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Abstract 

Background: Severe sepsis and septic shock are among the leading causes of death in the United States and sepsis 
remains one of the most expensive conditions to diagnose and treat. Accurate early diagnosis and treatment can 
reduce the risk of adverse patient outcomes, but the efficacy of traditional rule‑based screening methods is limited. 
The purpose of this study was to develop and validate a machine learning algorithm (MLA) for severe sepsis predic‑
tion up to 48 h before onset using a diverse patient dataset.

Methods: Retrospective analysis was performed on datasets composed of de‑identified electronic health records 
collected between 2001 and 2017, including 510,497 inpatient and emergency encounters from 461 health centers 
collected between 2001 and 2015, and 20,647 inpatient and emergency encounters collected in 2017 from a commu‑
nity hospital. MLA performance was compared to commonly used disease severity scoring systems and was evalu‑
ated at 0, 4, 6, 12, 24, and 48 h prior to severe sepsis onset.

Results: 270,438 patients were included in analysis. At time of onset, the MLA demonstrated an AUROC of 0.931 (95% 
CI 0.914, 0.948) and a diagnostic odds ratio (DOR) of 53.105 on a testing dataset, exceeding MEWS (0.725, P < .001; 
DOR 4.358), SOFA (0.716; P < .001; DOR 3.720), and SIRS (0.655; P < .001; DOR 3.290). For prediction 48 h prior to onset, 
the MLA achieved an AUROC of 0.827 (95% CI 0.806, 0.848) on a testing dataset. On an external validation dataset, the 
MLA achieved an AUROC of 0.948 (95% CI 0.942, 0.954) at the time of onset, and 0.752 at 48 h prior to onset.

Conclusions: The MLA accurately predicts severe sepsis onset up to 48 h in advance using only readily available vital 
signs extracted from the existing patient electronic health records. Relevant implications for clinical practice include 
improved patient outcomes from early severe sepsis detection and treatment.
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Background
Severe sepsis and septic shock are a dysregulated 
response to infection, and they are among the lead-
ing causes of death in the United States. Epidemiologic 
estimates have suggested that over 1 million patients are 

Open Access

*Correspondence:  abigail@dascena.com
3 Dascena, Inc., P.O. Box 156572, San Francisco, CA 94115, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8502-6589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01284-x&domain=pdf


Page 2 of 10Burdick et al. BMC Med Inform Decis Mak          (2020) 20:276 

diagnosed with sepsis annually, with case fatality rates 
exceeding 10% [1, 2]. The cost of treating sepsis is esti-
mated to be $16.7 billion per year, making sepsis one of 
the most expensive conditions to diagnose and treat [2, 
3].

Multiple studies have shown that accurate early diag-
nosis and treatment, including sepsis bundle compliance, 
can reduce the risk of adverse patient outcomes from 
severe sepsis and septic shock [4–6]. Earlier detection 
and more accurate recognition of patients at high risk of 
developing severe sepsis or septic shock provide a valu-
able window for effective sepsis treatments. However, 
the heterogeneous nature of possible infectious insults 
and the diversity of host response often make sepsis dif-
ficult to recognize in a timely manner [7]. Studies that 
have attempted to target the risk-factors associated with 
sepsis onset reveal that sepsis is not a uniform condition. 
For example, oncology patients are nearly ten times more 
likely to develop sepsis when compared to patients with 
no cancer history [8], and patients with sepsis that devel-
oped during hospitalization experience a 23% higher 
mortality rate than patients with community-acquired 
sepsis [9, 10].

New definitions intended to improve the clinical rec-
ognition of sepsis have been proposed [11, 12] because 
the previous use of screening based on Systemic Inflam-
matory Response Syndrome (SIRS) criteria was found to 
be nonspecific [13]. However, SIRS-based sepsis screen-
ing is still used in many clinical settings. In addition to 
SIRS, other rule-based patient decompensation screening 
tools commonly used for the detection or prediction of 
sepsis in clinical practice include the Sequential (Sepsis-
Related) Organ Failure Assessment (SOFA) score [14] 
and the Modified Early Warning Score (MEWS) [15]. 
These methods generate risk scores by manual tabula-
tion of various patient vital signs and laboratory results 
and have been validated for severe sepsis detection in a 
variety of studies [16–19]. Efficacy of these scores is lim-
ited in part because they do not leverage trends in patient 
data over time, or correlations between measurements. 
Some scoring systems, such as SOFA, are not widely 
applicable outside of the ICU and often require labora-
tory values that are not rapidly available [20]. While 
several major EHR systems now have automated sepsis 
surveillance tools available to their clients [21, 22], these 
alert tools are rules-based and suffer from low specificity.

Machine learning-based screening methods represent 
a viable alternative to rules-based screening tools such 
as MEWS, SIRS, and SOFA, because machine learning 
algorithms (MLAs) can process complex tasks and large 
amounts of data. A recent meta-analysis  has demon-
strated the accuracy of MLAs to predict sepsis and sep-
tic shock onset  in retrospective studies [23]. However, 

although a number of machine learning-based algo-
rithms have been developed for sepsis screening [24–29], 
these models often require extensive training data and 
laboratory test results [30–32], and some require special-
ist annotation and the interpretation of clinical notes. 
These tools have also been limited by a lack of external 
[24, 26, 31, 33] and real-world [25] validation. Current 
best practices for reporting and implementing ML-based 
prediction methods stress the importance of validation 
on external data, specifically data collected from institu-
tions not used to develop the model [34]. Such validation 
helps to determine how the model will perform on novel 
populations and in new clinical settings, and assesses 
whether the model is overfit to the development data-
set. However, while there is a growing expectation that 
MLAs developed for medical diagnoses are externally 
validated [35], a meta-analysis of studies using machine-
learning-based approaches to predict sepsis reported on 
only three studies that validated their models on external 
datasets [36].

In response to the need for externally validated 
machine learning-based sepsis screening methods, this 
study evaluates the performance of our MLA which pre-
dicts and detects severe sepsis using data extracted from 
patient Electronic Health Records. It is important that 
sepsis prediction MLAs have generalizability to differ-
ent clinical settings and are capable of high performance 
scores on a diverse dataset, without requiring extensive 
retraining. For the current study, we assembled a large 
and diverse retrospective dataset containing inpatient 
and emergency department patient data from institu-
tions spanning large academic centers to small com-
munity hospitals across the continental United States. 
Performance metrics of the algorithm were evaluated 
and compared against common rule-based methods 
using retrospective patient data from 461 hospitals and 
an external validation data set from Cabell Huntington 
Hospital. To address the growing need for rigorous exter-
nal validation on diverse datasets [35], this algorithm was 
developed and evaluated on significantly larger and more 
diverse datasets than previously investigated [37–43].

Methods
Dataset
The Dascena Analysis Dataset (DAD) and the Cabell 
Huntington Hospital Dataset (CHHD) were used for 
retrospective algorithm development, training and test-
ing. The DAD served as the primary development and 
validation set, and is comprised of 489,850 randomly-
selected inpatient and emergency department encoun-
ters obtained from de-identified EHR records at 461 
total academic and community hospitals across the con-
tinental United States. Data contributions to the DAD 
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are imbalanced between hospitals. Data were collected 
between 2001 and 2015, with the majority of encoun-
ters occurring between 2014 and 2015. Details about all 
hospitals are provided in Additional file 1: Table S1. The 
CHHD served as an external validation set, and includes 
20,647 inpatient and emergency encounters from Cabell 
Huntington Hospital (Huntington, WV) collected during 
2017.

In compliance with the Health Insurance Portability 
and Accountability Act (HIPAA), all patient information 
was de-identified prior to retrospective analysis. All data 
collection was passive and did not have an impact on 
patient safety.

Patient measurements and inclusion criteria
All sexes and ethnicities were included in this study. Data 
was analyzed for only adult EHR records (ages 18 and 
over) from inpatient (including critical care) wards and 
emergency department admissions.

For inclusion in the retrospective analysis, patient 
records were required to contain at least one documented 
measurement of five out of six vital sign measurements, 
including: heart rate, respiration rate, temperature, dias-
tolic and systolic blood pressure, and  SpO2. We also 
required at least one recorded observation of each meas-
urement required to calculate the SOFA score, including 
Glasgow Coma Scale,  PaO2/FiO2, bilirubin level, platelet 
counts, creatinine level, and mean arterial blood pres-
sure or administration of vasopressors (see “Calculating 
comparators” section below). All patients who presented 
with sepsis on admission were excluded. These crite-
ria resulted in the inclusion of 270,438 patients from 
the DAD and 13,581 from the CHHD (Fig. 1 and Addi-
tional file  1: Table  S2). Patients were divided into sub-
groups based on hospital length of stay in order to assess 
MLA performance at several predetermined prediction 
times (4, 6, 12, 24, and 48 h before onset). Patients were 
included in analysis only if their length of stay exceeded 
the tested prediction time. This resulted in decreas-
ing subgroup size as prediction time was increased. For 
each prediction time, patients who became severely sep-
tic within 2  h of the prediction window were excluded. 
This ensured the presence of adequate data with which 
to train and test the algorithm for each prediction task. 
To ensure that these exclusion criteria did not introduce 
selection bias into the study population, we compared 
demographic and clinical measurements among included 
and excluded patients to compare the distribution of 
patient characteristics and illness severity. For any patient 
with a stay exceeding 2000 h, the last 2000 h of hospital 
data were used for the studyin order to limit the size of 
data analysis matrices and control for atypical patient 

encounters. See Additional file  1: Fig.  S2 for additional 
details of patient data processing.

Binning and imputation
For retrospective analysis, MLA predictions were made 
using only patient age, systolic blood pressure, diastolic 
blood pressure, heart rate, temperature, respiratory rate 
and  SpO2 measurements. These measurements were 
chosen because these vital signs are commonly available 
and frequently sampled. The average number of read-
ings per hour for septic and non-septic patients in each 
dataset are presented in Additional file 1: Table S3. These 
measurements were binned by the hour for each included 
patient, beginning at the time of the patient’s first 
recorded measurement and ending with the last whole 
hour of available data observed before the patient’s final 
measurement. Measurements were each binned into 1-h 
intervals and averaged to provide a single hourly  value, 
which minimizes information fed to the classifier regard-
ing sampling frequency. Binning the data into intervals 
generates a discrete time series with consistent time 
steps, which are more readily processed by the algorithm. 
Missing values were filled using last-one carry forward 
(LOCF) imputation, wherein the most recent observa-
tion of that measurement is used to replace the missing 
value. This imputation method is appropriate for clinical 
measurements, because observations of a given vital sign 
are expected to be highly dependent on previous obser-
vations [44–46].

Fig. 1 Inclusion criteria for patient encounters. a Dascena Analysis 
Dataset (DAD) and b Cabell Huntington Hospital Dataset (CHHD)
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Gold standard
For retrospective analysis, we defined our severe sepsis 
gold standard by the presence of International Classifi-
cation of Diseases, Ninth Revision (ICD-9) code 995.9x. 
Identifying sepsis through the explicit use of ICD codes 
alone is known to have high specificity with low sen-
sitivity [47]; for the purposes of this study we prior-
itized specificity to ensure that all patients labeled as 
septic truly experienced sepsis. To determine the onset 
time of severe sepsis, we identified the first time at 
which “organ dysfunction caused by sepsis,” with sepsis 
defined as “the presence of two or more SIRS criteria 
paired with a suspicion of infection” [3] was present in 
the patient chart. This is similar to the Sepsis-3 defini-
tion of sepsis as “a life-threatening organ dysfunction 
caused by a dysregulated host response to infection,” 
where organ dysfunction is defined as “an acute change 
in total SOFA score ≥ 2 points consequent to the infec-
tion [12].” We defined the onset time as the first time 
at which two SIRS criteria and at least one organ dys-
function criteria (Additional file 1: Table S4) were met 
within the same hour. For patients who never devel-
oped sepsis, onset time was selected at random from 
the patient stay. For patients who never developed sep-
sis, onset time was selected at random from the patient 
stay.

Calculating comparators
In this retrospective analysis, we fixed severe sepsis 
identification score thresholds of 2, 2, and 1 for MEWS, 
SOFA, and SIRS criteria, respectively. In other words, a 
MEWS score ≥ 2 indicates a patient would be categorized 
by MEWS as septic. These thresholds were selected to 
produce a sensitivity closest to 0.80. A constant sensitiv-
ity close to 0.80 was chosen for all systems to facilitate 
comparison; the threshold for sepsis identification using 
SIRS is therefore different from the SIRS threshold used 
in the gold standard onset time  definition above. Simi-
larly, to facilitate comparison of the MLA with other 
methods, we selected a fixed point on the Receiver Oper-
ating Characteristic (ROC) curve of the MLA with sen-
sitivity near 0.80. This enabled table-based comparisons 
of specificity while holding sensitivity relatively constant. 
All comparators were calculated for severe sepsis detec-
tion at the time of onset assigned by the gold standard 
using the DAD test dataset. We compared the perfor-
mance of the MLA and rules-based systems using the 
area under the ROC (AUROC) curve. The following 
additional performance metrics were also calculated for 
the MLA and comparators: accuracy, diagnostic odds 
ratio (DOR) and positive and negative likelihood ratios 
(LR+ and LR−).

The machine learning algorithm
We constructed our classifier using gradient boosted 
trees, implemented in Python (Python Software Founda-
tion, https ://www.pytho n.org/) with the XGBoost pack-
age [48]. Predictions were generated from patient age 
and the binned values for the vital signs of systolic blood 
pressure, diastolic blood pressure, heart rate, tempera-
ture, respiratory rate and  SpO2 at prediction time, 1  h 
before prediction time and 2  h before prediction time. 
Where appropriate, we also concatenated the differences 
in measurement values between those time steps. In 
the data matrices, each clinical feature thus represented 
between 3 and 5 columns. Values were concatenated into 
a feature vector with fifteen elements. All data processing 
was performed using Python software [49]. An ensem-
ble of decision trees was constructed using the gradient 
boosted trees approach, after which the ensemble made a 
prediction based on an aggregate of these scores. In this 
way, at prediction time, the gradient boosted tree ensem-
ble was able to access trend information and covariance 
structure with respect to time window. This procedure of 
transforming time series problems into supervised learn-
ing problems has also been detailed in our previous work 
[46]. XGBoost controlled for expected class imbalance 
in the data. Minority class scaling was employed within 
the algorithm, where instances of the minority class were 
given weight inversely-proportional to their prevalence, 
which effectively trained the models on approximately 
balanced data. Tree branching was determined evaluat-
ing the impurity improvements gained from potential 
partitions, and patient risk scores were determined by 
their final categorization in each tree. We limited tree 
branching to six levels, included no more than 1000 trees 
in the final ensemble, and set the XGBoost learning rate 
to 0.1. These hyperparameters were chosen to align with 
previous work and justified in the context of the present 
data with a coarse grid search using training data [38].

Study design
For retrospective analysis, model performance was evalu-
ated by using ten-fold cross validation procedures for 
training, an independent, hold-out test set for evalua-
tion, and an external validation set. These three levels 
of validation allowed us to examine the performance of 
the trained models in different data distribution settings; 
the distribution of the validation data varied from very 
similar to the training data, in the case of tenfold cross 
validation, to very different, in the case of external valida-
tion. To generate the independent, hold-out test set, we 
randomly selected 80% of the DAD to be used for train-
ing, while reserving the remaining 20% of the dataset as 
the independent, hold-out test set. On the training data, 
we performed tenfold cross validation by then further 

https://www.python.org/
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dividing the training set into tenths, training the algo-
rithm on nine of these tenths and assessing its perfor-
mance on the remaining tenth. We repeated this process 
ten times, using each possible combination of training 
and testing folds  within the training dataset. We then 
assessed each of the resulting ten models on the inde-
pendent, hold-out test set. Reported performance met-
rics for the hold out test set are the average performance 
of each of these ten models on the hold-out test set. The 
reported score thresholds, the MLA score at which a 
patient was deemed to be positive for severe sepsis, is an 
average of the threshold score in each of the ten models 
generated in the tenfold cross validation training pro-
cedures. These score thresholds were determined using 
the fixed operating point on the ROC curve, near sensi-
tivity of 0.80. The CHHD served as the external valida-
tion set, which was used to further assess each of the ten 
models and examine the generalizability of the approach 
to different patient demographics and data collection 
methods.

Statistical analysis
MLA AUROC values were compared to those of SIRS, 
SOFA and MEWS using two-sample t tests at 95% confi-
dence. P-values for algorithm comparisons with all com-
parator systems were found to be statistically significant 
at P < 0.001.

Results
Patient demographic data from the DAD, which con-
sists of inpatient and emergency department encounters 
from 461 academic and community US hospitals, and 
the CHHD external validation dataset are presented in 
Table 1. The overall prevalence of severely septic patients 
in this population was 4.3%. Among those patients classi-
fied as septic, the mean age was 62 years (49.5% male vs 
44.7% female). A comparison of demographic and clini-
cal characteristics among included and excluded patients 
demonstrates  that the included sample is representa-
tive of the entire patient population (Additional file  1: 
Table S5).

Table 1 Demographics table

Demographic and clinical characteristics of patients included in the Dascena analysis dataset (DAD) and CHH dataset (CHHD)

DAD CHHD

Septic Non-septic Septic Non-septic

Total number 20,876 468,974 182 20,465

Age (SD) 62.4 (17.0) 55.62 (18.7) 50.5 (24.2) 40.4 (23.0)

Male 10,326 (49.5%) 221,029 (47.1%) 69 (37.9%) 7470 (36.5%)

Female 9325 (44.7%) 219,866 (46.9%) 88 (48.4%) 10,595 (51.8%)

Sex Unknown 1225 (5.9%) 28,079 (6.0%) 25 (13.7%) 2400 (11.7%)

White 9394 (45.0%) 145,891 (31.1%) 100 (54.9%) 11,854 (57.9%)

Black 1150 (5.5%) 20,158 (4.3%) 9 (4.9%) 764 (3.7%)

Hispanic 1090 (5.2%) 33,944 (7.2%) 0 (0.0%) 2 (0.0%)

Asian American 250 (1.2%) 3020 (0.6%) 1 (0.5%) 18 (0.1%)

Race/Ethnicity Unknown 8992 (43.1%) 265,961 (56.7%) 72 (39.6%) 7821 (38.2%)

Temperature 36.9 (0.7) 36.8 (0.5) 36.9 (0.3) 36.8 (0.2)

Respiratory rate 21.1 (4.6) 18.7 (4.1) 20.8 (7.5) 18.1 (5.1)

Systolic blood pressure 115.2 (17.7) 123.9 (17.1) 119.1 (16.7) 125.5 (16.7)

Diastolic blood pressure 61.2 (11.8) 68.6 (11.6) 66.6 (9.6) 73.2 (10.5)

Heart rate 90.9 (14.9) 83.8 (17.0) 93.8 (16.7) 85.4 (17.1)

Lactate 1.6 (1.6) 1.43 (1.1) 2.6 (2.0) 1.9 (1.6)

Creatinine 1.6 (1.4) 1.2 (1.2) 1.7 (1.8) 1.5 (2.6)

International normalized ratio (INR) 1.2 (0.9) 1.0 (0.7) 1.4 (0.8) 1.1 (0.4)

Platelets 204.0 (113.0) 220.4 (95.4) 238.5 (105.1) 239.6 (75.0)

SpO2 96.4 (3.1) 97.0 (2.3) 96.9 (1.6) 97.64 (1.3)

White blood count 12.8 (5.5) 10.5 (4.2) 8.6 (1.4) 8.2 (1.7)

PaO2 115.0 (36.6) 131.2 (62.0) 95.6 (27.8) 102.6 (45.3)

Bilirubin 1.1 (1.4) 0.8 (0.9) 1.3 (2.46) 0.7 (1.2)

FiO2 49.7 (23.8) 46.8 (23.6) 47.4 (20.4) 42.0 (18.1)

pH 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) 7.4 (0.1)
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The detailed numerical results in Table  2 show that 
the MLA provided a superior severe sepsis predictor 
compared with alternative scoring systems of MEWS, 
SOFA, and SIRS. AUROC represents the area under the 
ROC curves, which plot sensitivity (the fraction of severe 
sepsis patients that were classified as severe sepsis) as a 
function of 1 − specificity (the fraction of severe sepsis-
negative patients that were classified as severe sepsis).

At 95% confidence, the MLA demonstrated a higher 
severe sepsis detection AUROC (0.931, 0.930, 0.948 on 
training, testing, and external validation validation data-
sets respectively) than MEWS (0.725; P < 0.001), SOFA 
(0.716; P < 0.001), and SIRS (0.655; P < 0.001) (Table  2). 
Detailed performance metrics for all scoring systems 
at time of severe sepsis onset are presented in Table  2. 
Accuracy is a standard performance metric for binary 
classification and represents the proportion of correct 
classifications out of all classifications made. DOR rep-
resents the odds of a severe sepsis prediction for severe 
sepsis patients relative to patients who do not have severe 
sepsis. Likelihood ratios are also included as indicators 
of diagnostic accuracy. Here, LR+ represents the ratio 
of the probability that a severe sepsis-positive classifica-
tion will be assigned to severe sepsis patients to the prob-
ability that a severe sepsis-positive classification will be 
assigned to patients who do not have severe sepsis. LR− 
represents the ratio of the probability that a severe sep-
sis-negative classification will be assigned to severe sepsis 
patients to the probability that a severe sepsis-negative 
classification will be assigned to patients who do not have 
severe sepsis. In addition to AUROC values, the MLA 
maintained superior performance metric scores (vs all 
comparators) for Specificity, Accuracy, DOR, LR+, and 
LR− (Table 2).

Additionally, the MLA maintained a superior AUROC 
for all prediction windows as compared to all onset-time 
rules-based scoring systems; at 48 h prior to severe sepsis 
onset, the MLA demonstrated an AUROC value of 0.75 
on the external validation dataset (Fig.  2). Detailed per-
formance metrics for the MLA at all prediction windows 
are presented in Additional file 1: Tables S6, S7, and S8 
for the training set, testing set, and external validation 
set, respectively.

We ranked the feature importance for severe sepsis 
detection and prediction using the MLA using average 
entropy gain for each feature. Feature importance var-
ied significantly by prediction window (Additional file 1: 
Fig. S1).

The standard deviation for the external validation 
dataset, which quantifies variability in patient popula-
tions [50], became larger at longer look-ahead times. This 
indicates increased variation in the performance of the 
algorithm at longer look-ahead times in the external vali-
dation set.

Discussion
The machine learning algorithm more accurately 
detected the onset of severe sepsis developed during hos-
pitalization than the frequently used rules-based patient 
decompensation screening tools MEWS, SOFA, and 
SIRS. While used for sepsis screening in many clinical 
settings, these tools are not designed to exploit informa-
tion from trends in patient data, and demonstrate sub-
optimal specificity [14–20]. Up to 48 h before onset, the 
MLA demonstrated higher AUROC and specificity than 
the commonly used rules-based sepsis screening systems 
when evaluated at the time of sepsis onset. The algorithm 
used only patient age and six vital signs extracted from 

Table 2 Comparison table of performance metrics for MLA to standard scoring systems, at time of severe sepsis onset

Detailed performance metrics for the Machine Learning Algorithm (MLA) and rules-based systems taken at the time of severe sepsis onset, using the Dascena Analysis 
Dataset for training and testing and the Cabell Huntington Hospital dataset for external validation. The score threshold reported for the MLA is the average over 
rounds of ten-fold cross-validation. AUROC for MLA versus comparators was performed using two-sample t-tests at 95% confidence. AUROC area under the receiver 
operating characteristic, MEWS Modified Early Warning Score, SOFA Sequential Organ Failure Assessment, SIRS Systemic Inflammatory Response Syndrome, DOR 
diagnostic odds ratio, LR likelihood ratio

MLA ≥ 0.029 DAD 
training

MLA ≥ 0.030 DAD 
testing

MLA ≥ 0.017 CHH 
external validation

MEWS ≥ 2 DAD 
testing

SOFA ≥ 2 DAD 
testing

SIRS ≥ 1 
DAD 
testing

AUROC (SD) 0.931 (0.01) 0.930 (0.01) 0.948 (0.01) 0.725 0.716 0.655

P value (MLA vs 
comparator)

– – – P < 0.001 P < 0.001 P < 0.001

Sensitivity 0.800 0.800 0.800 0.845 0.750 0.868

Specificity 0.926 0.933 0.921 0.444 0.554 0.334

Accuracy 0.923 0.929 0.920 0.608 0.645 0.646

DOR 53.105 56.508 47.532 4.358 3.720 3.290

LR+ 11.411 12.110 10.306 1.521 1.680 1.303

LR− 0.216 0.215 0.217 0.349 0.452 0.396



Page 7 of 10Burdick et al. BMC Med Inform Decis Mak          (2020) 20:276  

the patient EHR, and did not require manual data entry 
or calculation. The accuracy of the MLA for early severe 
sepsis prediction, together with the minimal patient data 
required, suggests that this system may improve severe 
sepsis detection and patient outcomes in prospective 
clinical settings over the use of a rules-based system. 
The high specificity of the MLA may also reduce alarm 
fatigue, a known patient safety hazard [51].

Recent studies using MLAs to provide early detec-
tion and prediction of sepsis, severe sepsis and/or septic 
shock include Long Short-Term Memory (LSTM) neural 
network based algorithms [31, 33], the recurrent neural 
survival model “DeepAISE” [32], and the random-forest 
classifier “EWS 2.0” [30]. In their clinical practice impact 
study, Giannini et  al. [30] developed and implemented 
the EWS 2.0 model to predict severe sepsis and septic 
shock. Although the alerting system was able to make a 
modest impact on clinical practices, the reported sensi-
tivity was 26% and the average prediction time prior to 
onset was approximately 6  h [30]. Among recent stud-
ies focusing on longer horizon predictions, Fagerström 
et al.’s [33] LSTM model, “LiSep LSTM”, predicted septic 
shock with an AUROC of 0.83 up to 40 h prior to onset, 
and the model developed by Lauritsen et al. [31] used a 
deep learning approach to predict sepsis onset 24 h prior 
to onset with an AUROC of 0.76. Although the MLAs 
used in these studies were not validated on an exter-
nal dataset, limiting generalizability of the models, they 
illustrate the utility of neural network-based algorithms 
towards long horizon sepsis predictions. In a recently 

posted preprint by Shashikumar et al. [32], an externally 
validated recurrent neural survival model, DeepAISE, 
achieved high performance metrics for prediction sep-
sis up to 12 h prior to onset. While the DeepAISE model 
generated predictions using a large number of features, 
the MLA in our study was designed to provide accu-
rate long-horizon predictions that require only minimal 
inputs.

In this study, the algorithm was tested on a large and 
diverse retrospective dataset containing inpatient and 
emergency department patient data from 461 teach-
ing and non-teaching hospitals in the US. This dataset 
includes patient data from intensive care unit and floor 
wards, representing a variety of data collection frequen-
cies and care provision levels. This dataset is significantly 
larger and more diverse than datasets used to develop 
previous versions of the algorithm, which has been 
applied to sepsis and severe sepsis detection using only 
vital sign data in the emergency department, general 
ward and ICU [37, 40–42] and has been evaluated for its 
effect on clinical outcomes in a single-center study [39] as 
well as a randomised clinical trial [38].

Sepsis manifestation can vary depending on factors 
such as patient race, age, and comorbidities [52]. This 
is evidenced by a recent study which found that fea-
ture selection that accounted for sepsis subpopulations 
resulted in increased performance of classification mod-
els [53], as well as by our prior work predicting severe 
sepsis in the pediatric subpopulation, which showed 
that a sepsis prediction algorithm could be successfully 

Fig. 2 AUROC over time. Depicts performance of the MLA in predicting the onset of severe sepsis at 0, 4, 6, 12, 24 and 48 h before severe sepsis 
onset. “Training Set” results were derived from the DAD, “Testing Set” results were derived from the hold out data from the DAD, and the “External 
Validation Set” was derived from the independent CHHD
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tailored to this specific subpopulation [54]. It is therefore 
important that sepsis detection methods geared towards 
the general patient population be validated across a 
diverse population in order to ensure accurate discrimi-
nation for all patients. The high performance of the MLA 
on the diverse dataset utilized in this study indicates that 
the algorithm may be able to improve patient outcomes 
in a variety of clinical settings. In addition to strong per-
formance on a hold-out test set, consistent performance 
on an external validation set demonstrates generalizabil-
ity to different clinical settings.

While the retrospective analysis incorporated data 
from a large number of institutions (nearly 10% of US 
hospitals), we cannot claim generalizability to additional 
specific settings or populations on the basis of this study. 
While data in the DAD were collected between 2001 
and 2015, the majority of encounters occured between 
2014 and 2015. The use of data generated primarily dur-
ing the years 2014–2015 may limit the generalizability of 
these results. Generalizability of the retrospective results 
is also limited by our inclusion criteria requiring that all 
patients manifesting severe sepsis within 2 h of each pre-
diction window be excluded from the analysis. Because 
we do not perform any subgroup analyses in the present 
study, we also cannot verify the generalizability of these 
results to specific patient subpopulations. Future work 
investigating performance on subpopulations defined 
by medical or demographic characteristics is therefore 
warranted. The required presence of an ICD-9 code to 
classify a patient as severely septic in our retrospective 
analysis potentially limits our ability to accurately capture 
all septic patients in the dataset [47], as any undiagnosed 
or inaccurately coded patients may have been improperly 
labeled as non-septic. However, past research has shown 
ICD-9 coding to be a reasonable means of retrospectively 
detecting patients with severe sepsis [55, 56]. Further, our 
gold standard criteria may also limit the accuracy of our 
severe sepsis onset time analysis, as the time a condition 
was recorded in the patient chart may not represent the 
time the condition actually manifested. Finally, because 
our study is a retrospective analysis of encounters which 
do not involve the intervention of predictions from the 
MLA, we must await real-time, prospective evaluation of 
the algorithm before making claims of impact on clinical 
practice and patient outcomes.

In this retrospective analysis, we treated severe sepsis 
detection and prediction as a classification task. While a 
time-to-event modeling approach would have also been 
possible, classification methods are significantly more 
common in the literature [24, 57–60]. By using the same 
modelling approach, the present study can be readily 
compared with existing work on sepsis detection models 
using standard metrics such as AUROC and specificity.

Conclusion
This study validates a machine learning algorithm for 
severe sepsis detection and prediction developed with 
a diverse retrospective dataset containing patient data 
from 461 academic centers and community hospitals 
across the US. The algorithm, validated on an external 
dataset, is capable of predicting severe sepsis onset up 
to 48 h in advance of onset using only patient age and 
six frequently collected patient measurements, and 
demonstrates higher AUROC values and specificity 
than commonly used sepsis detection methods such as 
MEWS, SOFA and SIRS, applied at onset.

The accuracy of the sepsis prediction MLA validated 
in this study, paired with the minimal patient data 
required for predictions, supports the premise that 
MLAs can be used to improve severe sepsis detection 
and patient outcomes in a diversity of medical care 
facilities and wards, without requiring additional data 
analyses from clinicians. The high specificity of the 
MLA in this study may help to reduce alarm fatigue. 
Relevant potential implications for clinical practice 
include improved patient outcomes arising from early 
severe sepsis detection and treatment.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1291 1‑020‑01284 ‑x.

Additional file 1. Validation of a machine learning algorithm for early 
severe sepsis prediction: a retrospective study predicting severe sepsis up 
to 48 h in advance using a diverse dataset from 461 US hospitals.

Abbreviations
AUROC: Area under the receiver operating characteristic; CHHD: Cabell 
Huntington Hospital dataset; DAD: Dascena Analysis Dataset; DOR: Diagnostic 
odds ratio; ICD: International Classification of Diseases; LOCF: Last‑one carry 
forward; LR: Likelihood ratio; MEWS: Modified Early Warning Score; MLA: 
Machine learning algorithm; SIRS: Systemic Inflammatory Response Syn‑
drome; SOFA: Sequential Organ Failure Assessment.

Acknowledgements
We gratefully acknowledge Yvonne Zhou for assistance with data analysis, and 
Touran Fardeen and Anna Siefkas for assistance with manuscript editing.

Authors’ contributions
RD conceived the described experiments. HB and EP1 acquired the Cabell 
Huntington Hospital (CHH) data. JR, JS, NS, and SL executed the experiments. 
RD, JR, JS, NS, JH, and SL interpreted the results. RD and JH wrote the manu‑
script. HB, EP1, EP2, AGS, DGC, CG, JR, JS, NS, JH, and RD performed literature 
searches and revised the manuscript. All authors have read and approved the 
manuscript.

Funding
Research reported in this publication was supported by the National Center 
for Advancing Translational Sciences (NCATS) of the National Institutes of 
Health under award numbers 1R43TR002309 and 1R43TR002221. The funding 
source had no role in the design of the study, the collection, analysis and 
interpretation of data or in writing the manuscript.

https://doi.org/10.1186/s12911-020-01284-x
https://doi.org/10.1186/s12911-020-01284-x


Page 9 of 10Burdick et al. BMC Med Inform Decis Mak          (2020) 20:276  

Availability of data and materials
Restrictions apply to the availability of the patient data, which were used 
under license for the current study, and so are not publicly available. The MLA 
code developed in this study is proprietary and not publicly available.

Institutional Review Board (IRB) approval
Not applicable.

Ethics approval and consent to participate
In compliance with the Health Insurance Portability and Accountability 
Act (HIPAA), all patient information was de‑identified prior to retrospective 
analysis. All data collection was passive and did not have an impact on patient 
safety.

Consent for publication
Not applicable.

Competing interests
All authors who have affiliations listed with Dascena (San Francisco, Califor‑
nia, USA) are employees or contractors of Dascena.

Author details
1 Cabell Huntington Hospital, Huntington, WV, USA. 2 Marshall University 
School of Medicine, Huntington, WV, USA. 3 Dascena, Inc., P.O. Box 156572, San 
Francisco, CA 94115, USA. 

Received: 16 December 2019   Accepted: 8 October 2020

References
 1. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sep‑

sis incidence and mortality, 1990–2017: analysis for the Global Burden of 
Disease Study. Lancet. 2020;395(10219):200–11. https ://doi.org/10.1016/
S0140 ‑6736(19)32989 ‑7.

 2. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence 
and mortality of severe sepsis in the United States. Crit Care Med. 
2013;41(5):1167–74. https ://doi.org/10.1097/CCM.0b013 e3182 7c09f 8.

 3. Torio CM, Celeste M, and Andrews RM. National inpatient hospital costs: 
the most expensive conditions by payer, 2011. (2013).

 4. Damiani E, Donati A, Serafini G, et al. Effect of performance improvement 
on compliance with sepsis bundles and mortality: a systematic review 
and meta‑analysis of observational studies. PLoS ONE. 2015;10(5):1–24. 

 5. Moore L, Moore F. Early diagnosis and evidence‑based care of surgical 
sepsis. J Intensive Care Med. 2013;28(2):107–17. 

 6. Kenzaka T, Okayama M, Kuroki S, et al. Importance of vital signs to the 
early diagnosis and severity of sepsis: association between vital signs and 
sequential organ failure assessment score in patients with sepsis. Intern 
Med. 2012;51(8):871–6. 

 7. Angus DC, Linde‑Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 
Epidemiology of severe sepsis in the United States: Analysis of incidence, 
outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10. 

 8. Moore JX, Akinyemiju T, Bartolucci A, Wang HE, Waterbor J, Griffin R. 
A prospective study of cancer survivors and risk of sepsis within the 
REGARDS cohort. Cancer Epidemiol. 2018;55:30–8. 

 9. Çıldır E, Bulut M, Akalın H, Kocabaş E, Ocakoğlu G, Aydın ŞA. Evaluation 
of the modified MEDS, MEWS score and Charlson comorbidity index in 
patients with community acquired sepsis in the emergency department. 
Intern Emerg Med. 2013;8(3):255–60. 

 10. Rothman M, Levy M, Dellinger RP, Jones SL, Fogerty RL, Voelker KG, Gross 
B, Marchetti A, Beals J. Sepsis as 2 problems: identifying sepsis at admis‑
sion and predicting onset in the hospital using an electronic medical 
record‑based acuity score. J Crit Care. 2017;38:237–44. 

 11. Levy MM, Fink MP, Marshall JC, et al. 2001 sccm/esicm/accp/ats/sis inter‑
national sepsis definitions conference. Crit Care Med. 2003;31(4):1250–6. 

 12. Singer M, Deutschman CS, Seymour CW, et al. The third international 
consensus definitions for sepsis and septic shock (sepsis‑3). JAMA. 
2016;315(8):801–10. 

 13. Hankar‑Hari M, Phillips GS, Levy ML, et al. Developing a new definition 
and assessing new clinical criteria for septic shock: for the Third Interna‑
tional Consensus Definitions for Sepsis and Septic Shock (Sepsis‑3). JAMA. 
2016;315(8):775–87. 

 14. Vincent JL, Moreno R, Takala J, Willatts S, De MA, Bruining H, et al. The 
SOFA (Sepsis‑related Organ Failure Assessment) score to describe organ 
dysfunction/failure. On behalf of the Working Group on Sepsis‑Related 
Problems of the European Society of Intensive Care Medicine. Intensive 
Care Med. 1996;22(7):707–10. 

 15. Subbe C, Slater A, Menon D, Gemmell L. Validation of physiological scor‑
ing systems in the accident and emergency department. Emerg Med J. 
2006;23(11):841–5 (PMID:17057134). 

 16. Usman OA, Usman AA, Ward MA. Comparison of SIRS, qSOFA, and NEWS 
for the early identification of sepsis in the Emergency Department. Am J 
Emerg Med. 2018;37:1490–7. 

 17. Johnson AW, Aboab J, Rafa JD, Pollard TJ, Deliberato RO, Celi LA, Stone DJ. 
A comparative analysis of sepsis identification methods in an electronic 
database. SCCM. 2018;46(4):494–9. 

 18. Bhattacharjee P, Edelson DP, Churpek MM. Identifying patients with sepsis 
on the hospital wards. Chest. 2017;151(4):898–907. 

 19. van der Woude SW, van Doormaal FF, Hutten BA, Nellen FJ, Holleman F. 
Classifying patients in the emergency department using SIRS, qSOFA, or 
MEWS. Neth J Med. 2018;76(4):158–66. 

 20. McLymont N, Glover G. Scoring systems for the characterization of sepsis 
and associated outcomes. Ann Transl Med. 2016;4(24):527. 

 21. Narayanan N, Gross AK, Pintens M, Fee C, MacDougall C. Effect of an elec‑
tronic medical record alert for severe sepsis among. Am J Emerg Med. 
2016;34(2):185–8. 

 22. Amland RC, Hahn‑Cover KE. Clinical decision support for early recogni‑
tion of sepsis. Am J Med Qual. 2016;31(2):103–10. 

 23. Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen 
LF, Swart EL, Girbes ARJ, Thoral P, Ercole A, Hoogendoorn M, Elbers 
PWG. Machine learning for the prediction of sepsis: a systematic review 
and meta‑analysis of diagnostic test accuracy. Intensive Care Med. 
2020;46(3):383–400. https ://doi.org/10.1007/s0013 4‑019‑05872 ‑y.

 24. Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. 
Creating an automated trigger for sepsis clinical decision support at 
emergency department triage using machine learning. PLoS ONE. 
2017;12(4):e0174708. 

 25. Nachimuthu SK, Haug PJ. Early detection of sepsis in the emergency 
department using Dynamic Bayesian Networks. AMIA Annu Symp Proc. 
2012;2012:653–62. 

 26. Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real‑time 
early warning score (TREWScore) for septic shock. Sci Transl Med. 
2015;7(299):299ra122‑299ra122. 

 27. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An 
interpretable machine learning model for accurate prediction of sepsis in 
the ICU. Crit Care Med. 2018;46(4):547–53. 

 28. Stanculescu I, Williams CKI, Freer Y. Autoregressive hidden Markov models 
for the early detection of neonatal sepsis. IEEE J Biomed Health Inform. 
2014;18(5):1560–70. 

 29. Stanculescu I, Williams CK, Freer Y, eds. A hierarchical switching linear 
dynamical system applied to the detection of sepsis in neonatal condi‑
tion monitoring. UAI; 2014.

 30. Giannini HM, Ginestra JC, Chivers C, et al. A machine learning algorithm 
to predict severe sepsis and septic shock: development, implementation, 
and impact on clinical practice*. Crit Care Med. 2019;47(11):1485–92. 
https ://doi.org/10.1097/CCM.00000 00000 00389 1.

 31. Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ, 
Lange J, Thiesson B. Early detection of sepsis utilizing deep learn‑
ing on electronic health record event sequences. Artif Intell Med. 
2020;19:101820. 

 32. Shashikumar SP, Josef C, Sharma A, Nemati S. DeepAISE—an end‑to‑end 
development and deployment of a recurrent neural survival model for 
early prediction of sepsis; 2019. arXiv :1908.04759 .

 33. Fagerström J, Bång M, Wilhelms D, et al. LiSep LSTM: a machine learning 
algorithm for early detection of septic shock. Sci Rep. 2019;9:15132. https 
://doi.org/10.1038/s4159 8‑019‑51219 ‑4.

 34. Bates DW, Auerbach A, Schulam P, Wright A, Saria S. Reporting and 
implementing interventions involving machine learning and artificial 
intelligence. Ann Intern Med. 2020;172(11_Supplement):S137–44. 

https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1097/CCM.0b013e31827c09f8
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.1097/CCM.0000000000003891
http://arxiv.org/abs/:1908.04759
https://doi.org/10.1038/s41598-019-51219-4
https://doi.org/10.1038/s41598-019-51219-4


Page 10 of 10Burdick et al. BMC Med Inform Decis Mak          (2020) 20:276 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 35. Abazeed ME. Walking the tightrope of artificial intelligence guidelines 
in clinical practice. Lancet Digital Health. 2019;1(3):PE100. https ://doi.
org/10.1016/S2589 ‑7500(19)30063 ‑9.

 36. Islam MM, Nasrin T, Walther BA, Wu CC, Yang HC, Li YC. Prediction of sepsis 
patients using machine learning approach: a meta‑analysis. Comput 
Methods Programs Biomed. 2019;1(170):1–9. 

 37. Mao Q, Jay M, Hoffman JL, Calvert J, et al. Multicenter validation of a 
sepsis prediction algorithm using only vital sign data in the emergency 
department, general ward and ICU. BMJ Open. 2018;8:e017833. https ://
doi.org/10.1136/bmjop en‑2017‑01783 3.

 38. Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine 
learning‑based severe sepsis prediction algorithm on patient survival and 
hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 
2017;4(1):e000234. 

 39. McCoy A, Das R. Reducing patient mortality, length of stay and readmis‑
sions through machine learning‑based sepsis prediction in the emer‑
gency department, intensive care unit and hospital floor units. BMJ Open 
Qual. 2017;6:e000158. https ://doi.org/10.1136/bmjoq ‑2017‑00015 8.

 40. Burdick H, Pino E, Gabel‑Comeau D, et al. Evaluating a sepsis prediction 
machine learning algorithm using minimal electronic health record data 
in the emergency department and intensive care unit. bioRxiv. 2017. 
https ://doi.org/10.1101/22401 4.

 41. Calvert JS, Price DA, Chettipally UK, et al. A computational approach 
to early sepsis detection. Comput Biol Med. 2016a;74:69–73 (PMID: 
27208704). 

 42. Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive 
care unit with minimal electronic health record data: a machine learning 
approach. JMIR Med Inform. 2016;4(3):28 (PMID: 27694098). 

 43. Calvert JS, Price DA, Chettipally UK, et al. High‑performance detection 
and early prediction of septic shock for alcohol‑use disorder patients. 
Ann Med Surg. 2016b;8:50–5. 

 44. Shao J, Zhong B. Last observation carry‑forward and last observation 
analysis. Stat Med. 2003;22(15):2429–41 (PMID: 12872300). 

 45. Ali MW, Talukder E. Analysis of longitudinal binary data with missing data 
due to dropouts. J Biopharm Stat. 2005;15(6):993–1007 (PMID: 16279357). 

 46. Mohamadlou H, Lynn‑Palevsky A, Barton C, Chettipally U, Shieh L, Calvert 
J, Saber NR, Das R. Prediction of acute kidney injury with a machine learn‑
ing algorithm using electronic health record data. Can J Kidney Health 
Dis. 2018;8(5):2054358118776326 (PMID: 30094049). 

 47. Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sep‑
sis in US hospitals using clinical vs claims data, 2009–2014. JAMA. 
2017;318(13):1241–9. 

 48. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Paper 
presented at the 22nd ACM SIGKDD international conference on knowl‑
edge discovery and data mining; 2016.

 49. Van Rossum G. The python language reference manual. Network Theory 
Ltd. Python Software Foundation; 2003. https ://www.pytho n.org/

 50. Sorrentino R. Large standard deviations and logarithmic‑normality. 
Landes Biosci J. 2010;4(4):327–32. 

 51. Monitor CM, Fatigue A. An integrative review. Biomed Instrum Technol. 
2012;46:268–77. 

 52. Iskander KN, Osuchowski MF, Stearns‑Kurosawa DJ, et al. Sepsis: multiple 
abnormalities, heterogeneous responses, and evolving understanding. 
Physiol Rev. 2013;93(3):1247–88. 

 53. Ibrahim ZM, Wu H, Hamoud A, Stappen L, Dobson RJ, Agarossi A. On clas‑
sifying sepsis heterogeneity in the ICU: insight using machine learning. J 
Am Med Inform Assoc. 2020;27(3):437–43. https ://doi.org/10.1093/jamia /
ocz21 1.

 54. Le S, Hoffman J, Barton C, Fitzgerald JC, Allen A, Pellegrini E, Calvert J, 
Das R. Pediatric severe sepsis prediction using machine learning. Front 
Pediatr. 2019;11(7):413. https ://doi.org/10.3389/fped.2019.00413 .

 55. Sudduth CL, Overton EC, Lyu PF, et al. Filtering authentic sepsis arising in 
the ICU using administrative codes coupled to a SIRS screening protocol. 
J Crit Care. 2017;1(39):220–4. 

 56. Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe 
sepsis using administrative claims: patient‑level validation of the angus 
implementation of the international consensus conference definition of 
severe sepsis. Med Care. 2014;52:e39. 

 57. Brause R, Hamker F, Paetz J, et al. Septic shock diagnosis by neural net‑
works and rule based systems. In: Schmitt M, Teodorescu HN, Jain A, et al., 
editors. Computational intelligence techniques in medical diagnosis and 
prognosis. New York: Springer; 2002. p. 323–56. 

 58. Shashikumar SP, Li Q, Clifford GD, et al. Multiscale network representation 
of physiological time series for early prediction of sepsis. Physiol Meas. 
2017;38(12):2235. 

 59. Gultepe E, Green JP, Nguyen H, et al. From vital signs to clinical outcomes 
for patients with sepsis: a machine learning basis for a clinical decision 
support system. J Am Med Inform Assoc. 2013;. https ://doi.org/10.1136/
amiaj nl‑2013‑00181 5.

 60. Thiel SW, Rosini JM, Shannon W, et al. Early prediction of septic shock. J 
Hosp Med. 2010;1:19–25. https ://doi.org/10.1002/jhm.530.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/S2589-7500(19)30063-9
https://doi.org/10.1016/S2589-7500(19)30063-9
https://doi.org/10.1136/bmjopen-2017-017833
https://doi.org/10.1136/bmjopen-2017-017833
https://doi.org/10.1136/bmjoq-2017-000158
https://doi.org/10.1101/224014
https://www.python.org/
https://doi.org/10.1093/jamia/ocz211
https://doi.org/10.1093/jamia/ocz211
https://doi.org/10.3389/fped.2019.00413
https://doi.org/10.1136/amiajnl-2013-001815
https://doi.org/10.1136/amiajnl-2013-001815
https://doi.org/10.1002/jhm.530

	Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Dataset
	Patient measurements and inclusion criteria
	Binning and imputation
	Gold standard
	Calculating comparators
	The machine learning algorithm
	Study design
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


