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Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial
Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission
line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The
motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can
hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce
effective magnetic fields for the microwave photons in the TLR necklace through the generation of the
nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic
magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture
under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric
scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the
gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the
chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral
flow on external pumping parameters and cavity decay is characterized.

C
ircuit quantum electrodynamics (QED)1–4 is the realization of cavity QED5,6 in superconducting quantum
circuits. It employs the superconducting coplanar transmission line resonators (TLRs)1,2 to substitute the
standing-wave optical cavities and the superconducting qubits7–10 to replace the atoms. Due to its flex-

ibility and scalability, this on-chip architecture has been regarded as a promising platform for quantum com-
putation4 and quantum simulation15,16. Recently, several theoretical schemes have been proposed to generate
artificial gauge fields for microwave photons and polaritons11–14 in circuit QED lattices15,16. While the idea of
synthesizing gauge fields was first proposed and realized in the context of ultracold atoms17–19 and magneto-
optical systems20, circuit QED takes the advantages of individual addressing and in situ tunability of circuit
parameters4,15,16. Moreover, the effective strong photon-photon repulsion can be induced through a variety of
mechanisms, including electromagnetically induced transparency (EIT)21–23, Jaynes-Cummings-Hubbard (JCH)
nonlinearity24,25, and nonlinear Josephson coupling26–28. Combining the strong photon correlation with the
synthetic gauge fields, the circuit QED system is showing prospective potential in the investigation of bosonic
fractional quantum Hall liquids29,30 and nontrivial topological edge states for microwave photons31.

In the pioneering work13 and its generalization14, a method of generating effective magnetic fields for polaritons
in a two dimensional cavity lattice has been proposed. For each site on the lattice, the mixing phase between the
atomic and photonic components of the polariton is controlled by an EIT type modulation of the atom trapped in
the cavity, and the inter-site polariton hopping is induced by the untunable evanescent coupling between
neighboring cavities. When hopping from one particular site to its neighbor, the polariton acquires a hopping
phase which is the difference of the mixing phases subjected to the two neighboring sites. To obtain nontrivial
gauge fields, the hopping along the horizontal and vertical directions should be controlled independently, and
two-mode cavities (TMCs) and double EIT processes are consequently required. The construction and pumping
of the complicated multi-level artificial atoms are still challenging in current experimental setup. There is also
another scheme proposed in which a passive circulator is used to induce nontrivial hopping phases between TLRs
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capacitively connected to it12 through a virtual-resonant process. Due
to its dispersive nature, this scheme is suitable to construct Kagomé
and honeycomb lattices with coordination number three because the
circulator induces effective photon hopping between any two of the
TLRs connected to it. When applied to other lattice configurations
with coordination number larger than three (e. g. square lattice with
coordination number four), this scheme will result in unwanted
cross-talk.

In this manuscript, we consider an alternative mechanism of
implementing artificial Abelian gauge fields and propose a minimum
circuit to demonstrate this method. Our work is inspired by the laser
assisted tunneling technique used in ultracold atoms17 and recent
works of Josephson-embedded circuit QED systems28,33–35. We con-
sider a necklace consisting of three TLRs coupled by superconduct-
ing quantum interference devices (SQUIDs)26,28,32,33 which can be
harmonically modulated. With appropriate modulating pulses,
effective parametric photon conversion between eigenmodes of the
necklace can be induced34, which manifests itself as photon hopping
between neighboring TLR sites. This modulation in turn leads to an
accumulated hopping phase during the hopping process, which can
be regarded as an effective magnetic field imposed on the photons. As
our method endows hopping phases directly to the links between
TLRs, we expect that the experimental setup of our scheme is much
simpler because the complicated double EIT pumping is not neces-
sary. In addition, since our scheme does not rely on the dispersive
mechanism, the above-mentioned cross-talk difficulty can also be
circumvented. Moreover, the effective hopping strength in our
scheme can be controlled by the modulating pulses. Such advantage
may offer potential facilities in the future study of the competition
between synthetic gauge fields, photon hopping, and Hubbard
repulsion.

We further study the chiral photon flow dynamics of the necklace,
which is a direct evidence of the breaking of time reversal symmetry
(TRS) in the proposed circuit. We numerically simulate the photon
flow dynamics in the presence of decoherence based on reported
experimental data34,36,37. Our results imply that the unidirectional
character of the photon flow survives in the cavity decay. The feas-
ibility of detecting such phenomena with the recently-developed
photon detection technique34,38,40 is also discussed. Moreover, to
quantitatively describe the chiral flow, we introduce the concepts
of photon position vector and chiral area. We show that the direction
and the strength of the chiral photon flow can be represented by the
chiral area which is the directed area swept by the photon position
vector in a given time. With the proposed quantitative measure, we
quantify the chiral flow character in general cases and investigate its
detailed dependence on external pumping and decoherence
processes.

Results
Implementing artificial gauge field with dynamic modulation
method: the theoretical model. We start from a photon hopping
process between three cavities described by the following
Hamiltonian

H~g12a{1a2eih12zg23a{2a3eih23zg31a{3a1eih31zh:c, ð1Þ

where ai

.
a{i are the annihilation/creation operators of the ith site for

i 5 1, 2, 3, gij are the i « j hopping rates, and hij are the corresponding
hopping phases. We can imagine that there is a photon initially
prepared in the cavity 1 and hopping on the cavity necklace. When
finishing the 1 R 3 R 2 R 1 circulation, the photon accumulates a
phase hS 5 h12 1 h23 1 h31, which is similar to the Aharonov-Bohm
phase of an electron circulating in an external magnetic field.
Consequently, hS can be regarded as an artificial magnetic field
imposed on the charge-neutral photon, and the TRS of this circuit
keeps intact if and only if hS [ pZ11,12. To break the TRS, we

synthesize non-trivial h12, h23 and h31 by the dynamic modulation
method39: we consider a three-cavity Hamiltonian

HTC~H0zSivjHij, ð2Þ

with

H0~S3
i~1via

{
i ai, ð3Þ

Hij~Vij tð Þ a{i zai{a{j {aj

h i2
, ð4Þ

where vi is the eigenfrequency of the ith cavity and Vij(t) is the
coupling constant between the ith and jth cavities. Here we assume
that Vij(t) can be tuned harmonically and in situ (we will discuss the
physical realization in the next subsection). Moreover, we assume
that the parameters in HTC satisfy the far off-resonance condition:

v3{v2,v2{v1f g? V12 tð Þj j, V23 tð Þj j, V31 tð Þj jf g: ð5Þ

In the first step we consider the 1 « 2 hopping. If V12(t) is static,
the 1 « 2 photon hopping can hardly be induced because the two
cavities are far off-resonant. Meanwhile, we can implement the effec-
tive 1 « 2 photon hopping by modulating V12(t) dynamically as

V12 tð Þ~{g12 cos v1{v2ð Þt{h12½ �: ð6Þ

Physically, V12(t) carries energy quanta filling the gap between the
two cavity modes. For a photon initially placed in the 1st cavity, it can
absorb an energy quantum v2 2 v1 from the 1 « 2 link, convert its
frequency to v2, and hop finally into the 2nd cavity. We can further
describe this process in a more rigorous way: in the rotating frame
with respect to H0, H12 becomes

HI12~eiH0tH12e{iH0t<g12a{1a2eih12zh:c, ð7Þ

because the other terms are fast oscillating and thus are safely
neglected. From Eq. (7), we notice that both the effective hopping
strength and the hopping phase can be controlled by the modulating
pulse V12(t). Similarly, we can induce the effective 2 « 3 and 3 « 1
hopping process by modulating V23(t) and V31(t) as

V23 tð Þ~{g23 cos v2{v3ð Þt{h23½ �, ð8Þ

V31 tð Þ~{g31 cos v3{v1ð Þt{h31½ �: ð9Þ

Summarizing the three pulses up, we get

HI~HI12zHI23zHI31~g12a{1a2eih12zg23a{2a3eih23

zg31a{3a1eih31zh:c,
ð10Þ

which directly reproduces the model (1).

The superconducting circuit implementation: a SQUID-coupled
three-TLR necklace. Here we show explicitly the implementation of
Eq. (1) in a circuit QED necklace. We propose a circuit consisting of
three TLRs with different lengths Ln but the same capacitance c and
inductance l per unit length, coupled by three grounding SQUIDs
with capacitance CJa and maximal Josephson coupling energy Ea for
n 5 1, 2, 3 and a 5 a, b, c, as shown in Fig. 1(a) (this architecture has
also been exploited to study the entanglement generation through
dynamic Casimir effect recently35). For each of the SQUID loops, an
external static flux bias ~Wa is added to modulate the effective
Josephson coupling energy as EJa~Ea cos p~Wa

�
W0

� �
with W0 5 h/

2e the flux quantum. We assume that the inductance/capacitance of
the resonator is much bigger than the inductance/capacitance of the
SQUIDs such that the following inequalities hold:
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Ll, DLj jl?LJa, ð11Þ

Lc, DLj jc?CJa, ð12Þ

where LJa~W2
0

�
4p2EJa is the effective inductance of the ath SQUID

for a 5 a, b, c, L 5 L1 1 L2 1 L3 is the total length of the TLR
necklace, and DL 5 min{jLi 2 Ljj, i ? j} characterizes the length
difference between the TLRs. Focusing only on the lowest three
modes, this necklace can be described by the Hamiltonian

H0~S3
m~1vma{mam, ð13Þ

where vm is the eigenfrequency of the mth eigenmode for m 5 1, 2, 3,
and am

�
a{m are the corresponding annihilation/creation operators.

While Eq. (13) is derived in detail in Methods, we can explain the
mode structure of the necklace in an intuitive way. The presence of
the grounding SQUIDs can modify the eigenmodes of the individual
TLRs and induce the TLR-TLR coupling. From the point of view of
TLR 1, the SQUID a plays the role of a shortcut of TLR 2, because the

Figure 1 | (a) Schematic plot of the SQUID-coupled three-TLR necklace. This circuit is constructed by three TLRs connected through the grounding

SQUIDs. For each SQUID a, the SQUID loop is penetrated by a static bias flux ~Wa and a dynamic modulation pulse dWa with a 5 a, b, c. Moreover,

each TLR is coupled to a measurement device which can detect its photon number. The lowest three eigenfrequencies of the circuit are labeled by v1, v2,

and v3, respectively. (b), (c) The localization property of the eigenmodes. (c) depicts the normalized mode functions of the three lowest eigenmodes of the

circuit QED necklace versus critical currents of the SQUIDs. The three panels of (c) describe the eigenmode functions corresponding to the eigenmode 1,

2, and 3 respectively. The blue solid line, green dash line and red dot-dashed line correspond to the situations of IS 5 Ia 5 Ib 5 Ic 5 1, 2, 3 mA respectively.

In addition, we set EJa/ECa 5 100 with ECa 5 2e2/CJa. With the chosen parameters, we get v1/2p 5 11.5 GHz, v2/2p 5 9.5 GHz and v3/2p 5 8.2 GHz for

IS 5 3 mA. In (b), we quantify the localization property of the mth eigenmode by Em/vm where Em is the energy stored in the mth TLR for m 5 1, 2, 3.

The critical current IS of the SQUIDs varies from 0.5 mA to 4 mA, and the other parameters are chosen as the same as in Fig. 1(c). (d) Square lattice

consisting of four kinds of TLRs. Four kinds of TLRs with different eigenfrequencies (red for v1/2p 5 8 GHz, orange for v2/2p 5 9 GHz, blue for

v3/2p 5 10 GHz and dark blue for v4/2p 5 11 GHz) are placed in an interlaced form and coupled by grounding SQUIDs. With proper pumping pulses,

only nearest-neighbor parametric photon hopping can be induced.
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current coming from TLR 2 will largely flow through SQUID a
directly to the ground, without crossing TLR 1. This allows us to
define separated and localized modes for the TLR necklace: due to the
small inductances of the grounding SQUIDs, the edges of the TLRs
can be regarded as grounding nodes, and the lowest three
eigenmodes can be approximated by the three individual l/2
modes of the TLRs. For the mth eigenmode, we calculate its
normalized node flux distribution function fn,m(x) in the nth TLR
based on data from recent experiments34,36,37 and study its
localization property versus the Josephson coupling energies of the
grounding SQUIDs. For the TLRs, the circuit parameters are chosen
as c 5 1.6 3 10210 F ? m21, l 5 4.08 3 1027 H?m21, L1 5 6 mm, L2 5

7 mm and L3 5 8 mm. For the grounding SQUIDs, we choose the
effective critical currents Ia 5 2pEJa/W0 of the three grounding
SQUIDs on the level of Ia g [0.5 mA, 4 mA] for a 5 a, b, c. As
shown in Fig. 1(b) and 1(c), larger critical currents lead to better
localization, this is consistent with our previous description of the
roles played by the grounding SQUIDs. With proper choice of the
parameters, the eigenmode amplitudes jfn,m(x)j2 become sufficiently
large only for n 5 m while negligible for n ? m.

Moreover, since the currents of two neighboring TLRs flow to the
ground through the same grounding SQUID, by the modulation of
the grounding SQUIDs we can establish the effective inter-TLR para-
metric hopping. For the 1 « 2 coupling, we add an extra a. c. flux
driving dWa(t) 5 DWa cos[(v1 2 v2)t 2 ha] to the static ~Wa which
induces the parametric coupling Hamiltonian (see Methods)

Hint,a~2ga cos v1{v2ð Þt{ha½ �a{1a2zh:c, ð14Þ

with ga the coupling strength between modes 1 and 2. In the rotating
frame with respect toH0 in Eq. (13), such modulation results in the
effective 1 « 2 hopping which can be described by

Hint,a~gaeihaa{1a2zh:c: ð15Þ

In addition, we can add similar pumping pulses on the SQUIDs b and
c to induce the 2 « 3 and 3 « 1 hoppings, respectively. Summing up
the three modulations, we get the effective Hamiltonian

HI~gaeiha a{1a2zgbeihb a{2a3zgceihc a{3a1zh:c, ð16Þ

which is identical with Eq. (1) through the mappings ga R g12, gb R
g23 and gc R g31. We should emphasize that ga, gb, and gc can be
modulated independently by the amplitudes of the a. c. pulses, and
the three phases ha, hb, and hc are determined by the initial phases of
the corresponding pulses. The range of the effective coupling
strength ga can be estimated base on reported experimental data:
we set Ia g [1, 4] mA, ~Wa

�
W0 [ 0:4, 0:6½ �, and DWa/W0 g [0.01,

0.02] for a 5 a, b, c. The resulted coupling strengths are in the range
ga/2p g [10, 30] MHz. For simplicity, in the following we consider
the homogenous hopping situation gT 5 ga 5 gb 5 gc.

The realization and detection of the chiral photon flow. To
demonstrate the presence of the synthetic gauge field we study the
chiral photon flow in this necklace which is the analog of electron
circulation in an external magnetic field. We initialize the necklace
such that there is initially a photon in the 1st mode and numerically
simulate its subsequent time evolution in the presence of
decoherence using the master equation

dr

dt
~{i HI ,r½ �z 1

2

X
3
j~1kj 2ajra{j {a{j ajr{ra{j aj

� �
, ð17Þ

where r is the density matrix of the necklace and kj is the decay rate of
the jth eigenmode. The circuit parameters are chosen as the same as
those used in the calculation of Figs. 1(b) and 1(c), with the pumping
strength gT/2p 5 20 MHz and the homogenous decay rate k/2p 5
250 kHz. In the three situations hS 5 p/2, p and 3p/2, we calculate
the energy stored in the TLRs and plot our results in Fig. 2. As shown

in the first panel which corresponds to hS 5 p/2, the energy
population in the three TLRs exhibits clear temporal phase delay
which implies that the photon is flowing unidirectionally, first
from TLR 1 to TLR 2 and then from TLR 2 to TLR 3. Such chiral
character is a significant demonstration of the breaking of TRS in this
system. Similarly, the third panel which corresponds to hS 5 3p/2
describes the chiral photon flow with the opposite direction.
Meanwhile, the second panel implies that, in the trivial case hS 5

p, the energy initially stored in TLR 1 transfers symmetrically to its
left and right. It should be emphasized that, although the cavity decay
rate k we choose is stronger compared with reported experimental
data38, the chiral character of the photon flow in the first and third
panel still survives. The environment causes severe photon damping
but influences little on the unidirectional character of the photon
dynamics. Therefore, we expect that the chiral photon flow pattern
in this necklace can be realized and measured by the photon number
detection technique developed in recent experiments34,38,40. For the
three measurement devices shown in Fig. 1(a), we can use three phase
qubits capacitively coupled to the corresponding TLRs34,38. Since the
frequencies of the qubits can be adjusted by their d. c. bias currents,
the initialization and the measurement of the chiral flow dynamics
can be proceeded by the following steps: in the first step, we tune the
frequencies of the qubits to be large off-resonance with the TLRs, and
prepare the qubit 1 in its excited state. In this step, the coupling
between the qubits and TLRs are effectively turned off. In the
second step, we tune on the qubit-TLR coupling by adiabatically
tuning the qubit 1 in resonance with the TLR 1 for a duration T1

5 p/2gq1 such that the excited qubit 1 emit a photon to the TLR 1
(here gqn denote the coupling strengths between TLR n and qubit n
for n 5 1, 2, 3). Through this manipulation, the single-photon initial
state is prepared. After the initialization, we turn off the qubit-TLR
coupling and turn on the external a. c. flux pumping on the
grounding SQUIDs for a duration T0 during which the TLR
necklace experiences the chiral photon flow. To measure the
photon flow dynamics, we could prepare the three qubits all in
their ground state, turn off the external a. c. flux pumping, and
then turn on the TLR-qubit coupling by tuning the frequencies of
the qubits in resonance with the corresponding TLR modes. In this
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dot-dashed (red) lines represent the energies stored in the TLR 1, 2 and 3,

respectively. For the three grounding SQUIDs we assume that they have

identical maximal critical current 5 mA and identical static flux bias
~Wa~~Wb~~Wc~0:3W0. The amplitudes of the pumping pulses are chosen as

DWa/b/c/W0 5 1.4/2.0/1.4% such that the homogeneous coupling strength

gT/2p 5 ga/2p 5 gb/2p 5 gc/2p 5 20 MHz is induced. The decay rate is

chosen as k/2p 5 250 kHz. The other circuit parameters are chosen the

same as those used in the calculation of Figs. 1(b) and 1(c).
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way we can load the TLR photons into the corresponding qubits and
extract the evolution of photon distribution on the necklace through
the measurement of the three qubits8.

A quantitative measure of chiral photon flow. We further consider
how to describe the chiral pattern of the photon flow. In Fig. 2 as well
as in Refs. 11 and 12, the dynamics of perfect chiral flow and perfect
non-chiral flow have been investigated. Meanwhile, in more general
cases the chiral character which is not perfect but does exist becomes
fogged. To characterize how ‘‘chiral’’ the photon flow is, in the
following we introduce a quantitative method. As shown in Fig. 3,

we assign three unit vectors to the three TLRs, V1
�!

~ 1,0ð Þ for the

TLR 1, V2
�!

~ {1=2,
ffiffiffi
3
p .

2
� �

for the TLR 2, and V3
�!

~

{1=2,{
ffiffiffi
3
p �

2
� �

for the TLR 3. We then represent the photon
distribution on the necklace by the photon position vector

V
!

tð Þ~n1 tð ÞV!1zn2 tð ÞV!2zn3 tð ÞV!3 where nj tð Þ~Tr r tð Þa{j aj

� �
is the photon number population in the TLR j for j 5 1, 2, 3. The
initial condition used in Fig. 2 corresponds to the initial position

V
!

0ð Þ~V
!

1, and the state evolution can be expressed by the

motion of V
!

tð Þ on the two dimensional plane. The traces of V
!

tð Þ
for some typical values of hS and k are shown in Figs. 4(a) and 4(b).
While the 6th panel of Fig. 4(a) indicates the perfect chiral flow in the
situation hS 5 p/2 and k 5 0, the other traces become chaotic and
irrational as hS departs from p/2 and the influence of decoherence is
taken into account.

To grasp the chiral character from the complicated traces of the

photon position vector, our idea is to sum up the area swept by V
!

tð Þ
in a given time, as shown in Fig. 3. We define the chiral area as

S~
1

2T

ðT

0
V
!

tð Þ|d V
!

, ð18Þ

where T is a time scale sufficiently longer than 1/gT but significantly
smaller than 1/k. S has the following properties which make it a
suitable measure of the chiral character:

1. S is directed. A clockwise trace and its counterclockwise corres-
pondence (e. g. the hS 5 p/2 and 3p/2 situations shown in Fig. 2)

result in chiral areas with opposite signs. Therefore, the sign of S
can be used to represent the direction of the chiral flow.

2. In the perfect non-chiral case hS 5 p shown in the middle panel
of Fig. 2, the photon transfers symmetrically to the TLR 2 and
TLR 3. Therefore, the trace of V

!
tð Þ is always along the direction

of V
!

1 and zero chiral area is obtained, i. e. S 5 0 for hS 5 p.
3. Obviously, S achieves its maximal value when the photon flow is

perfect chiral. Moreover, a faster rotation of V
!

tð Þ (which means
larger gT) and a longer V

!
tð Þ (which means more photons

involved) lead certainly to a bigger S. From this point of view,
S can also be used to demonstrate the influence of driving and
dissipation on the chiral photon flow.

The chiral area concept can help us to go beyond the qualitative
description of the state evolution in special cases and move into a
quantitative and general level of investigation. Despite the compli-

cated evolution V
!

tð Þ might undergo, the chiral area presents an
intuitive and physical description of the chiral character. With this
definition we calculate the chiral area versus the hS and k, and show
our results in Fig. 4(c). It can be seen that the chiral area S decreases
rapidly as the total phase hS departs from p/2. This is in agreement
with our observation of the vector traces shown in Figs. 4(a) and 4(b).
Our calculation indicates that the hS window suitable for the obser-
vation of chiral photon flow is not wide. Meanwhile, the width of this
window is barely influenced by the decay rate k.

Discussion
The implementation of the Abelian gauge field in the three-TLR
necklace can be regarded as a minimal model. Through a variety of
generalizations, the proposed dynamic approach can be used to con-
struct a scalable and flexible quantum simulator of gauge theories.
First of all, we consider the scalability of this method, i. e. how to
synthesize a gauge field on a circuit QED lattice using this dynamic

V(t)

V(t dt) dV

1V (TLR1)

2V (TLR2)

3V (TLR3)

O(0,0)

A
B

Figure 3 | Photon position vector~V and the chiral area S. The unit vectors

~V1~ 1,0ð Þ, ~V2~ {1=2,
ffiffiffi
3
p .

2
� �

, and ~V3~ {1=2,{
ffiffiffi
3
p .

2
� �

are

assigned to the modes 1, 2, and 3 of the necklace, respectively. The photon

position vector is defined as ~V tð Þ~n1 tð Þ~V1zn2 tð Þ~V2zn3 tð Þ~V3 with

nj tð Þ~Tr r tð Þa{j aj

� �
, and its evolution trace is represented by the dashed

line. The chiral area S~
1

2T

ðT

0

~V tð Þ| d~V is the directed area swept by

~V tð Þ and can be used to characterize the chiral property of the photon flow.

Figure 4 | (a),(b) Evolution traces of ~V tð Þ at different hS with/without the

presence of decoherence. (a) depicts the traces in the dissipationless

situation k/2p 5 0, and (b) corresponds to k/2p 5 150 kHz. The panels 1–

6 in (a) and (b) correspond to hS 5 p/6, p/4, p/3, 5p/12, 17p/36, and p/2,

respectively. (c) Chiral area S versus hS in the presence of decoherence. The

total time T is set as T 5 1 ms, and the solid, dotted, dot-dashed, and

dashed lines correspond to the situations with decay rates k/2p 5 0, 100,

200, and 500 kHz, respectively.
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approach. We take the construction of a square lattice as an example.
As shown in Fig. 1(d), we can build a two-dimensional square TLR
lattice by four kinds of TLRs with eigenfrequencies v1/2p 5 8 GHz,
v2/2p 5 9 GHz, v3/2p 5 10 GHz and v4/2p 5 11 GHz placed in an
interlaced form and connected to the ground by the grounding
SQUIDs. We assume that the small capacitance/inductance condi-
tions in Eqs. (11) and (12) still hold. To introduce effective passive
photon hopping with nontrivial hopping phases, we add extra two-
tone a. c. flux driving with frequencies 1 GHz and 3 GHz and appro-
priate initial phases to the loops of the grounding SQUIDs. In this
situation, the cross-talk between next-nearest-neighbor TLRs can be
neglected because the corresponding frequency (2 GHz) is far off-
resonant with the a. c. flux pumping. Moreover, we can introduce off-
diagonal disorder41,42 (i. e. random magnetic fields) into the lattice
through randomization of the initial phases of the a. c. driving pulses.
While the simulation of diagonal disorder has been realized in ultra-
cold atoms43 and in optical fiber systems45, the simulation of off-
diagonal disorder of bosonic particles has also attracted research
interest in recent years44. We can also introduce the effective
photon-photon interaction to the non-interacting system described
in this manuscript by the JCH method, i. e. we couple the TLRs to
superconducting qubits resonantly. Though the resonant coupling,
the photons are dressed by the qubits and inherit the nonlinearity of
the qubits24,25. From the above points of view, we can expect that this
dynamic modulation approach may pave a new way of investigating
the novel physics of the competition between artificial gauge fields,
diagonal and off-diagonal disorder, and Hubbard repulsion in the
circuit QED system.

In summary, we have investigated the implementation of arti-
ficial gauge fields in the circuit QED system by the method of
dynamic modulation. We have numerically simulated the
photon chiral flow in a three-TLR necklace, discussed the feas-
ibility of observing this phenomenon, and proposed a quantitat-
ive measure of the chiral character. Our work may offer new
perspectives to future studies of quantum simulation and para-
metric quantum optical physics in SQUID-embedded circuit
QED systems.

Methods
Quantization of the TLR necklace. The Lagrangian of the system can be written as:

L~
X3

n~1

1
2

ð
Ln

dx cV2
n x,tð Þ{ 1

l
L
Lx

Qn x,tð Þ
	 
2

" #
z

X
a~a,b,c

CJa

2
V2

a {
1

2LJa
Q2

a

	 

, ð19Þ

where Vn (x, t) describes the voltage distribution on the nth TLR for n 5 1, 2, 3,

Qn x,tð Þ~
ðt

{?
Vn x,tð Þdt is the corresponding node flux distribution, and Va/Qa are

the voltage/node flux at locations of the SQUID a for a 5 a, b, c. In deriving Eq. (19),
we have linearized the grounding SQUIDs as {EJa cos 2pQa=W0½ �< Qað Þ

2�2LJa
. This

assumption is valid because Qa(t) < 0. Following the Euler-Lagrangian equation, we
get the equation of motion of the node flux in the bulk of the TLRs

v2L2
xQn~L2

t Qn, ð20Þ

with v~1
. ffiffiffi

lc
p

. At the edges of TLRs, based on Kirchhoff’s law we get the following

boundary conditions

Q1 xcð Þ~Q3 x’cð Þ~Qc, ð21Þ

Q1 xað Þ~Q2 xað Þ~Qa, ð22Þ

Q2 xbð Þ~Q3 xbð Þ~Qb, ð23Þ

1
l
LQ3
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����
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{
1
l
LQ1
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����
xc

~
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LJ
zCJ Qc,

::
ð24Þ

1
l
LQ1
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����
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1
l
LQ2
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����
xa
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LJ
zCJ Qa,

::
ð25Þ

1
l
LQ2

Lx

����
xb

{
1
l
LQ3

Lx

����
xb

~
Qb

LJ
zCJ Qb,

::
ð26Þ

where xa 5 L1, xb 5 L1 1 L2, xc 5 0 and x’c~L1zL2zL3 are the locations of the
grounding SQUIDs (the cyclic boundary condition is applied as shown in Eq. (21)).
Here without loss of generality we assume the three SQUIDs have the same effective
inductance LJ and capacitance CJ. The eigenmodes of the necklace can be obtained by
the method of separation of variables. We set Qn(x, t) 5 fn(x)g(t) with

fn xð Þ~An cos kxzhnð Þ, ð27Þ

where An/hn are the normalized amplitude/phase of the eigenmode in the nth TLR,
and k is the wave vector. Substituting Eq. (27) to Eqs. (21)–(26) we get the following
transcendental equations

{ tan kx’czh3ð Þz tanh1~
1

LJ k
{

CJ

c
k, ð28Þ

{ tan kxazh3ð Þz tan kxazh2ð Þ~ 1
LJ k

{
CJ

c
k, ð29Þ

{ tan kxbzh2ð Þz tan kxbzh3ð Þ~ 1
LJ k

{
CJ

c
k, ð30Þ

cos h1 cos kxazh2ð Þ cos kxbzh3ð Þ

~ cos kxazh1ð Þ cos kxbzh2ð Þ cos kx’czh3ð Þ:
ð31Þ

When the phases and the wave vector are obtained, the amplitude distribution of
the eigenmode in the three TLRs can be further determined by

A1 cos h1ð Þ~A3 cos k L1zL2zL3ð Þzh3½ �, ð32Þ

A1 cos kL1zh1ð Þ~A2 cos kL1zh2ð Þ, ð33Þ

and the mode normalization conditions. Then we can write the flux distribution of the
necklace as a superposition of the eigenmodes Qn x,tð Þ~

X
m

fn,m xð Þgm tð Þ where

fn,m(x) corresponds to the mth solution of Eqs. (28)–(31).
Due to the of the orthonormality of fn,m(x), the Lagrangian L can be further

simplified as

L~
X
m~1

1
2c

_g2
m{

1
2

cv2
mg2

m

	 

, ð34Þ

where vm is the eigenfrequency of the mth eigenmode determined by Eqs. (28)–(31).
The corresponding Hamiltonian is

H0~Sm�hvma{
mam, ð35Þ

with annihilation and creation operators

am~

ffiffiffiffiffiffiffiffiffi
vmc
2�h

r
gmzi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�hvmc

r
pm, ð36Þ

a{m~

ffiffiffiffiffiffiffiffiffi
vmc
2�h

r
gm{i
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1

2�hvmc

r
pm, ð37Þ

where pm~ _gm

�
c is the canonical momentum of gm. When only the lowest three

eigenmodes are taken into consideration, Eq. (13) is reproduced from Eq. (35).

The parametric coupling Hamiltonian. For the grounding SQUID a, the
introduction of an extra a. c. flux driving dWa(t) resulting an additional inter-mode
coupling which can be described by Ref. 35

Ha ¼
W0 sin p~Wa

�
W0

� �
dWa tð Þ

8pcl2EJa cos p~Wa
�
W0

� � Smvn
df ’m,adf ’n,affiffiffiffiffiffiffiffiffiffiffiffi

vmvn
p a{

mzam
� �

a{
nzan

� �� 

, ð38Þ

with d’fm,a~
Lfm,1

Lx xa {
Lfm,2

Lx

����
����

xa

for m 5 1, 2, 3. Since the 3rd eigenmode is highly

localized in the TLR 3, we have df ’3a=df ’1a , df ’2a and consequently neglect all df ’3a

terms inHa . Based on Eq. (6), we set dWa(t) 5 DWa cos[(v1 2 v2)t 2 ha] to induce
the photon conversion between modes 1 and 2. Omitting the counter-rotating terms,
we simplify Eq. (38) as

Ha~2ga cos v1{v2ð Þt{ha½ �a{1a2zh:c, ð39Þ

with ga~
W0df ’1,adf ’2,aDWa sin p~Wa

�
W0

� �
16pcl2 ffiffiffiffiffiffiffiffiffiffiffi

v1v2
p

EJa cos p~Wa
�
W0

� � . Notice that when the driving frequency
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v1 2 v2 is comparable with the SQUID plasma frequency vpa~1
. ffiffiffiffiffiffiffiffiffi

CJ LJ

p
, the

device can not be considered as a passive element because complex quasi-particle
excitation behavior will emerge. Meanwhile, with parameters chosen in this
manuscript, we can verify that vpa? v1{v2j j is satisfied.
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