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Tobacco smoking is an addictive behavior that supports nicotine dependence and is
an independent risk factor for cancer and other illnesses. Its neurogenetic mechanisms
are not fully understood but may act through alterations in the cerebral white matter
(WM). We hypothesized that the vertical pleiotropic pathways, where genetic variants
influence a trait that in turn influences another trait, link genetic factors, integrity of
cerebral WM, and nicotine addiction. We tested this hypothesis using individual genetic
factors, WM integrity measured by fractional anisotropy (FA), and nicotine dependence-
related smoking phenotypes, including smoking status (SS) and cigarettes per day
(CPDs), in a large epidemiological sample collected by the UK Biobank. We performed
a genome-wide association study (GWAS) to identify previously reported loci associated
with smoking behavior. Smoking was found to be associated with reduced WM integrity
in multiple brain regions. We then evaluated two competing vertical pathways: Genes→
WM integrity → Smoking versus Genes → Smoking → WM integrity and a horizontal
pleiotropy pathway where genetic factors independently affect both smoking and
WM integrity. The causal pathway analysis identified 272 pleiotropic single-nucleotide
polymorphisms (SNPs) whose effects on SS were mediated by FA, as well as 22
pleiotropic SNPs whose effects on FA were mediated by CPD. These SNPs were mainly
located in important susceptibility genes for smoking-induced diseases NCAM1 and
IREB2. Our findings revealed the role of cerebral WM in the maintenance of the complex
addiction and provided potential genetic targets for future research in examining how
changes in WM integrity contribute to the nicotine effects on the brain.
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INTRODUCTION

Tobacco smoking is a complex addictive behavior and is the chief
modifiable causal factor for cancer, coronary and cerebrovascular
disorders, chronic obstructive pulmonary disorder, hypertension,
and many other illnesses (McBride, 1992; Ziedonis et al., 2008).
Additive genetic factors explain up to ∼75% of the variance on
traits that quantify nicotine dependence and smoking-related
behaviors in population studies, thus supporting the hypothesis
of a strong genetic susceptibility for nicotine addiction (Kendler
et al., 1999; Vink et al., 2005). Genome-wide association studies
(GWASs) localized and replicated multiple genetic variants
conferring susceptibility to smoking/nicotine addiction including
those regulating nicotinic acetylcholine receptors (nAChRs)
(True et al., 1999; Erzurumluoglu et al., 2019). However,
its neurogenetic mechanisms remain unknown. Neuroimaging
studies reported observational (Zhang et al., 2010; Gons et al.,
2011; Gray et al., 2020) and direct associations (Kochunov et al.,
2013) between smoking and nicotine administration and white
matter (WM) integrity, assessed by the fractional anisotropy (FA)
of water diffusion in diffusion tensor imaging (DTI) (Kochunov
et al., 2007). Cerebral WM is hypothesized to be involved in
both positive and negative reinforcement mechanisms of nicotine
addiction (Benowitz, 2010). The positive effect of nicotine is
associated with cognitive and mood enhancement, which could
be driven through the transient elevation in WM integrity
following nicotine administration (Perkins, 1999; Kochunov
et al., 2013). The nAChRs have been found in the cerebral WM
of both human and nonhuman primates in the previous PET
ligand and histological binding studies (Fujita et al., 2003; Ding
et al., 2004; Pimlott et al., 2004; Hillmer et al., 2011). Their
functions have been studied in peripheral (Lang et al., 2003)
and central (Zhang et al., 2011a) nervous systems. The negative
effect of nicotine in avoiding withdrawal symptoms may also be
caused by reduction in WM integrity due to cerebrovascular and
neurodegenerative risks associated with heavy chronic smoking
(Hudkins et al., 2010; Kim et al., 2010; Gons et al., 2011; Liao et al.,
2011; Zhang et al., 2011a).

Vertical and horizontal pleiotropic pathways are chief causal
mechanisms explaining the phenomenon of genetic variants
affecting multiple traits (Tyler et al., 2009; Paaby and Rockman,
2013; Jordan et al., 2019). Vertical pleiotropy is observed when a
trait influenced by genetic factors has, in turn, influenced another
trait by acting as a mediator. Horizontal pleiotropy refers to
two traits being independently influenced by the same genetic
factors. In the first vertical pleiotropic pathway (Figure 1: model
1), we assume that genetic factors underpinning susceptibility to
nicotine dependence do so through alterations in WM integrity.
In the second vertical pleiotropic pathway (Figure 1: model
2), we alternatively hypothesize that genetic factors underpin
nicotine addiction directly, and the reduction in WM integrity
occurs due to a multitude of harmful effects of chronic or heavy
smoking. Lastly, we also test horizontal pleiotropy (Figure 1:
model 0) where genetic factors affect both WM integrity and
nicotine addiction independently. The proposed models are
complementary to the widely used Mendelian randomization
(MR) models that estimate the causal influence between the
traits by relaxing the conditional independence assumption in

instrumental variable (IV) analysis (Davey Smith and Hemani,
2014; Hemani et al., 2018a,b). We then develop rigorous
analytical approaches to determine and validate the best causal
model for pleiotropic genetic variants associated with both WM
integrity and nicotine addiction.

We analyzed two smoking phenotypes for their biological
relevance to nicotine dependence, smoking status (SS) and
cigarettes per day (CPD), to test the proposed causal pathways in
large-scale epidemiological data from the UK Biobank (UKBB).
We used FA to measure WM integrity. Smoking (being current
smoker or having higher CPD) was found to be associated
with reduced WM integrity in multiple brain regions. Our
data showed that the genetic effects on FA and the two
smoking phenotypes were not independent, so the horizontal
pleiotropy does not hold. Since model 1 and model 2 with a
vertical pleiotropic relationship are two mutually exclusive causal
pathways, we performed mediation analysis and used Bayes
factor to select the optimal model. We identified 272 pleiotropic
variants associated with both SS and FA whose effects on SS
were mediated by FA (model 1 preferred). On the contrary, 22
pleiotropic variants were found to be associated with both CPD
and FA, where CPD acts as a mediator for the genetic effects on
FA (model 2 preferred). The identified variants mainly reside in
two genes NCAM1 and IREB2. Their relationship to the smoking-
induced brain mechanisms will need to be further examined for
their functionality in future studies.

MATERIALS AND METHODS

UK Biobank Cohort
The data used to test our causal pathways are from the UKBB, a
large prospective study that recruited∼500,000 participants aged
between 40 and 69 years in 2006–2010 in 22 assessment centers
throughout the United Kingdom (Sudlow et al., 2015). UKBB
data consist of phenotypic, genotypic, and imaging details about
its participants collected from questionnaires, physical measures,
multimodal imaging, genome-wide genotyping, and longitudinal
follow-up for health-associated outcomes (Sudlow et al., 2015). In
our analysis, UKBB data from all sites and all phases are included.
UKBB carried out an automated processing pipeline for sample
retrieval, data collection, and quality control to convert raw data
to reliable processed data for use by all researchers (UK Biobank,
2007; Alfaro-Almagro et al., 2018; Bycroft et al., 2018). We
restricted our analysis to only participants with white ethnicity
backgrounds (British, Irish, and any other white background)
and with both genotype and nicotine dependence phenotype
data available. For causal pathway analysis, we further narrowed
down to participants who have genotype, nicotine dependence,
and WM integrity phenotype data available. The number of
participants included at each analytic step is summarized in
Supplementary Figure 1.

Nicotine Dependence-Related Smoking
Phenotypes
Supplementary Table 1 summarizes the number of participants
by smoking-related phenotype codes in UKBB. We chose
to analyze the following two phenotypes due to their
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FIGURE 1 | Three competing vertical and horizontal pleiotropy pathways proposed to understand the causal relationship between genetics, white matter integrity,
and nicotine dependence. Model 0 represents a horizontal pleiotropic relationship, while models 1 and 2 represent vertical pleiotropic relationships.

biological relevance to nicotine dependence (Donny et al.,
2008; Benowitz, 2010):

(1) Smoking Status (SS; current vs. never smokers). SS
was a binary trait describing subjects who were either
current smokers or never smokers (past smokers excluded).
Current and never smokers were defined using phenotype
code 20116 (smoking status) in UKBB.

(2) Cigarettes Per Day (CPD; average number of cigarettes
smoked per day by participants who are either current
or past smokers). CPD was a quantitative trait that
measures the heaviness of smoking among ever smokers
(never smokers excluded). It was defined using phenotype
codes 2887 (number of cigarettes previously smoked
daily), 3456 [number of cigarettes currently smoked daily),
and 6183 (number of cigarettes previously smoked daily
(current cigar/pipe smokers)] in UKBB. The CPD values of
participants who smoked less than one CPD were recoded
to 0; and CPD values of those who smoked more than 60
CPD were recoded to 60.

Note that SS and CPD are both related to nicotine dependence
but target different smoker categories. SS focuses on the
difference between current smokers and never smokers, while
CPD focuses on the heaviness of smoking among current
or past smokers.

White Matter Integrity Phenotype
Measured by Fractional Anisotropy
The UKBB consists of multimodal braining imaging data
covering structural, functional, and diffusion imaging (Miller
et al., 2016). In this study, we concentrated on the WM
FA measure derived from diffusion MRI data, a common
measure of WM integrity whose association with smoking
addiction behavior has been reported in previous studies

(Gogliettino et al., 2016). The UKBB database provides 40
FA measures from multiple brain regions (full region names
listed in Supplementary Table 2), including the inferior
cerebellar peduncle (ICP), genu of the corpus callosum
(GCC), body of the corpus callosum (BCC), splenium of
the corpus callosum (SCC), fornix (FX), corticospinal tract
(CST) (mean/right/left), anterior limb of the internal capsule
(ALIC) (right/left), posterior limb of the internal capsule
(PLIC) (right/left), retrolenticular part of the internal capsule
(RLIC) (right/left), anterior corona radiata (ACR) (right/left),
superior corona radiata (SCR) (right/left), posterior corona
radiata (PCR) (right/left), posterior thalamic radiation (PTR)
(right/left), sagittal striatum (SS) (right/left), external capsule
(EX) (right/left), cingulum cingulate gyrus (CGC) (right/left),
cingulum hippocampus (CHG) (right/left), fornix cres+stria
terminalis (FXST) (right/left), superior longitudinal fasciculus
(SLF) (right/left), superior fronto-occipital fasciculus (SFO)
(right/left), uncinate fasciculus (UN) (right/left), and tapetum
(TAP) (right/left). The data were preprocessed using pipeline
similar to that developed by Enhancing Neuro Imaging Genetics
Meta Analysis (ENIGMA) consortium (Thompson et al., 2014).
Before conducting the causal pathway analysis for each FA, we
further performed univariate association analysis by regressing
FA measures on the two smoking phenotypes and kept only
those FA measures with lower values among current smokers or
negatively associated with CPD (β̂ < 0, p < 0.05), motivated by
the findings from previous studies (Savjani et al., 2014; Umene-
Nakano et al., 2014; Gray et al., 2020).

Genotype Data and Genome-Wide
Association Study (GWAS)
The genotype data of UKBB cohort came from two platforms,
Affymetrix UK BiLEVE Axiom and UKBB Axiom R© arrays, which
captured over 90 million single-nucleotide variants (SNVs) of
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∼500,000 subjects (Bycroft et al., 2017). We first removed
variants with minor allele frequency (MAF) below 0.01, Hardy–
Weinberg equilibrium p-value below 0.001, and missing genotype
rate at 5% and removed individuals with more than 2% missing
genotypes. We conducted principal component analysis (PCA)
method to adjust for population stratification and chose the
top 10 principle components (PCs) as recommended by PLINK
(version 2.0)1 (Chang et al., 2015) and in previous studies
(Feng et al., 2009; Kang et al., 2009; Price et al., 2010; Warren
et al., 2017). We then performed GWAS separately on the two
smoking phenotypes SS and CPD adjusting for age, gender,
body mass index, genotyping chip type, and the acquired top
10 PCs using PLINK (version 1.92) (Chang et al., 2015). The
most significantly associated loci (i.e., p < 5 × 10−8) were
used for the causal pathway analysis. Considering the strong
linkage disequilibrium (LD) of neighboring single-nucleotide
polymorphisms (SNPs), we also included SNPs in the genomic
regions ± 250 kb around the peak boundaries (Supplementary
Figures 2–7). GWAS was not performed on FA measures,
which is underpowered due to the relatively small number of
participants having neuroimaging data available. In the causal
pathway analysis, we further selected pleiotropic SNPs that are
associated with both smoking phenotypes and FA measures.

Causal Pathway Discovery
Denote by G the genotype, M the FA measures, Y the smoking
phenotypes (SS or CPD), and Z the potential covariates. In this
study, we included age and gender as covariates to be adjusted
in the model. Given the directed graph structures in Figure 1,
we can represent the three competing models by factorizing their
joint distributions:

Model0 : Pr(M, Y|G, Z) = Pr(M|(G, Z))Pr(Y|(G, Z))

Model1 : Pr(M, Y|G, Z) = Pr(M|(G, Z))Pr(Y|(M, G, Z))

Model2 : Pr(M, Y|G, Z) = Pr(Y|(G, Z))Pr(M|(Y, G, Z))

Model 0 assumes genetics to be a common cause of both
FA and smoking phenotypes independently (“SNP→ Smoking,”
“SNP → FA” and FA ⊥ Smoking given SNP and confounders)
and represents a horizontal pleiotropic relationship. Model 1 and
model 2 are two alternative mediation models that represent
a vertical pleiotropic relationship. In model 1 (“SNP → FA
→ Smoking”), FA measures are regarded as the mediators that
mediate the effect of SNPs on smoking. In contrast, model 2
(“SNP → Smoking → FA”) considers the long-term effect of
chronic smoking on the brain structure and regards smoking as
the mediator that mediates the effect of SNPs on FA.

We performed automatic causal pathway discovery analysis
(Heckerman et al., 1999; Spirtes and Zhang, 2016; Glymour
et al., 2019) to identify the optimal pleiotropic pathway. Our
analyses started by identifying the potentially pleiotropic variants
of FA and smoking for each FA measure separately. We then

1www.cog-genomics.org/plink/2.0/
2www.cog-genomics.org/plink/1.9/

evaluated the association between each FA measure and smoking
given the SNP effects to distinguish horizontal pleiotropy from
vertical pleiotropy. For variants with a vertical pleiotropic
relationship, we further conducted causal mediation analysis to
choose the best mediation model that explains the relationship
between SNP, FA, and smoking. Below, we describe the analytical
steps in details.

Step 1: Identification of Pleiotropic Variants
Suppose we start with a set of g0 SNPs gained by GWAS for n
subjects. Let Gij denote the genotype of the ith subject in the
jth SNP (1 ≤ i ≤ n, j ∈ g0), Mil denote the lth continuous FA
measure (1 ≤ l ≤ 40) of ith subject, Yi denote the SS/CPD
value, and Zi denote the covariates of the ith subject. We assume
an additive genetic model, and let Gij = 0, 1, or, 2 represent
the number of copies of minor alleles. In the first step, we
look for SNPs that are associated with both FA measures and
SS/CPD (i.e., potentially pleiotropic variants). Notably, this step
is also a necessary condition to establish mediation for both
model 1 and model 2, where the mediator and the outcome are
simply switched in the two models (Judd and Kenny, 1981; James
and Brett, 1984; Baron and Kenny, 1986). First, we fit a linear
regression model on each SNP for each FA measure separately
adjusting for the covariates Z to look for SNP–FA association.
Then we fit a logistic regression or a linear regression model on
each SNP for SS or CPD, adjusting for the covariates Z to look for
SNP–smoking association:

(1a) Regress M on G and Z:

Mil = α1 + β1jGij + γ1Zi + ε1i, ε1i ∼ N
(
0, σ2

1
)
,

1 ≤ i ≤ n, 1 ≤ l ≤ 40, j ∈ g0

(1b) Regress Y on G and Z:

Y is binary (SS) : logit(P(Yi = 1)) = α2 + β2jGij + γ2Zi,

1 ≤ i ≤ n, j ∈ g0

Y is continuous (CPD) :Yi = α2 + β2jGij + γ2Zi + ε2i, ε2i

∼ N
(
0, σ2

2
)
, 1 ≤ i ≤ n, j ∈ g0

where α1 and α2 are the intercepts, γ1 and γ2 are the effects
of covariates, and β1j and β2j correspond to the genetic effect
of the jth SNP on M and Y (subscript l was omitted for α1
and β1j for simplicity). The cutoff for statistical significance is
chosen to control for the overall false discovery rate (FDR < 0.15)
in identifying the potentially pleiotropic variants in the shared
subset that meets both SNP–FA and SNP–smoking association
criteria (see Supplementary Methods). We then used the
Functional Annotation of Variants—Online Resource (FAVOR)
(Li et al., 2020) to annotate the identified pleiotropic variants for
more biological insights.

Step 2: Distinguish Horizontal From Vertical
Pleiotropy
Model 0 assumes a horizontal pleiotropic relationship, while
models 1 and 2 assume a vertical pleiotropic relationship. The
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main feature of horizontal pleiotropy is that the two traits
(smoking and FA) are independent given the SNP effect. In this
step, we conducted association analysis between FA and SS/CPD
conditioning on the SNP. If the conditional independence
holds (conditional independence test p > 0.05), the variants
demonstrate horizontal pleiotropy; otherwise, they demonstrate
vertical pleiotropy.

Step 3: Selection of the Best Mediation Model for
Vertical Pleiotropy
Model 1 and model 2 are two mutually exclusive mediation
models under the vertical pleiotropy assumption. Mediation
analysis investigates how a third variable affects the relation
between two other variables and is a useful tool in discovering
the hidden mechanism in many biological fields (MacKinnon
et al., 2007). We conducted exploratory mediation analysis and
selected the best mediation model for each pleiotropic SNP using
Bayes factor criteria (Kass and Raftery, 1995; Denison et al., 2002;
Bernardo and Smith, 2009). We validated the selected model
by checking the major causality assumptions and testing and
categorizing the mediation effects.

Suppose that the set of SNPs that meet the criteria of vertical
pleiotropy from step 1 and 2 is g1, to determine the best
mediation model from the two candidates, and we regress the
outcome on both exposure variable and mediator for model 1
(outcome = SS/CPD) and model 2 (outcome = FA), respectively,
adjusting for covariates Z:

(2a) Regress Y on G, M, and Z:

Y is binary (SS) : logit(P(Yi = 1)) = α3 + β31jGij + β32Mil

+γ3Zi, 1 ≤ i ≤ n, 1 ≤ l ≤ 40, j ∈ g1

Y is continuous (CPD) :Yi = α3 + β31jGij + β32Mil + γ3Zi

+ε3i, ε3i ∼ N
(
0, σ2

3
)
, 1 ≤ i ≤ n, 1 ≤ l ≤ 40, j ∈ g1

(2b) Regress M on G, Y, and Z:

Mil = α4 + β41jGij + β42Yi + γ4Zi + ε4i, ε4i ∼ N
(
0, σ2

4
)
,

1 ≤ i ≤ n, 1 ≤ l ≤ 40, j ∈ g1

where α3 and α4 are the intercepts; γ3 and γ4 are the effects of
covariates; β31j and β41j represent the direct effects of SNPs on
outcomes Y and M in models 1 and 2, respectively; and β1jβ32
and β2jβ42 represent the indirect effects of SNPs on outcome via
the mediators M or Y in models 1 and 2, respectively.

To select the mediation model that best explains the causal
relationship for each SNP j, we propose to use the penalized
likelihood Bayesian information criterion (BIC) score as a
model selection criterion (Schwarz, 1978). By definition, BIC =

−2log(L̂)+ plog (n), where L̂ denotes the maximized value of the
likelihood, p is the number of parameters, and n is the sample size.
Since the two mediation models have exactly the same number of
parameters, we are directly comparing the maximum likelihoods
of the two models. The maximum likelihoods of model 1 and
model 2 can be derived from their joint distribution combining

step 1 and step 2 (model 1: 1a+2a; model 2: 1b+2b), with the
parameters evaluated at maximum likelihood estimation (MLE):

Model1 :L̂ (M1) = L(α̂1, β̂1j, γ̂1, σ̂
2
1|Ml, Gj, Z)

L(α̂3, β̂31j, β̂32j, γ̂3, σ̂
2
3|Y, Gj, Ml, Z)

Model2 :L̂(M2) = L(α̂2, β̂2j, γ̂2, σ̂
2
2|Y, Gj, Z)

L(α̂4, β̂41j, β̂42j γ̂4, σ̂
2
4|Ml, Gj, Y, Z)

The BIC-based model selection performs exploratory
mediation analysis to determine the favored mediation model
for each potentially causal variant. We then validated the
mediation model selected by carefully checking the causal
mediation assumptions (see Supplementary Methods). Once
the model assumptions are checked, the causal mediation
has been established. For model 1, β31j represents the direct
effect, β1jβ32 represents the indirect/mediation effect, and β2j
represents the total effect. For model 2, β41j represents the direct
effect, β2jβ42 represents the indirect/mediation effect, and β1j
represents the total effect. Zhao et al. (2010) classified mediation
into three types according to significance and direction of the
direct effect when mediation effect is significant: when the direct
effect is also significant and has the same sign, the mediation is
called a complementary mediation; if they point to the opposite
directions, the mediation is called a competitive mediation; lastly,
if the direct effect is not significant, the mediation is indirect-only
mediation. We followed this classification to interpret the final
mediation results for each variant.

All statistical analyses were conducted using R (R Core Team,
2020). An R package “mediation” (Tingley et al., 2014) was used
for model checking in mediation analysis.

RESULTS

Genome-Wide Association Study and
Selection of Smoking Associated Loci
Genome-wide association study were conducted separately
for SS and CPD (N = 293,759 and 142,202, respectively).
Numerous important smoking behavior associated loci
previously reported were reproduced in our study (Gelernter
et al., 2006; Thorgeirsson et al., 2008; Keskitalo et al., 2009;
Bloom et al., 2014; Bidwell et al., 2015a; Erzurumluoglu et al.,
2019; Xu et al., 2020) as highlighted in the circular Manhattan
plots (Figure 2). Notably, the significant loci identified for
each of the two traits have little overlap, implying the different
genetic bases of the two nicotine dependence-related smoking
phenotypes. The loci associated with SS are mainly located
in regions on chromosomes 9, 10, and 11 marked by genes
FAM163B, SARDH, CNNM2, and NCAM1 and non-coding
RNA LOC101928847, while loci associated with CPD are located
in regions on chromosomes 8, 15, and 19 marked by genes
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FIGURE 2 | A concentric circular Manhattan plot of the GWAS results for smoking status (SS) and cigarette per day (CPD) for chromosomes 1–22. Each dot
represents an SNV; x- and y-axis refer to genomic locations and –log10(p-value). The SNVs with –log10(p-value) are larger than 12 for chr15 and chr19 of CPD, and
larger than 20 for chr9 and chr11 of SS were not included in the plot. The three highest signals mapped on genes CHRNB3, CHRNA3, CHRNB4, IREB2, CYP2A6,
and RAB4B of CPD and the four highest signals mapped on genes FAM163B, SARDH, CNNM2, and NCAM1 and lncRNA LOC101928847 of SS are labeled in the
plot. GWAS, genome-wide association study; CPD, cigarette per day; SNV, single-nucleotide variant.

CHRNB3, CHRNA3, IREB2, and RAB4B (Table 1). The results
validated the gene findings of smoking behaviors in previous
GWASs (Ware et al., 2011; Lassi et al., 2016).

Next, we performed causal pathway analysis on the
significantly associated loci (p < 5e-8) for SS and CPD.
Considering the strong LD among nearby loci, we also
included loci in the extended genomic regions by 250 kb
both upstream and downstream of the peak regions
(Supplementary Figures 2–7). This covers genomic regions
including a total of 5,828 SNPs for SS and 4,420 SNPs for CPD
(Table 1). In the causal pathway analysis stage, we focused on
participants who have genotype, FA measure, and smoking
phenotype data available (N = 23,624 for SS and N = 8,830 for
CPD) and further narrowed down the analysis to pleiotropic
variants that were also associated with FA measures (see Methods
of Causal pathway analysis Step 1).

Causal Pathway Analysis for Smoking
Status
Univariate association analysis found 29 FA measures from
various brain regions that show significantly lower FA values

among current smokers than never smokers (β̂ < 0 , p < 0.05;
Supplementary Table 3), supporting the findings in previous
literature (Savjani et al., 2014; Umene-Nakano et al., 2014;
Gray et al., 2020). We proceeded with the causal pathway
analysis for each of these 29 FA measures. Only the FA
measure in the right tract of the ALIC (ALIC-R) had pleiotropic
variants that passed the statistical significance thresholds (overall
FDR < 0.15); thus, we continued with this FA measure only in
the subsequent steps. We observed 272 SNPs having a pleiotropic
effect on SS and ALIC-R (detailed annotation information
from FAVOR is included in Supplementary Table 5). The
significant association between ALIC-R and SS held given
the genetic effects of any of the SNPs, implying a vertical
pleiotropic relationship (Supplementary Table 4), so we no
longer proceed with model 0. In comparing the two mediation
models of vertical pleiotropy, model 1 where FA mediates the
genetic effect on SS is favored. Key mediation assumptions were
checked for the chosen model. A majority of those variants
(244 out of 272) resided in gene NCAM1 (Supplementary
Table 5). The role of NCAM1 in addiction has been found in
recent studies (Bidwell et al., 2015b; Muskiewicz et al., 2018).
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TABLE 1 | The selected genomic regions for causal pathway analysis and representative marker genes.

CHR Regions selected Numbers of SNPs
selected

Numbers of SNPs with
GWAS p-value < 1e-8

Representative
marker genes

References

Start bp End bp

Cigarette per day (CPD)

8 42,302,562 42,842,209 1,321 130 CHRNB3 Thorgeirsson et al. (2008); Erzurumluoglu
et al. (2019)

15 78,635,394 79,163,637 1,523 1,016 CHRNA3,
CHRNB4, IREB2

Keskitalo et al. (2009); Erzurumluoglu et al.
(2019)

19 41,033,670 41,552,849 1,576 428 RAB4B, CYP2A6 Thorgeirsson et al. (2008); Bloom et al.
(2014), Erzurumluoglu et al. (2019)

Smoking status (SS)

9 136,192,141 136,724,472 1,889 47 FAM163B, SARDH Furberg et al. (2010); Xu et al. (2020)

10 104,428,075 105,088,344 1,547 536 CNNM2 Erzurumluoglu et al. (2019); Xu et al. (2020)

11 112,580,002 113,399,158 2,392 252 LOC101928847,
NCAM1

Gelernter et al. (2006); Bidwell et al.
(2015a), Xu et al. (2020)

SNPs, single-nucleotide polymorphisms; GWAS, genome-wide association study.

Zhu et al. (2016) discussed about two possible explanations for
an observed association between genotype and trait, including
true causality or strong LD with true causal variants in the
same locus. Here, we did not distinguish the 244 variants for
true causality vs. linkage and treated all of them as candidate
causal variants. Figure 3 shows how these SNPs impacted
SS via ALIC-R. Current smokers carry a significantly larger
number of minor allele copies of these SNPs than never smokers
on average (β̂41 > 0). The indirect effect of carrying more
minor alleles via FA in ALIC-R is in the opposite direction
of the direct effect (β̂2β̂42 < 0), thus regarded as competitive
mediation (see Supplementary Table 6 for a complete mediation
analysis results).

Causal Pathway Discovery for Cigarette
per Day
Univariate association found 29 FA measures that show
significantly negative association with CPD (β̂ <0 , p < 0.05;
Supplementary Table 3). Among these 29 FA measures, only
two FA measures in the ALIC-R and left tract of the PCR
(PCR-L) had pleiotropic variants that passed the statistical
significance thresholds (overall FDR < 0.15); thus, we continued
with these two FA measures only in the subsequent steps. We
observed 22 SNPs having a pleiotropic effect on CPD and FA
measures ALIC-R and PCR-L (Supplementary Table 5). CPD
and FA measures are dependent on each other given the genetic
effects (Supplementary Table 4), implying a vertical pleiotropic
relationship. Model 2 (CPD mediates the genetic effect on FA)
was chosen as the best mediation model for these 22 SNPs, and
the key mediation assumptions were checked for the chosen
model. These variants are located in the exonic, intronic, and
untranslated regions of gene IREB2 (Supplementary Table 5).
Figure 4 shows how these SNPs impacted the two regional
FA measures ALIC-R and PCR-L via CPD. The minor alleles

of these SNPs appear to have a protective direct effect on
brain structure (β̂41 > 0), while exerting an adverse effect
associating with higher CPD (β̂2β̂42 < 0), regarded as competitive
mediation (see Supplementary Table 6 for a complete mediation
analysis results).

DISCUSSION

In this study, we used novel causative imaging genetics analyses
to test neurogenetic mechanisms of nicotine dependence through
altered WM integrity. We hypothesized and tested three
pleiotropic models to explain the complex causal relationship
among genetics, WM integrity, and nicotine dependence. Our
GWAS on SS and CPD identified two different sets of associated
genetic variants including many reported to be related to smoking
in previous large-scale GWASs or meta-analyses (Hardin et al.,
2012; Wain et al., 2015; Zeng et al., 2020). We also found
smoking (being current smoker or having higher CPD) to
be associated with lower WM integrity measured by FA in
multiple brain regions. The causal pathway analysis identified 272
pleiotropic SNPs associated with FA in ALIC(R) and SS, and 22
pleiotropic SNPs associated with FA in ALIC(R) and PCR(L)
and CPD. These SNPs are mainly located in genes NCAM1 and
IREB2. NCAM1 was found to influence risk of nicotine addiction
(Gelernter et al., 2006; Muskiewicz et al., 2018). IREB2, which
regulates iron mechanism in the cell, was a susceptibility gene for
both neurodegeneration and smoking-induced diseases (DeMeo
et al., 2009; Cooper et al., 2019). Interestingly, these two sets of
SNPs favored different vertical pleiotropic pathways: Gene→ FA
→ SS vs. Gene → CPD → FA. The basic genetic components
of addiction might have produced a pattern change in WM
among smokers, reinforcing the addiction behavior. Chronic
severe smoking (reflected in, e.g., CPD) will have negative impact
to overall health, which in turn reduces the WM integrity.
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FIGURE 3 | ALIC-R mediates the genetic effects of 244 variants located within NCAM1 (chr11: 112,835,024–113,060,660) on SS. Exact locations of the 244
variants on the genome and their pairwise LD scores are shown. Bar chart shows the average number of minor allele copies for 244 variants among two groups of
subjects to describe the current smokers have more copies of minor alleles than never smokers. Colors in the brain images denote the average –log10(p-value) of FA
association with the 244 variants. The direct (β̂41) and indirect effects (β̂2β̂42) are averaged over all SNPs. ALIC-R, right tract of the anterior limb of the internal
capsule; LD, linkage disequilibrium; FA, fractional anisotropy; SNPs, single-nucleotide polymorphisms.

We have used an imaging genetics approach to test
the neurogenetic mechanisms. Traditional imaging genetics
treat neuroimaging as the mediator of the genetic effect on
behavior through a unidirectional model (Meyer-Lindenberg
and Weinberger, 2006; Bogdan et al., 2017). We use novel
causal mediation models to evaluate vertical and horizontal
pleiotropy pathways, SNP → behavior → brain vs. SNP →
brain → behavior vs. SNP → behavior and SNP → brain,
in understanding the neurogenetic mechanism of nicotine
addiction behavior. Constraint-based methods and score-based
methods are two main categories of conventional causal
discovery methods (Glymour et al., 2019). Constraint-based
methods identified causal links by conducting conditional
independence tests, while score-based methods selected the
model with the optimal score from multiple candidate causal
models (Spirtes and Zhang, 2016). Here, we proposed to perform
conditional independence test to distinguish vertical pleiotropy
from horizontal pleiotropy, and we used a BIC score-based
method to select the optimal model with the larger score from
the two competing vertical pleiotropic models represented by
directed acyclic graph (DAG). Such hybrid approach exploited
principled ways to combine advantages of both methods and was
a computationally efficient strategy to learn the causal structure
in a wide range of real-life applications (Wong et al., 2002;

Tsamardinos et al., 2006; Scutari et al., 2018). In our data,
such an approach indeed resulted in a DAG with higher
likelihood values.

Vertical pleiotropy and horizontal pleiotropy are two
competing types of pleiotropy in complex polygenic traits
(Paaby and Rockman, 2013). Conventional MR framework
treats pleiotropic genetic factors as IV to elucidate how one
phenotype (modifiable exposure) causally relates to another
phenotype (the outcome) (Davey Smith and Hemani, 2014),
but it only considers the vertical pleiotropy with no direct
causal link between SNP and outcome (known as exclusion
restriction assumption) (Hemani et al., 2018a). We developed
a model that evaluates both vertical and horizontal pleiotropy
pathways simultaneously and used a rigorous likelihood-
based approach to determine the optimal model. We found
a significant direct effect of SNPs on the outcomes using
our data, which violates the exclusion restriction assumption
(Davey Smith and Hemani, 2014). Such extension from
the MR framework to tolerate SNPs violating the exclusion
restriction assumption of IV analysis has also been seen in
recent genetic literature (Bowden et al., 2015; Verbanck et al.,
2018). In addition, to establish causality, we also carefully
checked the main causal mediation model assumptions of
the optimal model.
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FIGURE 4 | CPD mediates the genetic effects of 22 variants located within IREB2 (chr15: 78,459,619–78,503,762) on two regional FA measures (ALIC-R and
PCR-L). Exact locations of the 22 variants on the genome and their pairwise LD scores are shown. Due to the strong LD relationship among the variants, CPD was
regressed on the first PC of 22 variants to describe the association of CPD vs. genetics. Colors in the brain images denote the average –log10(p-value) of FA
association with the 22 variants. The direct (β̂41) and indirect effects (β̂2β̂42) are averaged over all SNPs and FA measures. CPD, cigarette per day; FA, fractional
anisotropy; ALIC-R, right tract of the anterior limb of the internal capsule; PCR-L, left posterior corona radiata; LD, linkage disequilibrium; SNPs, single-nucleotide
polymorphisms.

The biophysical mechanisms that link smoking and lower
WM integrity are unknown. Most studies in chronic and heavy
smokers reported reduced FA values when compared with those
in nonsmokers (Swan and Lessov-Schlaggar, 2007; Hudkins et al.,
2010; Kim et al., 2010; Cullen et al., 2011; Gons et al., 2011; Liao
et al., 2011; Zhang et al., 2011a,b). Absolute WM FA values are
sensitive to many parameters including myelin content, intra-
voxel axonal crossing, and axonal fiber density and diameter
(Beaulieu, 2002). However, long-term changes in regional FA
values were shown to be mainly (r > 0.8) driven by changes
in regional cerebral myelin concentrations and myelin packing
(Song et al., 2003, 2005; Madler et al., 2008). Our findings strongly
implicate cerebral WM in the maintenance of this complex
addiction and provide genetic targets for further analyses.
This finding should encourage future research to examine how
changes in WM integrity may or may not contribute to the
overall nicotine effects on brain and cognition. Heavy chronic
smoking increases the risk of the development of abnormalities
in vascular endothelial morphology and function, which may
cause cerebral perfusion leading to poorer neurocognition
(Pittilo, 2000). Additionally, chronic smoking can impact the
vasomotor reactivity/responsivity of the cerebrovascular through
upregulation of Ca2+ channels and/or modulation of nitric
oxide, resulting in the reduction of regional cerebral blood
flow (Zubieta et al., 2001; Domino et al., 2004) and the
development of WM disease (Liao et al., 1997; Ding et al., 2003;
Jeerakathil et al., 2004).

Our study population consists of individuals with white
ethnic background, and we pooled the UKBB data from

different assessment sites and phases together in the
analyses without considering the heterogeneity across sites
and phases. Future studies are needed to evaluate the
generalization of our conclusion to individuals from other
races or ethnicities and to assess whether the conclusions
are related to site and phase effects. Our study focused on
the most significant variants from GWAS for the causal
pathway analysis. Considering the high dimensionality of
SNPs and the complex polygenic architecture of both smoking
and WM integrity, SNPs with weak signals may not be
identified. Further investigation in large independent cohorts
is needed to validate current causal analysis results and
provide a full picture of the complex genetic architecture of
smoking and brain structure, which will in turn improve our
understanding of the neurogenetic mechanism of nicotine
addiction behavior.
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