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Since the COVID-19 pandemic was first reported in 2019, it has rapidly spread around the
world. Many countries implemented several measures to try to control the virus spreading.
The healthcare system and consequently the general quality of life population in the cities
have all been significantly impacted by the Coronavirus pandemic. The different waves of
contagious were responsible for the increase in the number of cases that, unfortunately,
many times lead to death. In this paper, we aim to characterize the dynamics of the six
waves of cases and deaths caused by COVID-19 in Rio de Janeiro city using techniques such
as the Poincar�e plot, approximate entropy, second-order difference plot, and central ten-
dency measures. Our results reveal that by examining the structure and patterns of the
time series, using a set of non-linear techniques we can gain a better understanding of the
role of multiple waves of COVID-19, also, we can identify underlying dynamics of disease
spreading and extract meaningful information about the dynamical behavior of epide-
miological time series. Such findings can help to closely approximate the dynamics of virus
spread and obtain a correlation between the different stages of the disease, allowing us to
identify and categorize the stages due to different virus variants that are reflected in the
time series.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rio de Janeiro, like many other cities around the world, has experiencedmultiple waves of the COVID-19 pandemic since it
first emerged in late 2019 (World Health Organization, 2020). These waves of contagion have had a significant impact on the
city's population, healthcare system, and overall way of life (Campos & Canabrava, 2020).

The first wave of COVID-19 in Rio de Janeiro city occurred in early 2020 when the virus was initially detected in the city
(Secretaria de Saúde do Rio de Janeiro, 2023). As the number of cases started to rise, strict measures were implemented to
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contain the spread (PGE-RJ, 2020). Lockdowns, social distancing guidelines, and travel restrictions were put in place to curb
the transmission of the virus. The healthcare system faced significant challenges as hospitals became overwhelmed with
COVID-19 patients, leading to shortages of medical supplies and resources.

After several months of restrictions and a decline in cases, Rio de Janeiro city experienced a relative respite from the virus.
However, as restrictions eased and people began to return to their normal activities, which gave rise to others waves of
contagious. The virusmutations into new variants such as the highly transmissible Gamma, Delta, Zeta and Omicron added an
additional layer of complexity to the situation, as they presented new challenges in terms of transmission and vaccine efficacy
(Minist�erio da Saúde, 2021; Giovanetti et al., 2022). Efforts were made to increase testing capacity, contact tracing, and
vaccination efforts to mitigate the impact of this waves (Magno et al., 2020). By mid-2021, the city of Rio de Janeiro cautiously
started to reopen and return to a semblance of normalcy. However, complacency and the emergence of new variants led to the
last big wave of contagion due Omicron variant in late 2021 and early 2022 (Minist�erio da Saúde, 2023). This wave posed
further challenges, as it affected both vaccinated and unvaccinated individuals. Several measures were implemented at that
time such as localized lockdowns, capacity limits for businesses, and the promotion of remote work whenever possible
(Moura et al., 2022).

Recently, Gianfelice et al. (Gianfelice et al., 2022) analyzed a scenario of multiple waves of COVID-19 in the city of Rio de
Janeiro. They were able to distinguish six different waves of contagion by the disease. In this paper, we aim to characterize the
dynamics of the six waves of COVID-19 using nonlinear analyses such as Poincar�e plot (PP) (Henriques et al., 2020; Tulppo
et al., 1996), approximate entropy (ApEn) (Pincus et al., 1991), second-order difference plot (SODP) and central tendency
measures (CTM) (Cohen et al., 1996). Poincar�e plots are commonly used in time series analysis as a graphical tool to explore
and characterize the underlying dynamics of a system, providing a visual representation of the relationship between
consecutive data points in a time series, allowing for the analysis of patterns, irregularities, and dynamic properties of the
system, being particularly useful in analyzing physiological signals, such as electrocardiograms (ECGs) (Facioli et al., 2021) or
electroencephalograms (EEGs) (Chen et al., 2022), offering a valuable approach for time series analysis, enabling the visu-
alization and exploration of the complex dynamics present in the data (Brennan et al., 2001; Karmakar et al., 2009).

Allied to the Poincar�e plots, we use approximate entropy, second-order difference plot and central tendency measures to
analyze the data series and gain insights into patterns and trends of the six waves of cases and deaths. The approximate
entropy is a powerful tool for analyzing time series data (Pincus et al., 1991; Pincus & Goldberger, 1994). By quantifying the
complexity and irregularity within a dataset, it helps us to uncover patterns, make predictions, and gain insights into the
underlying processes (Delgado-Bonal & Marshak, 2019; Mohseni et al., 2022). The second-order difference plot, also known
as the second derivative plot, is a graphical tool used to analyze patterns in a time series, providing insights into the rate of
change or acceleration of the underlying data by examining the differences between consecutive data points. However, it is
important to note that the interpretation of a second-order difference plot should be done in conjunctionwith other analysis
methods.

We use central tendency measures to assist in interpreting the results obtained with a second-order difference plot.
Central tendency measures play an important role in understanding the typical values of a time series and how they change
over time (Cohen et al., 1996; Belfort et al., 2019; dos Santos et al., 2015). Represented by a second-order difference plot, this
method allows to obtain a comprehensive understanding of a time series allowing us to infer the behavior of the virus
spreading and uncover valuable pieces of information from time-dependent data. Our premise is that the dynamics due the
different variants, control measures, and vaccination are reflected in the pattern of time series. Therefore, employing these
combined analysis will enables us to predict the qualitative behavior of the virus spreading and uncover valuable pieces of
information from time-dependent data.

2. Material and methods

Based on the work of Gianfelice et al. which analyzed the scenario of multiple waves of COVID-19 in the city of Rio de
Janeiro, we separated the series of cases and deaths data according to the dates specified by the authors (Gianfelice et al.,
2022).

The analyzed time series corresponds to the period from March 3, 2020 to September 9, 2022 in Rio de Janeiro (RJ) city,
Brazil. Given the significant fluctuations present in the time series of cases and deaths, stemming directly from the disease
and deficiencies in the surveillance system, the raw data was smoothed using a 7-daymoving average. The data was obtained
by aggregating information collected by the responsible organizations in an extensive spreadsheet that contains various
details, such as zip code, date of first symptoms, type and date of outcome (recovery or death), among others. It is worth
mentioning that although the mentioned information was present in the spreadsheet, the patients identities were not
revealed. The mentioned data was registered by the municipal health authorities and is available for consultation on the Rio
COVID-19 Panel (EpiRio, 2023).

During the period considered we set only six waves of contagion: 1st wave (Mar 03, 2020 to July 17, 2020); 2nd wave (July
17, 2020 to Nov 06, 2020); 3rd wave (Nov 06, 2020 to Mar 01, 2021); 4th wave (Mar 01, 2021 to July 08, 2021); 5th wave (July
08, 2021 to Dec 11, 2021); 6th wave (Dec 11, 2021 to Sept 09, 2022). Fig. 1 show the time series for cases and deaths caused by
COVID-19. These dates are close, but not identical to the dates presented in (Gianfelice et al., 2022), whichwere determined by
data-assisted curves. Here, similarities in subsets of the time series are taken into account to determine the start and the end
dates of each wave, using the dates of (Gianfelice et al., 2022) as a reference.
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Fig. 1. Time series for new daily cases (a) and deaths (b) of COVID-19 considering a seven-day moving average. The colors represent the six different waves that
occurred in the city of Rio de Janeiro: 1st (turquoise), 2nd (green), 3rd (magenta), 4th (orange), 5th (blue) and 6th (red).

A.S. Reis, L. dos Santos, A. Cunha Jr et al. Infectious Disease Modelling 9 (2024) 314e328
In both time series, the onset and end of the waves were considered as described above, from March 2020 to September
2022. Each color represents a wave: 1st (turquoise), 2nd (green), 3rd (magenta), 4th (orange), 5th (blue), and 6th (red). For
simplicity and comparison purposes, the colors and dates of the waves for cases and deaths were considered the same.

2.1. Poincar�e Plot

Poincar�e plots, also known as first return maps or Poincar�e maps, are graphical tools used to analyze the dynamics of a
complex system. For time series, Poincar�e plot is a widely used method to analyze the correlation between time series.
Generally, Poincar�e plots have been employed to analyze heart rate variability and identify abnormalities in cardiac dynamics
(dos Santos et al., 2013; Brennan, Palaniswami,& Kamen, 2002; Koichubekov et al., 2017; Facioli et al., 2021). The construction
of a Poincar�emap is done on a geometric representation of a data series, inwhich the consecutive points of the time series are
plotted. Each interval in the considered time series is a function of the previous interval, therefore, it returns a recurrence
measure that reflects the correlation between successive intervals of a time series (Brennan et al., 2002). Graphically, the
duration of a current event is displaced in axis xi and the following event in the xiþ1.

Oneway to quantify the dispersion of emergent pattern that appears in the PP is bymeasuring the descriptors SD1 and SD2.
These descriptors are defined by the standard deviation perpendicular to the line of identity (SD1) and the standard deviation
parallel to the line of identity (SD2) (Hsu et al., 2012) and calculated by fitting an ellipse according to the dispersion of points
in the shape of Poincar�e plot (Brennan et al., 2001; Karmakar et al., 2009; Tulppo et al., 1996). In general, they represent the
variation of short and long and term that allows a guided visual inspection of the distribution of points. Is important to
mention that these measures are linear statistics and, therefore, do not directly quantify the temporal nonlinear variation, so
it is interesting to use different delays in order to capture changes resulting from this variation in the delayed time
(Koichubekov et al., 2017; Satti et al., 2019).

2.2. Approximate entropy

Generally, the measurement of entropy in well-defined physical systems is done by the Kolmogorov-Sinai entropy (KeS)
(Kolmogorov, 1959). However, the KeS entropy has some limitations which makes this measure not the best choice for
analyzing certain types of systems. For complex systems whose time series present a lot of noise and fluctuations, the KeS
entropy measurement does not give satisfactory results, requiring the implementation of other methods capable of cir-
cumventing these limitations (Delgado-Bonal & Marshak, 2019). Some methods were developed, based on KeS entropy, to
solve these problems.When dealingwith the analysis of a data series that presentsmany fluctuations, or a series generated by
an unknown system, a widely used method to measure entropy is the calculation of the approximate entropy (Pincus, 1991;
Pincus et al., 1991).

ApEn is a statistical measure used to quantify the complexity or irregularity of time series data. It was originally introduced
by Pincus in 1991 (Pincus, 1991) as a tool for assessing the regularity or predictability of physiological signals, such as
electroencephalography (EEG) and heart rate variability (HRV) (Pincus et al., 1991; dos Santos et al., 2013). The calculation of
approximate entropy involves comparing subsequences within the time series data and quantifying the similarity between
them. The algorithmmeasures the logarithmic likelihood that subsequences of a certain length (m) will remain similar when
the data is expanded to include an additional data point (Delgado-Bonal & Marshak, 2019). This process is repeated for
different subsequence lengths and compared to assess the complexity of the data. The approximated entropy is as follows

ApEnðm;RÞ ¼ Fðmþ1;RÞ � Fðm;RÞ; (1)

wherem is the length of the compared subsequences, R is the tolerance or similarity criterion used to determine whether two
subsequences are considered similar. F(m, R) is the average logarithmic probability that two subsequences of lengthmmatch
within a tolerance R.
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Low approximated entropy values indicate that the system is repetitive, persistent and predictive, presenting patterns that
are repeated throughout the analyzed time series. On the other side, high values indicate independence between the data
(low correlation), a low number of repetitive patterns, and some randomness (Delgado-Bonal & Marshak, 2019; Pincus &
Goldberger, 1994). It is important to note that, although ApEn is calculated by a change in KeS entropy, it is not an
approximation of this entropymeasure. ApEn returns a statistical measure of the degree of regularity and unpredictability in a
time series, that is, it does not serve to determine the dynamics of a system completely, but to classify them and study the
evolution of their complexity. Thus, the ApEnmeasuremay be used as an indicative method of small changes in the dynamics
of a time series.
2.3. Central tendency measure and second-order difference plot

The CTMmethod measures the variability of data in a time series, in which successive differences are plotted against each
other (Cohen et al., 1996; dos Santos et al., 2015). In addition to showing the variability present in the time series, the graph
resulting from this plot also shows nonlinear aspects in the sequence of the series in the time intervals considered. The
correlation of the time series data is computed in the SODP from the difference of the two variables analyzed by the co-
ordinates (xiþ1 � xi) and (xiþ2 � xiþ1), where each sample value xi denotes an interval x in time i.

This method is an effective tool for quantifying the level of variability computed by the SODP. We compute the CTM from
the data time series by selecting a circular region of radius R around the origin, taking into account the ration of the number of
points that falls within the regions delimited by the radius R and the total number of points (Ab�asolo et al., 2006; Altan et al.,
2019)

CTM ¼

PN�2

i¼1
dðdiÞ

N � 2
; (2)

being d(di) defined as

dðdiÞ ¼
�
1; if ½ðxiþ1 � xiÞ2 þ ðxiþ2 � xiþ1Þ2�<R;
0; otherwise:

Low values of CTM, for a specific R, indicate a few points within the circle. If a larger radius is needed to include all points on
the SODP, this is an indication of high variability in the series (dos Santos et al., 2015). In summary, a low CTM value indicates a
large dispersion and a high value indicates concentration close to the center, that is, the higher the CTM, the smaller the
variability.
3. Results and discussion

In this section, we present the discussions of the results obtained by applying the methods mentioned in the previous
sections to describe the qualitative behavior of the propagation of cases and occurrences of deaths caused by SARS-CoV-2
(severe acute respiratory syndrome).
3.1. Poincar�e plot analysis

At first, we will analyze the qualitative behavior of the number of new cases of COVID-19 infection in the city of Rio de
Janeiro. The time series used comprise the same waves of cases shown in Fig. 1(a). As mentioned in Sec. 2.1 it is interesting to
analyze the dynamics of contagion by the disease at different times, in this way, we will achieve a better qualitative
description of the dynamics of propagation of the disease. Fig. 2 illustrates Poincar�e plot for the evolution of daily cases for
each wave of COVID-19 as time varies from t ¼ 1 to t ¼ 5, to capture the temporal nonlinear variation (Koichubekov et al.,
2017; Satti et al., 2019).

A visual inspection of the first panel in Fig. 2, corresponding to the 1st wave (t ¼ 1), the PP reveals the presence of several
points concentrated along the identity line (xiþ1 ¼ xi). This indicates that at the onset of the disease, there is a strong cor-
relation in the number of newcases per day.We should recall that when dealing with epidemiological diseases, there is a time
inwhich the symptoms of the disease take tomanifest in the infected individual (virus latency period). Overnight, the initially
infected group contaminates another group due to people interactions, which, in turn, infects a new group of individuals,
starting community transmission. Such behavior can be observed by the increasing number of new cases. We should pay
attention to the fact that, concerning the first wave, we are at the beginning of the pandemic in Rio de Janeiro city. During this
period, the restrictions on themovement of people had not yet beenwidely adopted by a significant portion of the population
since the 1st decreet was on March 11, 2020 (PGE-RJ, 2020). As time passes, we observe that the time series begins to lose
correlation. This could indicate that the initially infected group has acquired immunity, at least to the same variant circulating
during this period.
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Fig. 2. Poincar�e plot for occurrence of cases with different values of t. All frames were placed on the same scale, except for the 6th wave. By direct observation, it
can be seen that as the value of t increases in the Poincar�e graph, the correlation between the points decreases.
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That being so, the initial high correlation observed in the PP during the 1st wave can be analyzed in terms of an initial
population of infected individuals who, due to the virus's latency period and the absence of symptoms, end up infecting
susceptible individuals. As the system evolves over time, for t ¼ 2, it can be noticed that some points start to become more
dispersed in the PP, indicating a slight decrease in the correlation of new cases for the first wave. As we vary t from 1 to 5, the
loss of correlation from one day to the next becomes more evident. When t ¼ 5, the correlation of new cases decreases
significantly, and the geometric representation of the PP approaches the shape of the system attractor. This decline in cor-
relation over time suggests that as individuals acquire immunity to the current variant or due to reduced contact between the
population of infected and susceptible individuals (social isolation), the number of new daily cases tends to decrease.

In the 2nd wave, we observe that the number of new cases per day is slightly lower compared to the 1st wave. As seen in
the PP, the time series it describes exhibits a shortening along the diagonal and the presence of more scattered points
perpendicular to the identity line. This suggests that during the considered period, short-term contagion is less responsible
for the number of cases. Thus, considering that the number of cases was lower compared to the 1st wave, it can be conjectured
that during this period, individuals remained infected for a longer time or stayed asymptomatic for a longer time.
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A similar behavior is observed for the time series of the 3rd wave. In this case, the number of new cases per day is higher
compared to the 2nd wave. However, as we vary t, the correlation of the time series decreases. It is interesting to note that in
both the 2nd and 3rd waves, there is a region of “separation” of some points, forming a cluster close to the regionwith higher
correlation. By analyzing the geometric pattern in Fig. 2, this can indicate a long-term loss of correlation associated with a
short-term one. In other words, a period in the time series during which the number of new cases remained approximately
constant.

The fourth wave is characterized by an initial pattern with numerous points along the identity line, indicating a high
correlation. However, there is also a patternwhere the points aremore scattered away from the identity line, perpendicular to
it. Analyzing the time series in Fig. 1(a), we can observe a sudden increase in the number of cases, which is captured by the
emergence of a new cluster in the PP. Similar to the previous waves, the points are dispersed perpendicular to the identity
line, suggesting that short-term contagion is not solely responsible for the increase in cases. During the 4th wave, Brazil
experienced a significant increase in cases due to the predominant circulation of the Gamma variant (since January 2021), a
variant of concern (VOC). In the same period, in the city of Rio de Janeiro, the Zeta variant (P.2), a mutation of the Gamma
variant (variant of interest - VOI), was responsible for a significant rise in daily new infections. The Gamma variant can be 1.7
to 2.4 times more transmissible than other VOCs, indicating that short-term contagion was not the primary factor contrib-
uting to the pronounced increase in cases. Rather, the mutation of the virus played a crucial role (Minist�erio da Saúde, 2021;
Minist�erio da Saúde, 2023; Giovanetti et al., 2022).

An equivalent pattern can be observed for the 5th wave; however, the geometric representation of the time series in the
Poincar�e plot exhibits a slight shortening along the diagonal. This suggests that, in addition to the number of daily cases being
lower than in the 4th wave, there is a higher correlation between short-term and long-term variabilities, considering the
spread of the disease. The variations in correlation around the central part are due to the oscillations shown in the time series,
where there is a reduction in the number of new cases (explaining the scattered points in the lower part of the plot), followed
by a subsequent increase in the number of cases.

Lastly, the 6thwave corresponds to the periodwhen the Omicron variant was circulating in Brazil. Themain characteristics
of the Omicron variant (B.1.1.529) include a higher reinfection rate compared to other VOCs and milder symptoms, which can
lead an infected individual to not identify the infection caused by the virus (Minist�erio da Saúde, 2021; Minist�erio da Saúde,
2023). Analyzing the PP, when t ¼ 1, we can see different clusters in the dispersion pattern of points. At the beginning of the
6th wave, the points are highly correlated, indicating low variability in the number of new cases from one day to the next.
After a certain period, there is a break in this geometric pattern, and the first cluster emerges, revealing the abrupt increase in
the number of new daily COVID-19 cases. Once again, the presence of other clusters indicates a decrease and subsequent
increase in the number of cases. Finally, the PP shows reduced variability, indicating that up until the considered period, daily
cases tend to stabilize around a constant value.

It is interesting, in this case, to mention the effects of increasing t for the study of the time series. As we increase t, we
observe the same pattern of clusters; however, the variability within each cluster necessarily decreases, approaching the
system's attractor. Note that waves 1 to 5 were all shown on the same scale, except for the 6th wave, which had the highest
number of daily cases. Overall, this behavior can be observed for all the waves considered in this study, with slight variations
for each of them.

The analysis of the PP allows a qualitative representation of the dynamics of COVID-19 waves. One way to quantify these
results is by using the measures of the descriptors SD1 and SD2, as discussed in Sec. 2.1. Table 1 presents the values of the
descriptors SD1, SD2, and the ratio between them. By observing the values of these descriptors, we can see that they
corroborate the results obtained from the figures shown on the Poincar�e map (Fig. 2), where we observe a breakdown of
correlation within each wave as we increase the values of t.

Considering the 1st wave, we can see that the calculated values for SD1 and SD2 alignwith the results obtained from the PP.
When t ¼ 1, the SD1 measure has the lowest value. As t increases, the value of SD1 increases, reflecting the loss of correlation
observed in the first frame of Fig. 2. Regarding SD2, there is little variation in the calculated values, suggesting that long-term
variability is not a determining factor in the first wave. The ratio of the descriptors provides the day-to-day variation of the
number of cases according to the variation of SD1 relative to SD2. According to Table 1., for t ¼ 1, SD1/SD2 ¼ 0.15 (1st wave),
indicating that there is not much variation between the measures, thus corroborating the correlation observed in the PP.

In the 2nd wave, the most pronounced characteristic is the shortening of the diagonal (identity line), and the value of SD2
captures this behavior well when compared to the 1st wave, as we can see that these values are lower. The values of SD1
follow the same pattern as in the previous case, where correlation decreases as t increases, consequently leading to an in-
crease in SD1. The ratio between the descriptors, in the case of the 2nd wave, is almost twice as high as in the 1st wave,
reinforcing the idea that during this period, people remained infected for a longer time, as the day-to-day variability is higher
in this period. In the period corresponding to the 3rd wave, the values of SD1 and SD2 are consistent with what is shown in
Fig. 2. The value of SD1/SD2 ¼ 0.43 captures the points off the diagonal in the PP, indicating appreciable long-term and short-
termvariation in the time series of COVID-19 cases during this period. Overall, the results presented in Table 1 corroborate the
observed behavior in the PP, revealing the loss of correlation as t increases.

The same quantitative and qualitative analyses were conducted for the time series of COVID-19 deaths, considering the
same intervals for the beginning and end of the waves. In order to facilitate visual comparison, the colors representing the
waves have been kept consistent. The analysis of the PP of the six waves of deaths from COVID-19, as shown in Fig. 3, reveals
patterns similar to those observed in cases time series.
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Table 1
Values of SD1, SD2 and ratio for occurrence of cases of COVID-19 for t varying from 1 to 5.

1st wave t1 t2 t3 t4 t5

SD1 40.58 65.89 87.40 107.92 124.71
SD2 265.77 261.52 255.20 248.28 240.68
SD1/SD2 0.15 0.25 0.34 0.43 0.52

2nd wave t1 t2 t3 t4 t5

SD1 52.41 65.02 73.14 85.60 92.76
SD2 161.10 157.30 156.28 151.39 144.12
SD1/SD2 0.32 0.41 0.47 0.56 0.64

3rd wave t1 t2 t3 t4 t5

SD1 96.91 128.04 152.15 171.90 190.09
SD2 255.33 215.81 199.38 185.76 163.17
SD1/SD2 0.43 0.59 0.76 0.92 1.16

4th wave t1 t2 t3 t4 t5

SD1 89.27 166.40 233.11 287.61 333.02
SD2 713.86 700.32 680.32 657.91 633.43
SD1/SD2 0.12 0.24 0.34 0.44 0.53

5th wave t1 t2 t3 t4 t5

SD1 138.08 199.22 240.77 266.12 295.93
SD2 431.65 417.18 398.50 387.09 366.45
SD1/SD2 0.32 0.48 0.60 0.69 0.81

6th wave t1 t2 t3 t4 t5

SD1 271.11 415.80 563.85 700.63 834.17
SD2 3591.21 3582.22 3568.22 3548.03 3524.61
SD1/SD2 0.07 0.12 0.16 0.20 0.24
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In the 1st wave, we can see a geometric pattern similar to what was observed in the 6th wave of cases. The PP shows low
variability initially, followed by the emergence of clusters due to the increase in the number of deaths over the considered
period. As we increase t, the points become more dispersed, indicating a decrease in correlation. In the subsequent waves
(2nd, 3rd, 4th, 5th, and 6th), a similar behavior is observed in the PP for deaths. In the 2nd wave of deaths, we observe a
similar shortening of the diagonal as in the cases time series. During this period, it is assumed that individuals manifested the
symptoms of the disease later, remaining infected for a longer time. The number of deaths is lower in the 2nd wave compared
to the 1st wave because some of the individuals infected during this period only started showing symptoms in the interval
that corresponds to the 3rd wave. In both the PP and the death time series, we can observe an increase in the number of
deaths during the 3rd wave. As seen in the PP, the time series corresponding to the 3rd wave exhibits the appearance of
clusters related to the abrupt increase and decrease in the number of deaths.

The dynamics of the 4th wave of cases differs significantly from that of deaths. While in the former, the loss of correlation
is evident, for deaths, the correlation is still appreciable. However, as t increases, the dispersion occurs around the diagonal
without the formation of clusters, indicating that the number of deaths is slightly decreasing (without many abrupt varia-
tions) along the time series, exhibiting greater variability of points perpendicular to the identity. In other words, the effect is
more apparent in the short term. The behavior of the 5th wave is similar to the pattern observed in the previous period,
revealing the predominance of short-term variation and a decrease in the number of deaths in the time series.

During the 6th wave, we once again observe the shortening of the PP. The number of deaths has decreased considerably
compared to the previous waves. It is noteworthy that the plot shows a low variability of points, indicating a strong corre-
lation between short and long-term. Additionally, we observe the emergence of a cluster, which, combined with the high
correlation seen in the PP, indicates a period of stability in the number of cases, followed by a further decrease in the number
of deaths (Fig. 1(b)). The hypothesis is that this behavior may be associated with the effects of the advanced vaccination
campaign among the population at this stage.

The SD1 and SD2 descriptors, as well as their ratio, were calculated for the death time series (Table 2). The values obtained
provide quantitative measures of the variability and correlation in the data.

The results presented in Table 2 further support the findings from the PP, confirming the decreasing correlation as t in-
creases. The measure of the diagonal (SD2) shows slight variations as we increase the value of t, with the highest value
observed in the first wave. It is worth noting that for the second wave, the value of SD2 decreases considerably, reflecting the
shortening of the diagonal observed in the PP. The quantity SD1/SD2 is lower than for the cases, suggesting that for deaths,
there is no significant distinction between long-term and short-term variables, except in the second wave where SD1/
SD2 ¼ 0.30 (2nd wave), which is the highest variation captured for deaths.

The contrasting results between the number of cases and deaths are due to the Omicron variant circulating in the city of
Rio de Janeiro during this period, which, despite its high transmission, has a low mortality rate, either due to acquired im-
munity from previous infections or the effect of vaccination. It is interesting to note that for both cases and deaths, as we
consider t > 1, the time series loses correlation. This indicates that the disease tends to stabilize, meaning that either the
320



Fig. 3. Poincar�e plot for occurrence of deaths with different values of t. All frames were placed on the same scale, except for the 6th wave. By direct observation, it
can be seen that as the value of t increases in the Poincar�e map, the correlation between the points decreases.
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number of cases remains at a constant rate or the infection through virus transmission is extinguished, either through the
implementation of control measures, acquired immunity, or the action of vaccines. Therefore, considering the COVID-19
pandemic, and likely other epidemic diseases with similar spreading patterns, as time goes on, the observed behavior be-
tween cases and deaths becomes inverse.
3.2. Approximate entropy analysis

The result illustrated in Fig. 4 shows how the measure of ApEn varies, considering different values for R, in the time series
of cases. By inspection of Fig. 4, we see that the 2nd wave has the highest entropy value (ApEn z0:80) while the 4th has the
lowest value (ApEn z0:42) with 0 � R � 6.3 � 103. As the value of the parameter R increases, the entropy values decrease,
until it reaches zero, which indicates that the data series becomes more predictable, that is, the system reaches a state of
equilibrium. The amplification in Fig. 4 allows better visualization of the entropy behavior for each series.
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Table 2
Values of SD1, SD2 and ratio for occurrence of deaths of COVID-19 for t varying from 1 to 5.

1st wave t1 t2 t3 t4 t5

SD1 2.57 4.21 5.44 6.58 7.72
SD2 29.90 29.63 29.22 28.77 28.33
SD1/SD2 0.08 0.14 0.19 0.23 0.27

2nd wave t1 t2 t3 t4 t5

SD1 2.02 2.53 3.08 3.79 4.26
SD2 6.84 6.74 6.58 6.14 6.06
SD1/SD2 0.30 0.37 0.47 0.62 0.70

3rd wave t1 t2 t3 t4 t5

SD1 2.89 4.00 4.93 5.78 6.53
SD2 14.62 14.48 14.17 13.87 13.60
SD1/SD2 0.20 0.28 0.35 0.42 0.48

4th wave t1 t2 t3 t4 t5

SD1 3.43 4.91 6.28 7.51 8.68
SD2 17.67 17.63 17.86 17.83 17.79
SD1/SD2 0.19 0.27 0.35 0.42 0.49

5th wave t1 t2 t3 t4 t5

SD1 3.49 4.25 4.52 4.82 5.70
SD2 17.87 17.48 17.21 17.03 16.72
SD1/SD2 0.19 0.24 0.26 0.28 0.35

6th wave t1 t2 t3 t4 t5

SD1 1.16 1.58 1.96 2.34 2.68
SD2 8.46 8.42 8.38 8.34 8.29
SD1/SD2 0.14 0.19 0.23 0.28 0.32
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The waves with the lowest ApEn values are 1, 4, and 6. Looking at the behavior of the 1st wave in Fig. 2 (t ¼ 1), a rela-
tionship can be seen between the entropy value and the results obtained by the PP. Given the high correlation present in the
first wave, suggested by the first return map, the pattern of the time series is more predictable, which implies a lower
variability of the time series and, therefore, low ApEn. The same behavior is seen inwaves 4 and 6, both have low ApEn, which
indicates little variability during the considered periods.

During the fourth wave, the transmission of the virus by the Zeta variant was predominant in the city of Rio de Janeiro,
although this variant was responsible for an increase in the number of cases, the spread of the virus occurred similarly to the
1st wave. For the 6th wave, the behavior is similar to that presented by waves 4 and 5. Again, the approximate entropy value
indicates a more predictable pattern of the time series. The ApEn calculation reveals the low complexity in the time series
caused by the transmission of the virus due to the variants Alpha (B.1.1.7), Zeta (P.2), and Mu (B.1.621), each of which captures
the effects of the restraint measures adopted in the periods in question.

The 2nd, 3rd, and 5th waves achieve the highest values of approximate entropy. In the case of the 2ndwave, as observed in
the PP, the time series exhibits a less predictable pattern, with scattered points along the diagonal and the formation of
clusters. This indicates that the patterns are less repetitive, leading to higher complexity and, consequently, higher entropy
values in the time series. The low predictability of the time series in the 2nd wave may be associated with the characteristics
of the Gamma variant. As mentioned earlier, individuals take a longer time to develop symptoms, which leads to delays in
Fig. 4. Approximated entropy for incidence of new cases. Each color corresponds to one wave. The amplification shows a better visualization of the entropy for
each series.
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Fig. 5. Approximated entropy for incidence of daily deaths. Each color corresponds to one wave. The amplification shows a better visualization of the entropy for
each series.
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implementing restrictive measures. All of these factors contribute to an increase in the number of cases, which is subse-
quently captured in the 3rd wave.

Regarding the 5th wave, combining the results of approximate entropy with those obtained from the PP, we observe that
most points lie along the diagonal, indicating a good correlation between the data. However, the presence of scattered points
away from the identity line and the formation of clusters increase the variability of the data. This results in an approximate
entropy value of around 0.5, indicating the simultaneous presence of regularity and unpredictability in this period.

The behavior of the third wave is similar to that of the second wave, exhibiting a less predictable pattern. This is captured
by the presence of clusters, indicating higher variability in the data. As for the fifth wave, it has an intermediate approximate
entropy value (around 0.5). When analyzing it together with the PP, we observe the presence of clusters with good correlation
and less repetitive patterns.

Analyzing the time series of deaths (Fig. 5), the initial observation is that the value reached for the entropy of the COVID-19
waves. Comparing the entropy values for deaths with those for cases, we can see that all the entropy values for deaths are
lower. In Fig. 5, we can observe that the maximum entropy value is approximately ApEn z0:31 for the 4th wave, and the
minimum value is approximately ApEn z0:12 for the 2nd wave. These values are directly related to the dynamics of virus
spread.

In the 2nd wave, there was an increase in the number of cases caused by the Gamma variant, which resulted in a high
number of deaths during that period, making the time series more predictable. On the other hand, the 4th wave shows higher
entropy values, capturing the effects of the start of the vaccination campaign, indicating that the number of individuals who
die is lower than the number of infections. This result can be confirmed by comparing the entropy for the cases (Fig. 4) vs
deaths time series (Fig. 5) during the 4th wave period.

The results of entropy indicate that the time series of deaths exhibits lower complexity compared to the time series of
cases. This is expected since deaths have more deterministic dynamics, as they are directly related to confirmed cases that
have progressed to death. Unlike cases, where the dynamics of virus spread can be influenced by various factors such as
control measures, incubation period of the disease, and characteristics of circulating variants, deaths are directly linked to the
clinical outcome of infected individuals. Therefore, it is natural for the time series of deaths to bemore predictable and exhibit
lower complexity than the time series of cases. The slight differences in the entropy values shown in Fig. 5 are due to the fact
that the number of deaths varies from one wave to another. This can be corroborated by the SD1 measurements, where it can
be observed that the long-termvariation does not show significant changes. For the time series of deaths with t¼ 1, similar to
what occurs with cases, as R increases, the entropy value tends to zero, indicating that the disease reaches a state of
equilibrium.

3.3. Central tendency measure analysis

The results shown belowwere obtained using the SODP and CTM. Fig. 6 displays the relationship between CTM and radius
(R) for the cases of COVID-19. It can be observed that as the radius value increases, all the points tend to fall within the radius
R, causing the CTM value to saturate at 1. Given this, we choose a radius that provides intermediate CTM values. The CTM is
evaluated on a range from 0 to 1, so as R increases, it is expected that the CTM value saturates at 1, indicating that all the points
are within the specified radius.

Fig. 6 illustrates the CTM value for each wave as the radius varies. In the second-order difference plot, a radius of R ¼ 200
was set for waves from 1 to 5, and R ¼ 400 for the 6th. This choice of radius allows for an appropriate representation of the
waves in the second difference plot.

We can observe that for R > 400, five waves exhibit a high CTM value, indicating low variability. In these cases, all the
points fall within the radius. However, the 6th wave stands out with a CTM value of approximately 0.7, indicating greater
variability than the other waves. This shows that the series of the 6th wave has more scattered points outside the radius.
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Fig. 6. Variation of CTM by radius for time series of cases. As R increases, all waves tend towards CTM ¼ 1.

Fig. 7. Second-order difference plot for the six waves of COVID-19 cases. It is possible to distinguish the behavior of each wave by the rate of the virus spreading
speed.

A.S. Reis, L. dos Santos, A. Cunha Jr et al. Infectious Disease Modelling 9 (2024) 314e328
The SODP, xiþ1 � xi vs xiþ2 � xiþ1, for the six waves of cases can be seen in Fig. 7. In the 1st wave, most of the points fall
within the circle with R ¼ 200, where, according to Fig. 6, we have CTMz0:9, indicating low variability. This aligns with the
first panel shown in Fig. 7. We can also compare it with Fig. 2 for t ¼ 1, where we observe a high correlation in the PP, which
directly implies low variability in the data. In terms of disease spread, within the considered radius, one can infer that the
disease was spreading in a “controlled” velocity rate, reflecting the early stages of the pandemic in the city of Rio de Janeiro.
The implementation of restrictive measures also played a role in reducing virus transmission among the population.
324



A.S. Reis, L. dos Santos, A. Cunha Jr et al. Infectious Disease Modelling 9 (2024) 314e328
In the 2nd wave, the points are slightly more dispersed within the specified radius region, and there are also more points
outside this region, indicating slightly higher variability compared to the 1st wave, with CTMz0:8, revealing lower variability.
In terms of disease spread, one can infer that the virus transmission rate is spreading at a faster pace than in the first wave. In
the 3rd wave, we continue to observe high variability. Comparing it with Fig. 6, in this case, we have CTM z0:825, slightly
higher than the previous value (2nd wave). This is also captured in the PP (Fig. 2), where we see the presence of scattered
points along the identity line and the formation of clusters.

In the 4th wave, the pattern of the SODP shows an interesting behavior. In this case, CTM z0:815, which is slightly lower
than in the 3rd and 2nd waves, indicating a slight increase in data variability. This suggests that during the period considered
in the 4th wave, the number of infected individuals is higher than in the previous waves. It is interesting to note that most of
the scattered points are in the III quadrant of the plot. This suggests that although the number of infections is increasing
compared to the previous waves (see Fig. 1(a)), it follows a decreasing pattern. In other words, despite the increased data
variability, the number of cases starts to decrease.

The behavior of the 5th wave corroborates what was observed in the 4th wave. In this case, CTMz0:825, indicating lower
variability compared to the previous wave, which strongly suggests that the number of cases is decreasing. It indicates a
decrease in the virus's transmission rate. Finally, in the 6th wave, we have the lowest CTM value indicating high variability.
After the decrease in the number of cases in the fifth wave, the number of infected individuals increases abruptly, resulting in
an increase in the disease's transmission rate. Note that with the chosen radius of R ¼ 400, few points fall within it. The
presence of many points in the first quadrant reveals the increasing nature of the disease's transmission rate. This phe-
nomenon can be observed in both time series (Fig. 1(a)) and the PP (Fig. 2). Remembering that in the 6th wave, the circulating
variant was Omicron, known for its high transmission rate among individuals, which is consistent with the results presented.

The same analysis can be applied to the time series of deaths. In this case, the radius was set to R¼ 10 for all waves, which
returns CTM values in the same range as we considered for the COVID-19 cases. By direct inspection of Fig. 8, we can see that
the CTM values saturate formuch smaller radii, even for the 6thwave, with R > 20. The CTM curve increasesmonotonically for
all waves, indicating that the CTM value does not vary significantly from one wave to another.

Fig. 9 shows that for the 1st wave, there is high variability among the points, as seen in Fig. 8, with CTMz0:7, which may
indicate a high number of deaths caused by the disease during that period (see Fig. 1(b)). In the 2nd wave, CTM z0:25,
indicating fewer points outside the region defined by the radius, suggesting lower variability compared to the 1st wave.
During the 3rd wave, there is a slight increase in variability, as evidenced by a greater number of points outside the defined
radius. The 4th and 5th waves have the same CTM value for all considered radii. By analyzing the SODP, most points fall in the
third quadrant, indicating a decrease in the number of deaths in the following wave, which is supported by the time series of
deaths (see Fig. 1(b)). However, in the 5th wave, many points fall on the horizontal and vertical lines, which is an indication
that the number of deaths continues to decrease at a high rate.

Finally, in the 6th wave, almost all points fall within the region defined by the radius. Therefore, the time series for the
considered period exhibits low variability, with CTM z0:75. Analyzing both the time series (Fig. 1(b)) and the PP (Fig. 3), we
can see that indeed the 6th wave has the lowest number of deaths during the analyzed period of the COVID-19 pandemic.
Similarly to the cases analysis, during this period, the Omicron variant was present, which, in addition to its high transmission
rate, is characterized by lower lethality. It is worth noting that during the 6th wave, a significant portion of the population had
acquired immunity to the virus and its variants, either through previous infection or as a result of the high vaccination
coverage in the city of Rio de Janeiro.
4. Conclusion

In this study, we conducted an analysis of the time series data for COVID-19 cases and deaths in Rio de Janeiro city from
March 27, 2020 up to September 9, 2022. Through the techniques employed, wewere able to identify the dynamic behavior of
Fig. 8. Variation of CTM by radius for time series of deaths. As R increases, all waves tend towards CTM ¼ 1, the same behavior presented for the case time series.
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Fig. 9. CTM and second-order difference plot for the six waves of COVID-19 deaths. The figure captures the deceleration in the number of daily deaths.
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the virus spreading shown in the time series using Poincar�e plot, approximate entropy, second-order difference plot and
central tendency measures. Both for cases and deaths time series, the calculated values for the descriptors adequately reflect
the behavior in the Poincar�e plot, corroborating the evolution of the multiple waves of COVID-19. The agreement between the
descriptors and the visual representation in the Poincar�e plot reinforces the analysis of the waves and contributes to a better
understanding of the dynamics of COVID-19. By entropy analysis, we capture the level of complexity of each wave, caused by
each variant, in circulation in the considered period.

The analysis of time series of epidemiological diseases using Poincar�e Plot, approximate entropy, central tendency
measure, and second-order difference plot is a new approach in terms of understanding the dynamics of these diseases. The
advantage of using this set of techniques to interpret this type of data is that they are simple tools and provide a good un-
derstanding of the evolution of the spread of the disease, even allowing to capture the effects of the various mutations of the
virus (different variants), measured restrictions and vaccination campaign. A limitation of this analysis is that, in general,
those data present many fluctuations, as it depends on the correct completion of the necessary information by health agents,
and the veracity and precision of the information provided by infected individuals. Another factor important to highlight is
the period over which the data series were collected. A time series with more points would provide a greater interval for
evaluating the results, providing slightly more robust results. However, since our interest was to characterize the dynamics of
the virus within each wave, the evaluation interval considered proved to be adequate since the results obtained are close to
what was observed during the pandemic.

Moreover, our results lead us to conclude that in the city of Rio de Janeiro, the Gamma variant was responsible for the
highest number of deaths in relation to the number of infected individuals during the pandemic. Second-order difference plot
and central tendency measure techniques reveal the speed of virus spread. By examining the structure, patterns, and
properties of the time series, using the set of techniques cited in this paper, we got a better understanding of the epidemic
spread, identify underlying dynamics, and extract meaningful information about the dynamical behavior of the time series.
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Since our results are close to the true scenario during the COVID-19 pandemic in the city of Rio de Janeiro, these methods can
be applied as a useful tool for analyzing time series of epidemiological diseases, alongside its existing applications in HRV and
EGC analysis.
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