

matics 4: 41.

55. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, et al. (2006) SMART 5:

domains in the context of genomes and networks. Nucleic Acids Res 34:
D257–260.

56. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, et al. (2006)

Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–251.

57. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C,

Gonzales NR, et al. (2007) CDD: a conserved domain database for interactive
domain family analysis. Nucleic Acids Res 35: D237–240.

58. Chou KC, Shen HB (2006) Predicting eukaryotic protein subcellular location by
fusing optimized evidence-theoretic K-nearest neighbor classifiers. Journal of

Proteome Research 5: 1888–1897.

59. Denoeux T (1995) A k-nearest neighbor classification rule based on Dempster-

Shafer theory. IEEE Transactions on Systems, Man and Cybernetics 25:
804–813.

60. Chou KC, Zhang CT (1995) Review: Prediction of protein structural classes.
Critical Reviews in Biochemistry and Molecular Biology 30: 275–349.

61. Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB (2007) Novel two-
stage hybrid neural discriminant model for predicting proteins structural classes.

Biophys Chem 128: 87–93.

62. Jahandideh S, Sarvestani AS, Abdolmaleki P, Jahandideh M, Barfeie M (2007)

gamma-Turn types prediction in proteins using the support vector machines.

J Theor Biol 249: 785–790.

63. Chen K, Kurgan LA, Ruan J (2008) Prediction of protein structural class using

novel evolutionary collocation-based sequence representation. J Comput Chem
29: 1596–1604.

64. Jiang Y, Iglinski P, Kurgan L (2008) Prediction of protein folding rates from
primary sequences using hybrid sequence representation. J Comput Chem.

65. Yang JY, Peng ZL, Yu ZG, Zhang RJ, Anh V, et al. (2009) Prediction of protein
structural classes by recurrence quantification analysis based on chaos game

representation. Journal of Theoretical Biology 257: 618–626.

66. Vilar S, Gonzalez-Diaz H, Santana L, Uriarte E (2009) A network-QSAR model

for prediction of genetic-component biomarkers in human colorectal cancer.
Journal of Theoretical Biology 261: 449–458.

67. Nanni L, Lumini A (2009) A Further Step Toward an Optimal Ensemble of
Classifiers for Peptide Classification, a Case Study: HIV Protease. Protein &

Peptide Letters 16: 163–167.

68. Garg A, Bhasin M, Raghava GP (2005) Support vector machine-based method

for subcellular localization of human proteins using amino acid compositions,

their order, and similarity search. J Biol Chem 280: 14427–14432.

Protein Subcellular Location

PLoS ONE | www.plosone.org 9 April 2010 | Volume 5 | Issue 4 | e9931


