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An increasing body of evidence supports the association of immune genes with

tumorigenesis and prognosis of breast cancer (BC). This research aims at exploring

potential regulatory mechanisms and identifying immunogenic prognostic markers for

BC, which were used to construct a prognostic signature for disease-free survival (DFS)

of BC based on artificial intelligence algorithms. Differentially expressed immune genes

were identified between normal tissues and tumor tissues. Univariate Cox regression

identified potential prognostic immune genes. Thirty-four transcription factors and 34

immune genes were used to develop an immune regulatory network. The artificial

intelligence survival prediction system was developed based on three artificial intelligence

algorithms. Multivariate Cox analyses determined 17 immune genes (ADAMTS8, IFNG,

XG, APOA5, SIAH2, C2CD2, STAR, CAMP, CDH19, NTSR1, PCDHA1, AMELX, FREM1,

CLEC10A, CD1B, CD6, and LTA) as prognostic biomarkers for BC. A prognostic

nomogram was constructed on these prognostic genes. Concordance indexes were

0.782, 0.734, and 0.735 for 1-, 3-, and 5- year DFS. The DFS in high-risk group was

significantly worse than that in low-risk group. Artificial intelligence survival prediction

system provided three individual mortality risk predictive curves based on three

artificial intelligence algorithms. In conclusion, comprehensive bioinformatics identified

17 immune genes as potential prognostic biomarkers, which might be potential

candidates of immunotherapy targets in BC patients. The current study depicted

regulatory network between transcription factors and immune genes, which was helpful

to deepen the understanding of immune regulatory mechanisms for BC cancer. Two

artificial intelligence survival predictive systems are available at https://zhangzhiqiao7.

shinyapps.io/Smart_Cancer_Survival_Predictive_System_16_BC_C1005/ and https://

zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_16_BC_C1005/. These

novel artificial intelligence survival predictive systems will be helpful to improve

individualized treatment decision-making.
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INTRODUCTION

As the most common malignant tumor in women, breast cancer
(BC) resulted in 2,088,849 new cases and 626,679 deaths in 2018
(1). Although advances in diagnosis and treatments improved the
survival rate of patients with early BC, but the survival rate of
patients with advanced BC was still poor (2). Early identification
of BC patients with poor prognosis and timely individualized
treatments were helpful to improve the prognosis of BC patients.

The tremendous progress of bioinformatics has provided
tremendous support for exploring the intrinsic mechanism of
tumorigenesis and prognosis. (3–6). Tumor-infiltrating immune
cells were reported to be associated with tumorigenesis and
prognosis (7, 8). It was reported that there was a significant
correlation relationship between tumor-infiltrating immune and
prognosis in BC patients (9). Immune-related genes could be
used to calculate the immune scores and evaluate the tumor
infiltration of immune cells to analyze the tumor immune
characteristics (10). There were several prognostic models for
prediction of prognosis in BC patients (11–13). However, these
prognostic models could only provide mortality risk prediction
for patients in different subgroups, but not individual mortality
risk prediction for a specific patient at the individual level. From
a specific patient’s point of view, the patient’s own mortality risk
prediction was more important than that of patients in different
subgroups. Therefore, a prognostic model that can provide
individualized mortality risk prediction for a specific patient
is helpful to optimize individualized treatment and improve
clinical prognosis.

The current research aimed at exploring the relationship
of immune-related genes with transcription factor, immune-
infiltrating cells, and disease-free survival (DFS) of BC patients.
Based on different artificial intelligence algorithms, the current
study focused on developing artificial intelligence survival
predictive systems for providing individual mortality risk
prediction for BC patients.

MATERIALS AND METHODS

Study Datasets
The original gene expression dataset from The Cancer Genome
Atlas (TCGA) database contained 21,205 mRNAs from 1,109
tumor specimens to 113 normal specimens. After removal of
patients with survival time <1 month and duplicate samples,
1,030 were included in further survival analyses. The original
gene expression values have been log10 transformed for TCGA
dataset. GSE31448 dataset (GPL570 platform) contained 246
patients and 23,319 mRNAs.

Gencode.v29 was used for converting probe IDs name to
gene symbols.

Abbreviations: BC, breast cancer; TCGA, The Cancer Genome Atlas; GEO, the
Gene Expression Omnibus; ROC, receiver operating characteristic; DFS, disease
free survival; HR, hazard ratio; CI, confidence interval; AJCC, the American Joint
Committee on Cancer; SD, standard deviation.

Differentially Expressed Analyses
Differentially expressed analyses were conducted with cutoff
values of log2 |fold change| >1 and P < 0.05 by “edgeR” (14).
Data were normalized by Trimmed mean of M values method.

Immune Gene and Transcription Factor
Immune genes were identified through Immunology Database
and Analysis Portal database (15). Transcription factors were
defined through Cistrome Cancer database (16).

Tumor Immune Infiltration
Six tumor-infiltrating immune cell data were obtained from
Tumor IMmune Estimation Resource database (16). Single
sample gene set enrichment analysis was used to evaluate tumor
immune infiltration scores for 28 immune categories (17, 18).

Statistical Analyses
Statistical analyses were conducted by SPSS Statistics 19.0 (SPSS
Inc., Chicago, IL, USA). Artificial intelligence algorithms were
performed by Python language 3.7.2 and R software 3.5.2.

TABLE 1 | Clinical features of included patients.

TCGA

dataset

GSE31448

dataset

P

Number [n] 1,030 246

Death [n (%)] 202 (19.6) 79 (32.1) <0.001

Total survival time (mean ± SD, month) 40.1 ± 35.8 61.1 ± 41.2 <0.001

Survival time for dead patients (month) 45.0 ± 37.4 37.7 ± 28.5 0.080

Survival time for living patients (month) 38.9 ± 35.3 72.1 ± 41.7 <0.001

Age (mean ± SD, year) 58.3 ± 13.2 55.2 ± 13.5 <0.001

AJCC PT (T3) 166 (16.1) 68 (27.6) 0.002

AJCC PT (T2) 588 (57.1) 121 (49.2)

AJCC PT (T1) 274 (26.6) 57 (23.2)

AJCC PT (NA) 2 (1.9) 0

AJCC PN (N1) 529 (51.4) 129 (52.4) 0.662

AJCC PN (N0) 482 (46.8) 115 (46.7)

AJCC PN (NA) 19 (1.8) 2 (0.8)

AJCC PM (M2) 157 (15.2) NA

AJCC PM (M1) 20 (1.9) NA

AJCC PM (M0) 853 (82.8) NA

AJCC PM (NA) 0 NA

Progesterone receptor (positive) 665 (64.6) 124 (50.4) <0.001

Progesterone receptor (negative) 320 (31.1) 120 (48.8)

Progesterone receptor (NA) 45 (4.4) 2 (0.8)

Estrogen receptor (positive) 763 (74.1) NA

Estrogen receptor (negative) 224 (21.7) NA

Estrogen receptor (NA) 43 (4.2) NA

Grade 3 NA 116 (47.2)

Grade 2 NA 84 (34.1)

Grade 1 NA 44 (17.9)

Grade 0 NA 3 (1.2)

Continuous variables are presented as mean ± standard deviation. NA, missing data;

AJCC, American Joint Committee on Cancer.

Frontiers in Oncology | www.frontiersin.org 2 March 2020 | Volume 10 | Article 330

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Precision Prediction for Breast Cancer

Artificial intelligence algorithms were carried out according to
the original articles: Cox survival regression (19), multitask
logistic regression (20, 21), and random survival forest (22, 23).
Threshold for statistically significant difference was P < 0.05.

RESULTS

Study Datasets
Details of research steps are displayed in
Supplementary Figure 1. Table 1 displays the basic information

of patients in the model dataset and validation dataset. The
mortality rate in the validation dataset was 32.1% (79/246),
which was significantly higher than 19.6% (202/1,030) in the
model dataset.

Differentially Expressed Analyses
Volcano plots of 21,205 mRNAs and 3,627 immune genes
are presented in Figures 1A,B. There were 265 up-regulated
and 185 down-regulated immune genes in differentially
expressed analyses.

FIGURE 1 | Differentially expression and functional enrichment. (A) Volcano chart of differentially expressed genes. (B) Volcano chart of immune differentially

expressed genes. (C) Barplot chart for functional enrichment analysis.
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Functional Enrichment Analyses
To explore biological functions of immune genes, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were performed. Bar plot (Figure 1C), GO chord chart
(Figure 2), and KEGG chord plot (Supplementary Figure 2)
showed that biological functions of immune genes were mainly
enriched in leukocyte migration, positive regulation of cell
adhesion, regulation of inflammatory response, regulation of
immune effector process, T cell activation, regulation of
lymphocyte activation, positive regulation of leukocyte cell–cell
adhesion, leukocyte chemotaxis, positive regulation of cell–cell
adhesion, and leukocyte cell–cell adhesion. The top five KEGG
items were as follows: cytokine–cytokine receptor interaction,

hematopoietic cell lineage, viral protein interaction with cytokine
and cytokine receptor, human T cell leukemia virus 1 infection,
and PI3K–Akt signaling pathway.

Immune Regulatory Network
Univariate Cox regression determined 179 prognostic genes for
DFS. The current research adopted three methods to explore the
relationship between immune genes and transcription factors.
First, with thresholds of correlation coefficient>0.5 and P< 0.01,
the current study identified transcription factors that were highly
correlated with prognostic immune genes. Second, prognostic
immune genes and their highly correlated transcription factors
were put in STRING database (medium confidence, 0.70) to

FIGURE 2 | Chord chart of prognostic genes.
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FIGURE 3 | Immune gene regulatory network chart.

explore relationships among prognostic immune genes and
transcription factors. Finally, Cytoscape v3.6.1 was used to
develop an immune regulatory network (Figure 3) on 34
immune genes and 34 transcription factors (24).

Construction of Prognostic Model
Multivariate Cox regression identified 17 genes as independent
influence factors for BC (Table 2 and Figure 4). The formula of
prognostic model was as follows:

prognostic score = (−0.499 ∗ ADAMTS8)+ (−0.698 ∗ IFNG)

+ (0.790 ∗ XG)+ (0.645 ∗ APOA5)

+ (−0.901 ∗ SIAH2)+ (1.117 ∗ C2CD2)

+ (−0.507 ∗ STAR)+ (−0.321 ∗ CAMP)

+ (−0.261 ∗ CDH19)+ (0.382 ∗ NTSR1)

+ (0.331 ∗ PCDHA1)+ (0.706 ∗ AMELX)

+ (−0.655 ∗ FREM1)+ (1.082 ∗ CLEC10A)

+ (−0.497 ∗ CD1B)+ (−0.909 ∗ CD6)

+ (0.620 ∗ LTA).

Prognostic nomogram is shown in Figure 5.
Survival curves of prognostic genes are shown in
Supplementary Figure 3. Supplementary Figures 4, 5

are predictive value distribution chart and survival status
scatterplot, respectively.

Clinical Performance of Model Cohort
Figure 6A displays survival curves in the high-risk group
and low-risk group divided by the median of prognostic

scores. Figure 6B demonstrates that concordance indexes were
0.782, 0.734, and 0.735 for 1-, 3-, and 5-year survival,
respectively. Supplementary Figure 6 shows calibration curves
of the model cohort.

Clinical Performance of Validation Cohort
Figure 7A displays survival curves in the high-risk group
and low-risk group. Figure 7B demonstrates that concordance
indexes were 0.778, 0.738, and 0.792 for 1-, 3-, and 5-year
survival, respectively. Supplementary Figure 7 shows calibration
curves of the validation cohort.

Artificial Intelligence Survival Prediction
System
Artificial intelligence survival prediction system was constructed
to provide individual mortality risk prediction for BC patients
(Figure 8). This tool could provide three individual mortality
risk predictive curves by using random survival forest
algorithm (Figure 8A), multitask logistic regression algorithm
(Figure 8B), and Cox survival regression algorithm (Figure 8C).
Artificial intelligence survival prediction system is available
at https://zhangzhiqiao7.shinyapps.io/Smart_Cancer_Survival_
Predictive_System_16_BC_C1005/.

Gene Survival Analysis Screen System
The Gene Survival Analysis Screen System was
constructed for exploratory research of immune genes
(Supplementary Figure 8). The Gene Survival Analysis Screen
System is available at https://zhangzhiqiao8.shinyapps.io/Gene_
Survival_Subgroup_Analysis_16_BC_C1005/.
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TABLE 2 | Information of prognostic immune genes.

Univariate analysis Multivariate analysis

Immune gene HR 95% CI P Coefficient HR 95% CI P

ADAMTS8 (high/low) 0.601 0.453 0.796 −0.499 0.607 0.444–0.832 0.002

IFNG (high/low) 0.627 0.472 0.833 −0.698 0.497 0.335–0.739 <0.001

XG (high/low) 1.373 1.036 1.819 0.790 2.203 1.520–3.193 <0.001

APOA5 (high/low) 1.465 1.084 1.979 0.645 1.906 1.331–2.730 <0.001

SIAH2 (high/low) 0.686 0.519 0.908 −0.901 0.406 0.264–0.624 <0.001

C2CD2 (high/low) 1.327 1.004 1.753 1.117 3.056 1.742–5.361 <0.001

STAR (high/low) 0.631 0.477 0.835 −0.507 0.602 0.432–0.839 0.003

CAMP (high/low) 0.740 0.559 0.979 −0.321 0.725 0.580–0.907 0.005

CDH19 (high/low) 0.676 0.510 0.895 −0.261 0.771 0.648–0.916 0.003

NTSR1 (high/low) 1.410 1.068 1.860 0.382 1.465 1.162–1.847 <0.001

PCDHA1 (high/low) 1.475 1.116 1.950 0.331 1.392 1.125–1.723 0.002

AMELX (high/low) 1.488 1.019 2.172 0.706 2.026 1.236–3.322 0.005

FREM1 (high/low) 0.678 0.512 0.898 −0.655 0.520 0.362–0.747 <0.001

CLEC10A (high/low) 0.699 0.528 0.925 1.082 2.950 1.756–4.957 <0.001

CD1B (high/low) 0.729 0.550 0.966 −0.497 0.608 0.407–0.909 0.015

CD6 (high/low) 0.619 0.467 0.821 −0.909 0.403 0.215–0.755 0.005

LTA (high/low) 0.730 0.551 0.967 0.620 1.860 1.048–3.300 0.034

The medians of gene expression values were used as cutoff values to stratify gene expression values into high expression group (as value 1) and low expression group (as value 0). HR,

hazard ratio; CI, confidence interval.

FIGURE 4 | Immune gene survival forest chart.
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FIGURE 5 | Prognostic nomogram chart.

Independence Assessment
Prognostic signature, AJCC PT, and AJCC PN were independent
risk factors for DFS in the model dataset (Table 3). In the
validation dataset, prognostic signature was proven to be an
independent risk factor for DFS.

Clinical Correlation Analyses
Figure 9 shows a correlation coefficient heatmap between
prognostic genes and clinical variables. Supplementary Figure 9

presents correlation significance heatmap between prognostic
genes and clinical variables.

Tumor Immune Infiltration Correlation
Analyses
Figure 10 presents correlation coefficient heatmap
between tumor immune infiltration and prognostic

genes. Supplementary Figure 10 presents correlation
significance heatmap between tumor immune infiltration
and prognostic genes.

Tumor Immune Infiltration
Figure 11 demonstrates expression levels of six tumor immune
infiltration in the high-risk group and low-risk group. Figure 12
presents scatterplots between six tumor immune infiltrations and
prognostic score.

Gene Differential Expression Between
Normal Samples and Tumor Samples
To demonstrate the gene differential expression between
normal samples and tumor samples at the molecular level,
the current study performed group differential expression
analyses between normal samples and tumor samples obtained
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FIGURE 6 | Clinical performance in model cohort. (A) Survival curves for high

risk group and low risk group. (B) Time-dependent receiver operating

characteristic curves.

from TCGA database. There were 1,109 tumor samples
and 113 normal samples for group differential expression
analyses. Supplementary Figure 11 presents the gene differential
expression between normal samples and tumor samples at the
molecular level.

Clinical Performance in Different Cancers
To explore the clinical performance of the current prognostic
model for other cancers, four tumor datasets were obtained
from TCGA database as external validation datasets. There
were 348 patients in the hepatocellular carcinoma dataset, 265
patients in the colorectal cancer dataset, 494 patients in the
lung cancer dataset, and 370 patients in the ovarian cancer
dataset. The prognostic scores in external validation datasets
were calculated according to the previous formula derived
from the model dataset. Survival curve analyses indicated
good diagnostic performance of the current prognostic model
for hepatocellular carcinoma, colorectal cancer, lung cancer,
and ovarian cancer (Supplementary Figure 12), suggesting that

the current prognostic model might be useful for other
malignant tumors.

External Validation of Accuracy and
Clinical Validity
To validate the accuracy and clinical validity of the current
prognostic model in other external validation dataset,
hepatocellular carcinoma dataset, colorectal cancer dataset, lung
cancer dataset, and ovarian cancer dataset were downloaded
from TCGA database. These four malignant-tumor datasets were
merged into one joint dataset as external validation dataset with
1,640 tumor patients. Supplementary Figure 13A demonstrates
that concordance indexes were 0.832, 0.781, and 0.778 for 1-,
3-, and 5-year survival, respectively. Supplementary Figure 13B

suggests that the current prognostic model could distinguish
tumor patients with high mortality risk from those with low
mortality risk. Calibration curves of external validation dataset
showed good accordance between actual mortality percentage
and predicted mortality percentage (Supplementary Figure 14).

DISCUSSION

The current research determined 17 immune genes as prognostic
biomarkers for DFS. Then the current research depicted
regulatory relationships among transcription factors and
immune genes through correlation analyses and STRING
database. Based on these 17 immune genes, the current research
created a prognostic nomogram to predict the DFS for BC
patients. Based on the previous prognostic nomogram, the
current research developed two artificial intelligence survival
predictive systems for individual mortality risk prediction. These
two artificial intelligence survival predictive systems were helpful
to provide precise individual mortality risk prediction and
improve individual treatment decision-making.

Several prognostic models have been built for predicting
the prognosis in BC patients (11–13). The previous prognosis
models could only provide the mortality curves for two groups
of tumor patients with different characteristics, failing to provide
the individual mortality curve for a special patient. The progress
of artificial intelligence algorithms provides necessary basic
conditions for the realization of individualized mortality risk
prediction of cancer patients. Random survival forest algorithm
(25–27), multitask logistic regression (28, 29), and Cox survival
regression algorithm (30) have been proposed and used to
improve the predictive performance of prognostic models.
Based on three artificial intelligence algorithms above, we
develop an artificial intelligence survival predictive system. Our
artificial intelligence survival predictive system could display
three individual mortality risk predictive curves by using random
survival forest algorithm, multitask logistic regression algorithm,
and Cox survival regression algorithm. At present, there are
few prognostic models that can provide individual mortality
risk prediction. The current study provides an interesting and
feasible way for the transformation and application of artificial
intelligence algorithm in the field of medicine.
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FIGURE 7 | Clinical performance in validation cohort. (A) Survival curves for high risk group and low risk group. (B) Time-dependent receiver operating characteristic

curves.

Tumor immune infiltration acted an important role in
oncogenesis and prognosis (7, 31). Immune genes could
be used to predict the prognosis of BC patients (32, 33).
Three prognostic models have been developed to predict the
prognosis for BC patients (11–13). Comparedwith three previous
prognostic models, the current prognostic model could provide

individualized mortality risk prediction and online calculation
function, which were of great significance for clinical application
by patients and clinicians.

Biological processes of immune genes were explored via
TISIDB databases (http://cis.hku.hk/TISIDB/index.php). Top
biological processes of CD1b molecule (CD1B) were adaptive
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FIGURE 8 | Home page of Smart Cancer Survival Predictive Predictive System. (A) Multi-Task logistic regression predicted survival curves. (B) Random survival forest

predicted survival curves. (C) Cox survival regression predicted survival curves. (D) Cox survival regression predicted mortality percentage and 95% confidence

interval.
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TABLE 3 | Results of Cox regression analyses.

Univariate analysis Multivariate analysis

HR 95% CI P Coefficient HR 95% CI P

TCGA cohort (n = 1030)

Age (high/low) 1.573 1.189–2.080 0.002 0.363 1.438 1.080–1.915 0.013

AJCC PT (T3-4/T1-2) 1.936 1.419–2.643 <0.001 0.562 1.754 1.279–2.406 <0.001

AJCC PN (N2-3/N0-1) 2.138 1.590–2.875 <0.001 0.704 2.021 1.490–2.741 <0.001

Prognostic model (high/low) 3.285 2.423–4.453 <0.001 1.146 3.147 2.308–4.291 <0.001

GSE31448 cohort (n = 246)

Age (high/low) 1.076 0.691–1.675 0.747 0.159 1.173 0.740–1.858 0.498

AJCC PT (T3-4/T1-2) 1.471 0.904–2.396 0.121 0.273 1.313 0.790–2.184 0.293

AJCC PN (N2-3/N0-1) 1.448 0.923–2.271 0.107 0.337 1.401 0.883–2.221 0.152

Prognostic model (high/low) 2.850 1.791–4.535 <0.001 1.057 2.878 1.806–4.586 <0.001

The median of prognostic model scores was used as the cutoff value to stratify gastric cancer patients into high-risk group and low risk group. AJCC, the American Joint Committee on

Cancer; HR, hazard ratio; CI, confidence interval.

immune response, antigen processing and presentation, and
antigen processing and presentation via major histocompatibility
complex class Ib. Top biological processes of lymphotoxin α

(LTA) were adaptive immune response, lymphocyte-mediated
immunity, leukocyte-mediated immunity, and inflammatory
response to antigenic stimulus. Top biological processes of CD6
molecule (CD6) were immunological synapse formation, cell
recognition, acute inflammatory response, and inflammatory
response to antigenic stimulus. Top biological processes of
cathelicidin antimicrobial peptide (CAMP) were cell killing,
antibacterial humoral response, innate immune response in
mucosa, mucosal immune response, and organ- or tissue-specific
immune response. Top biological processes of interferon γ9
(IFNG) were cell killing, neutrophil homeostasis, leukocyte
homeostasis, and neutrophil apoptotic process. Top biological
processes of ADAM metallopeptidase with thrombospondin
type 1 motif 8 (ADAMTS8) were phosphate ion transport,
anion transport, and inorganic anion transport. Top biological
processes of apolipoprotein A-V (APOA5) were receptor-
mediated endocytosis, tissue regeneration, and positive
regulation of receptor-mediated endocytosis. Top biological
processes of siah E3 ubiquitin protein ligase 2 (SIAH2) were
proteasomal protein catabolic process, regulation of cysteine-
type endopeptidase activity involved in apoptotic process, and
negative regulation of cysteine-type endopeptidase activity
involved in apoptotic process. Top biological processes of
steroidogenic acute regulatory protein (STAR) were response to
molecule of bacterial origin, response to oxidative stress, and
response to reactive oxygen species. Top biological processes of
cadherin 19, type 2 (CDH19), were homophilic cell adhesion via
plasma membrane adhesion molecules and cell–cell adhesion via
plasma-membrane adhesion molecules. Biological processes of
C-type lectin domain family 10, member A (CLEC10A), were
adaptive immune response.

ADAMTS8was related with poor prognosis for breast invasive
ductal carcinoma patients (34). ADAMTS8 could regulate

invasion and apoptosis of hepatocellular carcinoma through ERK
signaling pathway (35). The interaction between CD4+ T cells
and lung cancer cells could up-regulate expression of DNMT and
methylation of IFNG promoter (36). CpG methylation of IFNG
gene could induce immunosuppression of tumor-infiltrating
lymphocytes (37). High expression level of XG in Ewing sarcoma
cell line could promote tumor migration and invasiveness (38).
Highly expressed SIAH2 was associated with poor progression-
free survival after tamoxifen treatment (39). SIAH2 participated
in the regulation of EAF2 polyubiquitin in prostate cancer
cells as E3 ligase of EAF2 polyubiquitination (40). Cathelicidin
antimicrobial peptide directly activated exchange protein, which
regulated migration and apoptosis of BC cells (41). Interleukin
24 enhanced apoptosis of BC cell via cAMP-dependent PKA
pathway (42). Low expression of NTSR1 was associated with
non-invasive growth of colorectal cancer (43). Interaction of
CLEC10A with macrophages and dendritic cells might play an
important role in tumor progression (44). As a functional ligand
of CLEC10A, sv6D could induce the maturation of immune cells
(45). Variation of STXBP6 might affect the response of TNF-
α inhibitors in rheumatoid arthritis patients (46). There was a
significant correlation between LTA RS909253GA genotype and
the development of Asian gastric cancer (47). These previous
studies revealed possible immune regulatory mechanisms and
biological roles of previous 17 immune genes in tumorigenesis
and progression.

Toll-like receptor–activated plasma-like dendritic cells
inhibited growth of BC cells (48). CD56 enhanced formation
of cytotoxic immune synapses and strengthened sensitivity
of cytotoxicity mediated by natural killer cells (49). CD4
and CD8T cell tumor infiltration driven by HER2-dendritic
cells improved survival of BC mice (50). CD4+ T cells
inhibited CD8+ T cell failure at the initiation stage of
immune response in BC (51). V delta 2+ gamma delta T
lymphocyte had cytotoxicity to MCF 7 BC cells (52). High
expression of SEMA4C was correlated with the proliferation
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FIGURE 9 | Clinical variable correlation coefficient heatmap.

of tumor cells and the aggregation of macrophages in BC (53).
Interleukin 32θ suppressed the growth of BC by regulating
CCL18 secreted by macrophages (54). Macrophage adhesion
regulated by integrin induces lymphovascular dissemination
in BC (55). CCL5 induced recurrence of BC via aggregation
of macrophages in residual tumors (56). High expression
of mast cells induced the tumor size and the incidence of
spontaneous metastasis in BC mice (57). Tumor-infiltrating
myeloid-derived suppressor cells (MDSCs) was related with
therapeutic effect and prognosis of neoadjuvant chemotherapy
of BC (58). Neutrophil–lymphocyte ratio could predict
prognosis of triple-negative BC patients (59). Interleukin 10 and
interleukin 2 promoted proliferation and cytotoxicity of CD8+T
cells (60).

Advantages of current research: First, two artificial intelligence
survival predictive systems were developed based on immune

genes for BC patients. These two tools could provide online
individual mortality risk prediction and provide valuable
prognostic information for optimizing individual treatment
decision. Second, artificial intelligence survival prediction system
provided three individual mortality risk predictive curves
based on different artificial intelligence algorithms, providing
different valuable individual mortality curves as the references of
individual medical decision-making. Third, artificial intelligence
survival prediction system provided predicted median survival
time and 95% confidence interval of predicted mortality, which
were of clinical practical values for optimizing individual
medical decision-making.

Shortcomings of current research: First, the current research
explored potential biological functions and regulatory
mechanisms of immune genes in BC based on public
databases, but the conclusion was not validated by confirmative
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FIGURE 10 | Immune gene correlation coefficient heatmap.

experimental studies. Second, estrogen receptor, progesterone
receptor, and erb-b2 receptor tyrosine kinase 2 are closely related
to prognosis of BC patients. Subgroup studies based on these
biomarkers are helpful to provide more accurate individual
mortality risk prediction for BC patients in different subgroups.
Third, the current studies did not include and analyze the
impacts of several clinical factors, such as radiotherapy,
chemotherapy, and targeted drug therapy, which should be
taken into account for future studies. Fourth, the calculation
process of artificial intelligence algorithms are too complex to

perform and cannot be present through conventional formula.
The operation process of artificial intelligence algorithm is
opaque, just like a black box, which limits the clinical application
and verification of artificial intelligence algorithm. Because
it is difficult for artificial intelligence algorithm to perform
repeated verification research, we provided three different
artificial intelligence algorithms as references for each other.
As the inherent deficiency of artificial intelligence, opaque
computing process and lack of verification research need to be
solved by future artificial intelligence algorithm research. Fifth,
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FIGURE 11 | Expression of tumor immune–infiltrating cells.

the current study identified 17 immune genes were correlated
with prognosis of BC patients. However, the associations of
these immune genes with tumor heterogeneity and tumor
resistance were still unclear. Further basic immune research is
helpful to clarify the associations of these immune genes with
tumor heterogeneity and tumor resistance. Sixth, although the
current study demonstrated the gene differential expression
between normal samples and tumor samples, the current study
was lack of external validation at the cell level and the animal
model level. Further validation studies at the cell level and the
animal model level were helpful to ascertain the differences of
immune regulatory mechanism of BC patients compared with
normal people.

In conclusion, comprehensive bioinformatics identified
17 immune genes as potential prognostic biomarkers, which
might be potential candidates of immunotherapy targets in
BC patients. The current study depicted regulatory network
between transcription factors and immune genes, which was
helpful to deepen the understanding of immune regulatory
mechanisms for BC cancer. Two artificial intelligence survival
predictive systems are available at https://zhangzhiqiao7.
shinyapps.io/Smart_Cancer_Survival_Predictive_System_16_
BC_C1005/ and https://zhangzhiqiao8.shinyapps.io/Gene_
Survival_Subgroup_Analysis_16_BC_C1005/. These novel
artificial intelligence survival predictive systems will be helpful
to improve individualized treatment decision-making.
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FIGURE 12 | Scatterplot of tumor-infiltrating immune cells and prognostic signature.
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