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Abstract
The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role
in a wide range of biological processes including regulation of gene expression, embryogenesis and
neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2
protein is involved in each of these activities, and only recently some new significant insights are
emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads
to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical
role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by
the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas.
This review focuses on recent data that explain the mechanism by which HMGA2 induces the
development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1
protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.

Background
Pituitary tumors constitute 10% of intracranial neo-
plasms, and are mostly benign with slow growth [1]. Most
pituitary neoplasms secrete hormone gene products, lead-
ing to disturbed endocrine functions. Prolactinomas
account for the most common type of pituitary adenomas
[1,2], while about one-third of pituitary adenomas are not
associated with clinical hypersecretory syndromes, but
with symptoms of an intracranial mass that leads to head-
aches, hypopituitarism or visual-field disturbances, which
are classified as non-functioning pituitary adenomas
(NFPAs). The genesis of pituitary tumors is still mainly
unknown, but the actual model supposes that genetic

alterations represent the initializing event that transforms
pituitary cells, and that hypothalamic hormones and
other local growth factors may play an important role in
promoting the growth of already transformed cells. How-
ever, the classical gene alterations involved in cell trans-
formation, such as ras, BRAF, Rb, do not appear to be
responsible for the onset of pituitary adenomas [3]. Only
up to 40% of sporadic human GH-secreting adenomas
have missense mutations of the Gsα gene [4], and many
functional adenomas present the overexpression of a
recently discovered powerful transforming gene, PTTG,
which is able to exert strong transforming effects both in
vitro and in vivo [5].
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Recently, our group suggested a critical role for high-
mobility group A2 (HMGA2) gene in pituitary oncogene-
sis. In fact, transgenic mice expressing high levels of the
HMGA2 gene develop pituitary adenomas secreting prol-
actin and growth hormone [6], (Figure 1).

The HMGA2 protein belongs to the HMGA family. The
HMGA protein family members are non-histones, small,
nuclear proteins, that bind the minor groove of AT-rich
DNA sequences through their "AT-hook" domains local-
ised in the N-terminal region of the proteins [7]. These
proteins play key roles in chromatine architecture and
gene control by serving as generalized chromatin effec-
tors, either enhancing or suppressing the ability of more
usual transcriptional factors to act in transcriptional regu-
lation [8].

HMGA2 expression is restricted during embryogenesis,
whereas it is absent or very low in normal adult tissues
[9,10]. Induction of HMGA2 gene expression occurs in
several human malignant neoplasias, including thyroid
[11,12], pancreas [13], breast [14], and colorectum [15-
17], and seems to play a critical role in cell transforma-
tion, since the block of its synthesis prevents rat thyroid
transformation by murine transforming retroviruses [18].
Conversely, rearrangements of the HMGA2 gene are fre-
quently detected in human benign tumors of mesenchy-
mal origin [19]. Consistent with the onset of pituitary
adenomas in HMGA2-transgenic mice, we have found the
induction of HMGA2 expression in human prolactinomas
in association with amplification and/or rearrangement
of the gene [20], and, recently, we have shown that also
the majority of NFPAs express HMGA2, but, in these
cases, it is not associated to over-representation of the
HMGA2 region [21].

HMGA2 binds to pRB and inhibits its function
The Retinoblastoma protein, pRB, has been suggested to
be a key protein in the pituitary tumorigenesis because of
the pituitary tumors developed by RB+/- mice [22], but no
RB mutations, apart from few high aggressive pituitary
carcinomas [23], have been so far reported in human pitu-
itary pathology [24]. However, methylation of the RB
gene-promoter region at a CpG island, resulting in loss of
protein expression, has been described in human pituitary
tumor cells [25], suggesting that pRB is indeed critical in
human pituitary tumorigenesis.

pRB controls cell cycle progression through its interaction
with the E2F family of transcription factors [26,27], whose
activity is crucial for the expression of several genes
required to enter the S phase of the cell cycle [28,29]. The
transcriptional activity of E2F1 is repressed in non-prolif-
erating cells by its interaction with pRB that masks the
activation domain of E2F1, and prevents it to contact the

general transcription machinery [30]. Conversely, in pro-
liferating cells, pRB is phosphorylated at multiple sites by

Magnetic Resonance Image of a HMGA2 transgenic mouse showing a pituitary adenoma (indicated in circle)Figure 1
Magnetic Resonance Image of a HMGA2 transgenic mouse 
showing a pituitary adenoma (indicated in circle).
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cyclin-dependent kinases [31,32], resulting in the release
of E2F1 and, consequently, transcriptional activation of
its target genes [33]. More recently, a new mechanism of
pRB-mediated E2F1 repression has been suggested in
addition to this one. It is an active repression that pRB
exerts on E2F1-mediated transcription by recruiting class I
histone deacetylase proteins (HDAC1) to the E2F1-sites.
The HDACs repress transcription by removing acetyl
groups from the histones, thereby facilitating the conden-
sation of nucleosomes into chromatin and therefore
blocking access to transcription factors [34].

Based on the striking mirror similarities between the phe-
notypes of pRB [22,35] and HMGA2 [36,37] animal mod-
els, our group has recently investigated a potential
functional interaction between HMGA2 and the Retino-
blastoma protein [38]. By co-immunoprecipitating
HMGA2 and pRB in pituitary adenomas developed by
HMGA2 mice, we demonstrated the interaction between
the two proteins occurring in the tumor. This interaction
was then repeated and confirmed in vitro with recom-
binant proteins, finding that one of the pRB domains
involved in the interaction is the A/B pocket [30], the
same domain that is also involved in the interaction with
E2F1, HDAC1 and viral oncoproteins such as those pro-
duced by the E1A adenovirus [39,40]. This was very inter-
esting because it suggested that HMGA2, similarly to the
viral oncoproteins, could inhibit pRB function by displac-
ing E2F1 and HDAC1 from pRB. By transfection, luci-
ferase and colony assays, we could establish that the
overexpression of HMGA2 antagonizes the activity of
pRB. In fact it blocks the pRB-dependent inhibition of
both E2F1 target gene transcription and cell proliferation.
Interestingly, this positive role of HMGA2 on cell prolifer-

ation is due to the interaction with pRB, opening a new
class of cell cycle related proteins: "the suppressors of the
cell cycle inhibitors". As described above, HMGA2 is con-
sidered a bona fide oncogene because it induces both neo-
plastic transformation of cultured rat fibroblasts [41] and
tumors in transgenic mice [6]. Interestingly, we found that
the interaction between HMGA2 and pRB is crucial for the
transforming activity of HMGA2 protein. In fact, in a
focus assay on rat fibroblasts, HMGA2 mutants unable to
bind pRB lost the capacity of the wild-type gene to trans-
form cells. These results suggest that the binding between
HMGA2 and pRB may be generally involved in HMGA2-
mediated cell transformation.

HMGA2 displaces HDAC1 from E2F1 target 
promoters and causes acetylation of both 
histones and E2F1 protein
Using competitions with recombinant proteins and Chro-
matin Immonoprecipitation (ChIP) experiments, we
demonstrated that following the binding of HMGA2 to
pRB (Figure 2, step1), HDAC1 is displaced from the E2F1-
target promoters (Figure 2, step 2) where it was recruited
by pRB [34]. Consistently, HDAC1 activity associated to
pRB is lower in cells and pituitary adenomas overexpress-
ing HMGA2 than in mock-transfected cells and normal
pituitary, respectively [38]. Histone acetyl transferases and
histone deacetylases acetylate and deacetylate core his-
tone tails that protrude from the nucleosome. Histone
acetylation is thought to weaken the interaction between
histone N-terminal tails and DNA, thus opening up the
chromatin and increasing accessibility for activating tran-
scription factors [42,43]. Therefore, the displacement of
HDAC1 from pRB results in the recruitment of histone
acetyl transferase to the E2F1-target promoters and

Schematic model of E2F1 activation by HMGA2Figure 2
Schematic model of E2F1 activation by HMGA2. Following HMGA2 overexpression, transcription through E2F1 sites 
switches from repression to activation through four steps: 1- HMGA2 binds to pRB, which is complexed with E2F1 and 
HDAC1 to form the active repression; 2- the interaction between HMGA2 and pRB displaces HDAC1; 3- in the absence of 
HDAC1, the histone acetylase enzymes are recruited and, by acetylating histones, relieve transcriptional repression; 4- histone 
acetylases also acetylate E2F1 causing the stabilization of its "free" active form.

Step 1: Binding of HMGA2 Step 2: Displacement of HDAC1 Step 3: Acetylation of histones Step 4: Acetylation of E2F1
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acetylation of both histones and other proteins, including
E2F1. This was convincingly demonstrated by ChIP exper-
iments using antibodies against acetylated histone H3 and
E2F1 [38]. The acetylation of both histones and E2F1 pro-
tein increase about two-fold the E2F1 transcriptional
activity. In fact, as above described, the acetylation of his-
tones opens up the chromatin and facilitates gene tran-
scription (Figure 2, Step 3). Moreover, acetylation of E2F1
augments its DNA binding and stabilizes the protein in its
"free" active form [44] (Figure 2, Step 4). Thus, as a conse-
quence of the E2F1 acetylation, HMGA2 can indirectly
also cause the displacement of E2F1 from pRB as it was
observed by ChIP and re-ChIP experiments on the cyclin
E1 promoter [38].

Suppression of pituitary tumorigenesis in 
HMGA2 transgenic mice lacking E2F1
Does the afore-reported HMGA2-dependent molecular
events result in enhanced E2F1-dependent gene transcrip-
tion in pituitary adenomas? The affirmative answer comes
once again from the study of the HMGA2 transgenic mice.
In fact, pituitary adenomas excised from these mice were
used in EMSA assays to analyze the E2F1-DNA binding in
pituitary tumours compared to normal pituitary glands
from wild-type mice [38]. The data obtained showed a
drastic increase of the "free" active form of the E2F/DNA
complex. Moreover, by RT-PCR and ChIPs on tissues,
expression of E2F-target genes, such as CDC1 and TK1,
was shown to be enhanced, and E2F1 to be more
acetylated in adenomas compared to normal glands
(unpublished data). This suggests that E2F1 activity is a
critical event in pituitary tumorigenesis of HMGA2 mice.

To address this hypothesis, we crossed HMGA2 transgenic
mice with E2F1 knock-out mice to generate double
mutants [38]. With our big satisfaction, the hypophysis of
these mice was only rarely and however minimally inter-
ested to the adenomatous phenotype. In fact, the ade-
noma was diagnosed in only 25% of double mutant mice
in respect to HMGA2 transgenic mice which all developed
pituitary tumors. Moreover the tumours of the mice lack-
ing E2F1 were smaller and slower growing than those
developed by the HMGA2 mice. Interestingly, even in
pituitary adenomas developed by HMGA2 mice lacking
E2F1 the interaction between HMGA2 and pRB was
present, however, the E2F "free" DNA binding activity did
not show any significant increase compared to control
wild-type glands. Conversely, an increase in E2F "free"
DNA binding was always observed in pituitaries from sin-
gle mutant HMGA2 mice even before the appearance of
the pituitary tumour. Thus, even though HMGA2 is still
able to bind pRB in the absence of E2F1, there are no
other proteins belonging to the E2F family, whose DNA
binding activity is enhanced following the HMGA2/pRB
interaction. Therefore, it is likely that other E2F-independ-

ent mechanisms are responsible for the pituitary altera-
tions observed in the minority of these mice.

Conclusion
Our data demonstrate that E2F1 activation is a crucial step
required for the onset of pituitary adenomas in HMGA2
transgenic mice. Since HMGA2 amplification and overex-
pression has been detected also in human pituitary ade-
nomas, we retain that E2F1 activation plays a critical role
also in the human pituitary pathology.

These conclusions are not completely unexpected since
several studies have previously demonstrated that altera-
tions of the pRB/E2F pathway are critical for the develop-
ment of pituitary adenomas in mice [45-47]. However,
what appears to be really novel, is the mechanism that
leads to E2F1 activation by HMGA2: the E2F1 protein is
not displaced from the pRB complex, but an increased
acetylation that is dependent on the removal of HDAC1
from pRB takes place. It would be very interesting to know
whether the same mechanism may be induced by other
proteins able to bind to the pRB complex and thereby are
involved in pituitary tumorigenesis. To answer to this
question, it would be interesting to evaluate the acetyla-
tion status of the E2F1 protein in pituitary adenomas
when the HMGA2 is overexpressed or not. The presence of
E2F1 hyperacetylation in the absence of HMGA2 overex-
pression would suggest the involvement of other proteins
acting with the same or similar mechanism of HMGA2
protein, or alternatively other mechanisms that eventually
lead to an increase in E2F1 acetylation and subsequent
activation.
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