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Abstract

Acute kidney injury (AKI) is a common, serious complication of cardiac surgery. Since prior 

studies have supported a genetic basis for postoperative AKI, we conducted a genome-wide 

association study (GWAS) for AKI following coronary bypass graft (CABG) surgery. The 

discovery dataset consisted of 873 non-emergent CABG surgery patients with cardiopulmonary 

bypass (PEGASUS), while a replication dataset had 380 cardiac surgical patients (CATHGEN). 

Single nucleotide polymorphism (SNP) data were based on Illumina Human610-Quad 

(PEGASUS) and OMNI1-Quad (CATHGEN) BeadChips. We used linear regression with 

adjustment for a clinical AKI risk score to test SNP associations with the postoperative peak rise 

relative to preoperative serum creatinine concentration as a quantitative AKI trait. Nine SNPs 

meeting significance in the discovery set were detected. The rs13317787 in GRM7|LMCD1-AS1 

intergenic region (3p21.6) and rs10262995 in BBS9 (7p14.3) were replicated with significance in 

the CATHGEN data set and exhibited significantly strong overall association following meta-

analysis. Additional fine-mapping using imputed SNPs across these two regions and meta-analysis 

found genome wide significance at the GRM7|LMCD1-AS1 locus and a significantly strong 

association at BBS9. Thus, through an unbiased GWAS approach, we found two new loci 

associated with post-CABG AKI providing new insights into the pathogenesis of perioperative 

AKI.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
$Corresponding author. Mihai V. Podgoreanu, MD, Department of Anesthesiology, Duke University Medical Center, DUMC 3094, 
Durham, NC 27710, Phone: 919-681-4720, Fax: 919-681-4776, mihai.podgoreanu@duke.edu.
8See Appendix for list of members of the PEGASUS investigative team
*contributed equally as first authors
#contributed equally as senior authors

Disclosure
The authors declare that they have no competing interest.

HHS Public Access
Author manuscript
Kidney Int. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:
Kidney Int. 2015 October ; 88(4): 823–832. doi:10.1038/ki.2015.161.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


Keywords

acute kidney injury; coronary artery bypass graft surgery; GWAS; BBS9

Introduction

Acute kidney injury (AKI), as reflected by systemic accumulation of nitrogenous waste 

products due to impaired plasma filtration (e.g., creatinine and blood urea nitrogen), occurs 

in a variety of clinical scenarios where it is consistently associated with poor outcome.1 The 

postoperative period represents an ideal setting for epidemiological investigation of AKI, 

since up to 47% of all in-hospital episodes follow surgery.2 Particularly, cardiac surgery is 

the most common etiology of postoperative AKI,3 with an incidence ranging between 5 and 

30% following coronary artery bypass graft (CABG) surgery.4–6 Escalating degrees of AKI 

are closely associated with more complicated postoperative courses, including increased in-

hospital mortality rates, and (for survivors) needs for intensive and post-discharge 

supportive care, hospital readmissions, and poorer subsequent quality of life and long-term 

survival.7–10

Numerous AKI risk factors have been identified in cardiac surgery cohorts, including 

advanced age, obesity, chronic kidney disease (CKD), diabetes, poor ventricular function, 

hypertension, embolic and inflammatory processes, and specific surgery-related 

interventions (e.g., intra-aortic balloon counter pulsation or the use of cardiopulmonary 

bypass).11–17 Nonetheless, current risk models poorly explain observed variability in AKI 

occurrence.18

Beyond traditional clinical risk factors, a genetic predisposition for postoperative AKI has 

been suggested by previous candidate gene studies.19 To date, association studies of post-

CABG AKI have mostly focused on selected candidate genes that modulate inflammatory 

and vasomotor responses to injury, including functional alleles influencing cytokine 

production that can cause renal tubular and microvascular damage,20–27 but are limited by 

marked heterogeneity of AKI phenotype definitions, lack of power, and poor 

reproducibility. Family and linkage studies, although impractical as tools for the study of 

perioperative AKI, demonstrate impaired glomerular filtration (GFR) to be a heritable 

trait,28, 29 supporting the heritability of renal dysfunction in general. However, a heritability 

index has not been specifically assessed for AKI. Similarly, although several genome-wide 

association studies (GWAS) have identified susceptibility loci for indices of renal function 

(estimated GFR) and CKD,30–32 comparable studies are lacking for AKI in general and 

following cardiac surgery in particular. We therefore conducted a GWAS among 

participants from Perioperative Genetics and Safety Outcome Study (PEGASUS), followed 

by independent replication using data from CATHeterization GENetics (CATHGEN) study 

at Duke Heart Center to identify common genetic variants that show association with risk of 

developing AKI following cardiac surgery with cardiopulmonary bypass (CPB).
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Results

Descriptive statistics for demographic and clinical variables and comparisons between the 

two datasets are presented in Table 1. The discovery (PEGASUS) and replication 

(CATHGEN) datasets consisted of 873 and 380 subjects of self-reported European ancestry, 

respectively; CATHGEN had more females than PEGASUS (38.4% vs. 23.6%, p<0.001). 

Postoperative AKI was common and occurred at similar rates in both cohorts, as reflected by 

the relative increase in serum creatinine concentration from baseline (preoperative) to peak 

values within the first ten days after surgery expressed as a percentage rise (%ΔCr),14 which 

averaged 22.5 (standard deviation, SD=35.9) for PEGASUS and 23.6 (SD=37.0) for 

CATHGEN, respectively (p=0.6). This is further supported by similar AKI case rates as 

defined by AKIN, RIFLE, and KDIGO criteria. Finally, severe AKI (KIDGO stage 3) 

complicated the postoperative courses of 16 (1.2%) patients in the PEGASUS and 6 (1.6%) 

in the CATHGEN cohort.33 Although the prevalence of baseline CKD was marginally 

higher in the PEGASUS cohort, serum creatinine concentrations and estimated glomerular 

filtration rates (eGFR) were similar between groups both at baseline (preoperative) and 

postoperatively. Notably, the types of cardiac surgical procedures were different between the 

two datasets (p<0.001), with all patients in the discovery cohort undergoing isolated CABG, 

whereas 29% of patients in the replication cohort had concomitant valve surgery. Additional 

differences in comorbidities between the two cohorts included higher prevalence of 

congestive heart failure, hypertension, and hypercholesterolemia in CATHGEN. 

Consequently, the average clinical AKI risk score was significantly higher in the replication 

than discovery cohort (32.1±6.8 vs. 26.3±12.6, p< 0.001, Table 1).

Association results

The genome wide association results from the discovery cohort are depicted as Manhattan 

and quantile-quantile (QQ) plots, which showed good adherence to null expectations (Figure 

S1-A and -B). Nine single nucleotide polymorphisms (SNPs), located in seven loci, showed 

promising association with %ΔCr (p<10−5) from the GWAS and were brought forward for 

replication (Table 2). Two of these SNPs showed nominal significant associations with 

%ΔCr in the replication cohort - rs13317787 (p=0.02) at 3p21.6 (intergenic region between 

GRM7|LMCD1-AS1), and rs10262995 (p=0.03) at 7p14.3 (located in BBS9), with allelic 

effects on %ΔCr in the same direction as observed in the discovery cohort. The overall 

association results derived from meta-analysis of both datasets revealed strong association 

with AKI for both rs13317787 (meta-p=5.35×10−7) and rs10262995 (meta-p= 2.24×10−7), 

close to commonly accepted genome wide significance levels (p< 5×10−8). The 

heterogeneity I2 between the two datasets at these two SNPs was not significant (Table 2: 

I2=0).

To provide a high-resolution overview of the association signal across the 3p31.6 and 

7p14.3 loci, we performed in silico fine-mapping by imputing the untyped SNPs on chr3: 

6,907,193–8,537,944 (for the GRM7 to LMCD1-AS1 region), and chr7: 33,173,404–

33,639,870 (for the BBS9 region), respectively. Among 2029 genotyped and imputed SNPs 

at 3p31.6, 44 including the initially identified rs13317787 (spanning from chr3: 8,099,146–

8,161,987) met discovery criteria (p<10−5), and 17 of these reached genome-wide 
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significance in meta-analysis (meta-p < 5×10−8). The most significant SNP (meta-

p=2.49×10−11) is an un-named SNP located at chr3:8,119,772 (SNP 3-8119772; Figure 1A; 

Table S1), which is also in strong linkage disequilibrium (LD) (r2=0.97) with rs1488349 

(chr3: 8,153,260), the second most significant SNP in meta-analysis (meta-p=5.41×10−10) 

(Table S1). Since minor allele frequencies for 3-8119772 and rs1488349 are relatively low 

(between 1% and 3%), we also conducted permutation tests with 106 repeats to obtain 

empirical p-values (min empirical p=4.07×10−5 for 3-8119772, Table S1). Furthermore, all 

other top SNPs (43 SNPs) at 3p31.6 were highly correlated with SNP 3-8119772 (r2=0.52–

0.77), including rs13317787 (r2=0.65) the initial SNP identified from GWAS (Table S1). 

Fine-mapping of the BBS9 region identified one additional imputed SNP (rs28619003; 

chr7:33548225), in complete LD with the original top SNP rs10262995 (r2=1), which also 

approached genome-wide significance after meta-analysis (meta-p=6.51×10−8) (Figure 1B, 

Table S1).

Further analysis of the relationship of identified loci with AKI

To further assess the clinical relevance of the identified loci, we estimated the AKI 

incidence and severity observed with variation in the chromosomal regions of interest using 

the original genotyped SNPs rs13317787 and rs10262995 as representative tag SNPs in the 

combined dataset (N=1,253). For both SNPs, AKI incidence increased with each additional 

copy of the minor allele (Figure 2). Average %ΔCr (SD) for rs13317787 was 21.8% (0.34) 

for the CC genotype, 40.5% (0.63) for CA, and 108.0% (0.90) for AA. Similarly, for 

rs10262995, average %ΔCr (SD) was 20.6% (0.32), 32.4% (0.49), and 62.1% (0.57) for CC, 

CA, and AA genotypes, respectively.

We also evaluated the ability of two SNPs with strongest association signals (rs1488349 in 

GRM7|LMCD1-AS1 and rs28619003 in BBS9 regions) to predict inter-individual variability 

in %ΔCr. When jointly added to the patient-specific clinical AKI risk score, the two loci 

explain roughly double the %ΔCr variance (r2: 9.7% vs. 4.9% in the discovery cohort, and 

9% vs 3.6% in the replication cohort, Table 3). The improved r2, corroborated by two 

commonly used global measures of relative model fit like the Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), both demonstrating reduced (albeit 

modestly) values (differences of 39.5 and 39.5 for AIC and BIC, respectively, Table 3) 

support the superior performance of the clinical-genomic model as a postoperative AKI risk 

stratification tool to potentially individualize reno-protective interventions.

Discussion

In this study, we present a genome-wide analysis to screen genetic variants associated with 

AKI following CABG surgery with CPB. Using a discovery-replication analysis approach 

involving independent cardiac surgical cohorts and a continuous variable (%ΔCr) to reflect 

AKI severity, we describe two novel susceptibility loci: the first with genome-wide 

significant association is located in the intergenic region GRM7|LMCD-AS1 (chr3p21.6; 

lowest meta-p= 2.49×10−11), and the second at the boundary of genome wide significance in 

the Bardet-Biedl syndrome 9 (BBS9) gene (chr7p14.3; min meta-p=6.51×10−8). Patients 

carrying one or both of the minor alleles at these loci show an incremental increase in risk of 
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incident AKI, even after accounting for currently known clinical AKI risk factors. We 

believe this is the first such analysis and speculate that our findings have uncovered a novel 

predictive tool to improve individualized AKI risk stratification, which may also provide 

pathophysiologic clues to better investigate and prevent postoperative AKI.

Although no previous GWAS for postoperative AKI is available for comparison, a survey of 

the two risk loci for links with renal disorders is warranted. At the 3p21.6 locus, an 

intergenic region bounded by GRM7 (glutamate receptor, metabotrophic 7) and LMCD1 

(LIM and cysteine rich domains protein 1, dyxin) genes, our study identified a 62.8kb peak 

region highly associated with AKI (17 genome wide significant SNPs in Table S1, Figure 

1). No direct functional roles are currently attributed to this intergenic region. However, 

SNPs in this region were located within active regulatory elements based on ENCODE 

ChIP-Seq and DNase-Seq data in RegulomeDB34. Additionally, HaploReg35 lists rs1488349 

as located within a hypothetical gene, AC018832.1 (based on GENCODE data), or at the 3’ 

end of LMCD1 antisense RNA 1 (LMCD1-AS1), a non-coding RNA (based on the RefSeq 

data). LMCD1 is a member of the LIM-domain family of zinc finger proteins, abundantly 

expressed in kidney tissue, and functionally involved in protein-protein interactions with 

transcriptional co-repressor activity (MIM*604859) (http://www.ncbi.nlm.nih.gov/omim), 

including regulation of the calcineurin-NFAT signaling cascade known to play a critical role 

in recovery from AKI.36 Our literature review did not identify direct functional links 

between the GRM7|LMCD-AS1 intergenic region and AKI pathophysiology, thus future 

studies are needed to uncover its potential regulatory roles.

Most interestingly, our second risk locus involves a peak 1.8kb region in BBS9 

(MIM*607968), also known as parathyroid hormone-responsive B1 gene (PTHB1), named 

for its relationship with Bardet-Biedl syndrome (BBS, MIM*209900). Kidney disease is a 

key feature and major source of early mortality with BBS.37, 38 Approximately 10% of 

children and adolescents with BBS have end-stage renal disease, and 25% of surviving 

patients have CKD by their fifth decade. Almost all BBS patients have renal structural 

defects, and while renal glomerular abnormalities are rare, one-third of patients have 

vasopressin-resistant urinary concentration defects. A BBS9 translocation is also associated 

with the most common pediatric renal malignancy, Wilm’s tumor.39

BBS is a genetically heterogeneous multiorgan ciliopathy of non-motile cilia that includes 

mutant variants of their anchoring structure or “BBSome” (also known as the basal body).40 

In the kidney, BBS9 proteins are expressed in focal adhesions and play a central role in 

controlling cilia length through regulation of actin cytoskeleton polymerization.41 While the 

exact role of BBS9 within the BBSome remains unknown, the protein is conserved across 

species, highly expressed in adult human kidney,38 and approximately 6% of BBS cases 

involve BBS9 mutations.42–44 Although these mutations are not available in our SNP panels, 

the two BBS9 intronic variants identified in this study (rs10262995 and rs28619003) were 

part of an LD block located immediately upstream of a recombination hotspot in intron 20 

(Figure S2).

Non-motile or primary cilia (containing BBS9) are solitary apical appendages found on most 

cells in the body that function as signal transduction antennae. Renal primary cilia act as 
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mechanosensors that protrude into the nephron lumen from tubule and collecting duct 

epithelial cells, and are necessary for water absorption in the kidney.45 Critical drops in 

tubular flow, such as occur with AKI, are sensed by the cilia and activate cell proliferation, 

presumably to promote renal recovery.46, 47 Following ischemia/reperfusion induced AKI, 

renal primary cilia undergo predictable morphologic changes, as observed in kidney 

transplant patients and animal experiments; these include a doubling in length over the first 

7 days, and return to normal size over weeks as recovery occurs.48 Collectively, these 

observations suggest that further investigation of the potential mechanistic involvement of 

BBS9 in postoperative AKI pathogenesis is warranted.

While this report expands the investigation of cardiac surgery-associated AKI from 

candidate gene to an unbiased GWAS approach, several limitations remain. First, although 

power estimates indicate that our sample sizes (N=873 in discovery alone or N=1,253 for 

the combined two datasets) can reach 80% power to detect SNPs in similar ranges of MAF 

(0.03–0.09) and proportion of %ΔCr variation (  to 4.4%) as observed in this study 

(see Supplementary Materials), we may still miss potential susceptibility variants with 

smaller effect sizes. A more powerful study could also have been achieved through 

refinements to our AKI phenotype and clinical risk score incorporating additional variables 

such as preoperative albuminuria, acute decline in renal function over the months prior to 

and following surgery, and perioperative use renin-angiotensin system inhibitors, data which 

was not available for all patients. Further, our results would have been bolstered if a 

validation cohort from another institution were included in the analysis. Nonetheless, 

baseline to peak postoperative serum creatinine concentration increase is highly validated as 

a marker of adverse outcome following cardiac surgery in studies from numerous 

institutions, and variables identified for inclusion in our clinical renal risk score are similar 

to those from previous studies.23 Of note, sensitivity analyses revealed that the top two 

variants identified (rs13317787 and rs10262995, Table 2) remain associated with 

postoperative AKI as defined using the standard KDIGO criteria, albeit at nominal 

significance levels (p=0.05 and 0.03, respectively). The weaker association signal, likely 

reflecting a limited number of cases and controls (294 vs. 579) available for association 

analysis using the dichotomous KDIGO AKI phenotype, supports however our primary 

findings using %ΔCr as a continuous phenotype.

Second, markers at the 3p21.6 locus are rare (minor allele frequencies between 1–3%) and, 

although supported by empirical p-values, a larger sample size would increase confidence in 

this finding. Combining strict genotype QC criteria with visual inspection of cluster plots for 

rs13317787 revealed well-separated genotype clusters (Figure S3), thus confirming accurate 

genotype calling for this rare maker. Although we used an imputation method to refine the 

two most significant association loci, this strategy is not designed toward rare functional 

variants. These concerns notwithstanding, our findings could form the basis of a genetic pre-

operative risk stratification tool which, by individually assessing risk alleles of rs13317787 

and rs10262995 in the current samples, would have identified 2.3% and 7.4% of cardiac 

surgery patients, respectively, to have considerably elevated AKI risk (1.5–5 fold greater 

rise in serum creatinine) relative to non-carriers. As preliminary evidence for increased 

predictive ability, genotype information at the two loci improves the performance of a 
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patient-specific clinical risk score for postoperative AKI, with the clinico-genomic model 

explaining a higher proportion of variability in the primary AKI phenotype (%ΔCr) and 

showing improved (albeit modestly) relative fit as evidenced by lower AIC and BIC. Such a 

genetic susceptibility biomarker for postoperative AKI would be useful not only to assist 

clinical decision-making, but also to aid researchers in identifying candidates for evaluation 

of promising reno-protective interventions.

Finally, although we provide intriguing indirect evidence for possible mechanistic roles of 

the observed risk loci, our study offers no direct functional analysis to validate the GWAS 

hits. Such interpretation of these putative noncoding regulatory variants could entail gene 

expression, eQTL, and allelic imbalance analyses in animal models. The limited availability 

of well-characterized animal models of post-cardiac surgery AKI represents a possible 

obstacle, and may require the use of experimental models of acute renal ischemia-

reperfusion injury, which in addition to the significant pathobiological differences reported 

between common forms of human AKI and rodent models, would limit clinical relevance 

and translatability to a cardiac surgical population.

As AKI is a significant complication of cardiac surgery that contributes to perioperative 

mortality and medical cost, a better understanding of its risk factors is important. Our 

comprehensive study design presented here has pinpointed two novel susceptibility loci 

(chr3p21.6 and BBS9) for AKI after cardiac surgery with CPB. The conclusion of this report 

will provide candidate regions for future genetic research on cardiac surgery-associated 

AKI, and may eventually lead to improved preoperative screening, novel prevention and 

intervention options to reduce AKI and associated morbidity and mortality.

Materials and Methods

Study design

We utilized two independent cohorts, from the PEGASUS and the CATHGEN studies at 

Duke Heart Center, to conduct initial common variant discovery by GWAS followed by 

replication analysis of top candidate single nucleotide polymorphisms (SNPs), respectively. 

Both PEGASUS and CATHGEN studies were approved by the Duke University School of 

Medicine Institutional Review Board, and all patients provided informed consent. Our study 

was performed in accordance with the Declaration of Helsinki and followed the 

“Strengthening the Reporting of Genetic Association Studies” (STREGA) 

recommendations.49 For this AKI substudy, patients in the discovery cohort were 

participants in the ongoing PEGASUS longitudinal study, and underwent isolated non-

emergent CABG surgery with CPB between 1997 and 2006.50 Patients were excluded from 

enrollment in PEGASUS if they had a history of end-stage renal disease, active liver 

disease, bleeding disorders, autoimmune diseases, or immunosuppressive therapy. An a 

priori decision was made to limit the analyses to subjects of self-reported European 

ancestry, justified by the limited number of non-Caucasian patients in the PEGASUS 

GWAS dataset and to avoid potential confounding from population admixture given 

previous reports identifying self-reported race as an independent predictor of postoperative 

AKI.7, 23 After applying quality control criteria (see below) and excluding patients with 
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missing genotypes or phenotypic information, 873 subjects of self-reported European 

ancestry met eligibility for genome-wide association analysis.

The replication dataset consists of 380 subjects of self-reported European ancestry from the 

CATHGEN study,51, 52 who underwent non-emergent CABG with or without concomitant 

valve surgery using CPB between 2006 and 2010. Similarly, CATHGEN enrollees with end-

stage renal disease prior to surgery were excluded from this substudy. Patient and procedural 

characteristics for both cohorts were collected and curated from the Duke Information 

System for Cardiovascular Care, an integral part of the Duke Databank for Cardiovascular 

Disease.

Primary phenotype and clinical data

Daily serum creatinine concentrations considered in this study were those routinely 

measured at baseline (preoperative) and up to 10 postoperative days at a single core hospital 

laboratory for both the discovery and validation datasets. The primary study outcome was a 

continuous AKI endophenotype, the percentage change of the highest postoperative serum 

creatinine from the baseline preoperative concentration (%ΔCr).14 For each patient, %ΔCr 

reflects a gross approximation of the maximum relative loss of renal function. For example, 

a postoperative serum creatinine doubling (100% rise) approximates a 50% acute functional 

nephron loss. Notably, in this study we selected %ΔCr (as with our previous studies23, 53) in 

preference to standard dichotomous definitions of AKI (e.g., KDIGO, AKIN and RIFLE 

criteria54–56), which include thresholds for relative creatinine rise (e.g., 50%) that closely 

resemble %ΔCr. Considering that dichotomous outcomes are known not to be as informative 

as continuous outcomes, the rationale for using %ΔCr as a quantitative AKI trait was to 

enhance the ability and power to identify risk variants,57 as evidenced by previously 

reported GWAS of other continuous renal traits such as eGFR30, 58 and serum creatinine59 

in ambulatory populations. Importantly, %ΔCr reflects a spectrum of injury to the kidneys 

that often does not meet the dichotomous AKI threshold criteria; even small relative rises in 

serum creatinine are associated with substantial reductions in post-operative event-free 

survival.60, 61

Multiple preoperative and postoperative clinical measures were collected including patient 

characteristics, procedural variables, and information related to renal function (Table 1). 

Descriptive statistics for serum creatinine concentrations, estimated glomerular filtration rate 

(eGFR) based on the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 

equation62, as well as alternative definitions of AKI (KDIGO, AKIN, RIFLE) are provided 

for both baseline (preoperative) and peak postoperative measures. Further, a patient-specific 

clinical AKI risk score was computed based on a previously developed multivariable model 

that used traditional clinical and procedural risk factor in a large contemporaneous 

consecutive cohort (N=10,708) of non-emergent CABG surgery with CPB procedures 

between July 2000–July 2010, as (−2.59207 − 7.72486 × (preoperative creatinine) + 

0.30737 × (weight) + 0.14174 × (aortic cross − clamp time) + 16.35924 × (transfusion) − 

9.06373 ×(hypertension)). The clinical risk score was a priori confirmed to be 

independently predictive of AKI in the PEGASUS study cohort, and thus incorporated as a 

covariate in regression models to adjust the SNP associations with %ΔCr.
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Genotyping and quality controls (QCs)

Genomic DNA was isolated from whole blood using standard procedures. Genotyping the 

PEGASUS discovery cohort used the Illumina Human610-Quad BeadChip at the Duke 

Genomic Analysis Facility for a total of 1004 samples. The Illumina GenomeStudio 

program (Illumina Inc., San Diego CA) was used for genotype calling. Markers with low 

GenCall score (≤ 0.15) or call frequency < 98% were filtered out. Samples with call rate < 

98% or gender specification errors were also excluded in this initial QC. Additional QCs, 

conducted using PLINK software,63 included checks for cryptic relatedness and 

duplications. For a pair of samples with identity by descent (IBD) >0.1875 (between 2nd and 

3rd degree relative), one sample was excluded from further analysis. Population structure 

was investigated using EigenSoft program64. All 15 principal components (PCs) were 

computed for each sample, and multiple PC plots were generated to determine whether any 

obvious outliers deviated from the main cluster and hence should be excluded. In total, we 

filtered out 44 samples (14 with call rate < 0.98, 3 with gender errors, 21 due to their 

relatedness with other samples, and 6 outliers from PC analysis). The QC’ed genotype 

dataset consisted of 960 subjects with 561,091 markers. Additionally, 86 subjects missing 

%ΔCr data, and one outlier with extreme high %ΔCr (outside of 3 SD from the mean %ΔCr) 

were excluded. Therefore, the final PEGASUS analysis dataset consists of 873 patients, all 

of European descent, with both genotype and phenotype data available.

All CATHGEN samples were genotyped using Illumina OMNI1-Quad BeadChip, and 

subjected to the same marker and sample QC criteria described above for PEGASUS. 

Following QC, a subset of CATHGEN samples was selected based on availability of %ΔCr 

data. Only SNPs identified in the discovery dataset were tested in the CATHGEN cohort for 

replication purposes.

Imputation of untyped markers

To increase overlap in SNP coverage between the genotyping platforms used for PEGASUS 

and CATHGEN cohorts for both replication analysis and meta-analysis, as well as to 

improve coverage of top candidate regions for fine-mapping associations, imputation of 

untyped autosomal SNPs was conducted in the post-QCed PEGASUS genotype dataset (960 

samples with 561,091 markers) using a hidden Markov Model algorithm implemented in 

IMPUTE v2 software65 and phased haplotypes from the 1000 Genomes CEU reference 

panel. The best-guess imputed genotype for any untyped SNP per sample was chosen as the 

genotype with the highest imputation probability (imputation score). If the highest 

imputation score for an imputed SNP of a sample was less than 90%, a missing imputed 

genotype was assigned.

Statistical Analysis

Descriptive statistics of clinical variables are presented as frequency (percentage) for 

categorical variables and mean (standard deviation) for continuous variables. None of the 

principal components (PCs) derived from population structure analysis were significantly 

associated with %ΔCr in univariate linear regression tests, suggesting a lack of population 

stratification in our ethnically homogenous patient cohorts. As such, no ancestry covariates 

were included in the final multivariable linear regression model, which therefore tested SNP 
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allelic association with %ΔCr adjusting only for the patient-specific AKI clinical risk score. 

An additive genetic model was used for coding each SNP genotype (0 for common 

homozygous, 1 for heterozygous, and 2 for rare homozygous).

Association analyses were carried out in the discovery cohort for all variants that passed 

QCs. Additional marker exclusion criteria – significant deviations from Hardy-Weinberg 

equilibrium (HWE) (P<10−6), genotype missingness rate < 10%, heterozygous haploid, 

minor allele frequency (MAF) < 1% - were applied to all association tests throughout the 

study. For the discovery dataset, no markers were excluded based on the 10% missingness 

threshold due to our prior stringent QC criteria to choose markers with >98% call 

frequencies. In total, 30,375 SNPs were excluded, leaving 530,716 SNPs to be tested in the 

final dataset. We used an a priori defined significance threshold of p<10−5 to select 

candidate SNPs for replication in the CATHGEN cohort, as a balance between the overly 

conservative Bonferroni correction and type II error, given that we had an a priori defined 

replication dataset to obviate type I error.

Association tests for the replication dataset were performed based on the same regression 

model with an additional covariate indicating patient-specific heart valve surgery status; 

statistically significant replication was defined as nominal significance in the replication 

cohort (p<0.05) with the same direction of allelic effect. All analyses were conducted using 

PLINK.

Finally, meta-analyses were performed to assess the overall effect of SNPs tested in both 

cohorts (meta-p values) using z-scores weighted by the inverse variance of effect size of 

each study, implemented in METAL66(http://www.sph.umich.edu/csg/abecasis/metal). The 

weighted z-score method allows for an overall p-value (meta-p) to be computed, by taking 

into account the beta-estimates and their standard errors from both datasets. The top 

genomic regions with SNPs meeting meta-p value <10−6 were further investigated (fine-

mapped) by adding all imputed markers within the region in discovery dataset, followed by 

replication and meta-analysis as described above. Same marker exclusion criteria described 

for HWE, genotype missingness rate, and MAF were also applied to imputed markers prior 

to association analysis.

Linkage disequilibrium (LD) block information was computed and displayed using 

HaploView67(version 4.2) for top candidate regions. To evaluate whether genetic 

information independently adds prognostic value for postoperative AKI above traditional 

risk factors, we contrasted multiple regression models of AKI clinical risk score alone 

(clinical model) and with the addition of most significant independent SNPs (defined by LD) 

in top associated regions (clinical-genomic model). To facilitate model performance 

comparison, we present p-values, r2, and two commonly used information criteria (AIC and 

BIC) for each model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional association plot for (A) chr3p21.6 locus (GRM7|LMCD1-AS1) and (B) BBS9 gene, 

presenting – log10(p-values) from the discovery (PEGASUS) and replication (CATHGEN) 

datasets, as well as the meta-analysis. Directly genotyped SNPs are plotted in black; imputed 

markers are plotted in red.
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Figure 2. 
Comparative graphical representation of genotypic effects of rs13317787 at the chr3p21.6 

locus (A&C) and rs10262995 in BBS9 (B&D) on incident post-cardiac surgery acute kidney 

injury (AKI) – defined using either the KDIGO criteria56 or peak postoperative serum 

creatinine increase (%ΔCr). The dashed line represents a 2-fold (100%) increase in serum 

creatinine from baseline, approximately equivalent to a 50% reduction in glomerular 

filtration rate.
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Table 1

Patient, Renal and Procedural Characteristics

Discovery cohort
(PEGASUS
N=873)

Replication cohort
(CATHGEN
N=380)

p-value

Patient characteristics

  Demographic variables

    Age (years) 63.8 (10.1) 62.9 (11.0) 0.175

    Body weight (kg) 86.7 (18.7) 87.2 (20.2) 0.689

    Female sex 206 (23.6%) 146 (38.4%) <0.001

  Comorbidities

    Left ventricular ejection fraction (%) 55.3 (14.3) 55.6 (17.7) 0.776

    Angina 495 (58.0%) 138 (42.6%) <0.001

    Arrhythmia 189 (22.0%) 52 (16.1%) 0.023

    Congestive heart failure 97 (11.3%) 111 (29.5%) <0.001

    Chronic obstructive lung disease 45 (6.6%) 31 (8.2%) 0.341

    Diabetes 266 (30.7%) 136 (36.0%) 0.078

    History of hypertension 438 (50.2%) 288(75.8%) <0.001

    Hypercholesterolemia 488 (57.2%) 267 (70.8%) <0.001

    Previous myocardial infarction 381 (43.9% 135 (36.2%) 0.011

    Peripheral vascular disease 87 (10.2%) 38 (10.0%) 0.915

    Smoking history 394(46.2%) 220 (58.1%) <0.001

    Chronic kidney diseasea,b 199 (22.8%) 107 (28.2%) 0.042

Procedural variables

  Duration of CPB (min) 114.7 (36.3) 141.5 (51.8) <0.001

  Duration of aortic cross-clamping (min) 64.0 (26.7) 79 (34.2) <0.001

  Blood transfusionc 368 (42.2%) 241 (63.4%) <0.001

  Intraoperative balloon counterpulsation 32 (3.8%) 31 (9.6%) <0.001

  Concomitant valve surgery 0 110 (29.0%) <0.001

Clinical AKI risk scored 26.3 (12.6) 32.1 (6.8) <0.001

Markers of renal function

Serum creatinine concentrations (mg/dL)

    baseline preoperative 1.06 (0.46 1.06 (0.32) 0.893

    peak postoperative 1.28 (0.57) 1.30 (0.51) 0.711

eGFRcrea (ml/min/1.73m2)b

    baseline preoperative 73.7(18.1) 71.9 (19.9) 0.142

    nadir postoperative 62.0 (19.6) 60.2 (20.7) 0.144

AKI criteriae

    Peak relative to baseline 22.5 (35.9) 23.6 (37.0) 0.621

creatinine %ΔCr (%)
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Discovery cohort
(PEGASUS
N=873)

Replication cohort
(CATHGEN
N=380)

p-value

    KDIGO 294 (33.7%) 119(381.3%) 0.139

    AKIN 290 (33.2%) 115 (30.3%) 0.221

    RIFLE 149 (17.1%) 64(16.8%) 0.333

KDIGO AKI Stage 0.612

    Stage 1 69 (7.9%) 29 (7.6%)

    Stage 2 29 (3.3%) 11 (2.9%)

    Stage 3 10 (1.2%) 6 (1.6%)

Results presented as mean (standard deviation) for continuous variables, and frequency (percentage) for categorical variables.

Abbreviations: CPB – cardiopulmonary bypass; CABG – coronary artery bypass grafting; AKI – acute kidney injury; eGFRcrea – estimated 

glomerular filtration rate (creatinine) based on the CKD-EPI equation; AKIN – Acute Kidney Injury Network;37 RIFLE - risk, injury, failure, loss, 

end-stage kidney disease;38 KDIGO - Kidney Disease: Improving Global Outcomes.39

a
Chronic kidney disease defined as baseline eGFR < 60 ml/min/1.73m2 (modified KDIGO criteria, lacking the 3 month preoperative window)

b
eGFR was computed based on CKD-EPI equation

c
Transfusion defined as receipt of any blood transfusion perioperatively.

d
Clinical AKI risk scores for individual subjects computed as:

−2.59207 −7.72486 (Preop creatinine) + 0.30737(weight) + 0.14174 (cross-clamp time) + 16.35924 (transfusion) −9.06373 (hypertension).

e
Reflect only serum creatinine criteria (i.e., lack oliguria criteria).
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