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The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite
relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has
proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled,
well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from
these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe
the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent
experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution
can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner
best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics
according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are
broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies,
we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.

1. Introduction

The story of life is a story of coevolution. Reciprocal relation-
ships among replicators, whether competing, consuming, or
cooperating, are a fundamental force driving organic diversi-
fication. Darwin clearly recognized as much. After observing
Angraecum sesquipedale Thouars, a large Madagascan orchid
with a foot-long nectary spur, he declared “in Madagascar
there must be moths with proboscises capable of extension
to a length of between ten and eleven inches!” [1–3]. Darwin
made this connection because he realized that the long spur
was a product of coevolution, or coadaptation as he called it,
between flower and moth.

Orchids use nectar located at the base their spurs to
entice pollinators to transfer pollen from one plant’s anther
to another’s stigma so that fertilization can occur. However,
pollinators with proboscises longer than an orchid’s spur
would not need to contact the flower to access its nectar and
will remain free of pollen. Thus, a longer spur forces polli-
nators to dig deeper into the flower to drink its nectar, and
more pollen adheres to the pollinator’s body for transfer to

the next orchid [4]. Therefore, long-spurred orchids likely
reproduced more prolifically than did short-spurred orchids
and came to characterize the species. By contrast, natural
selection favors pollinators with longer proboscises because
they are better able to drink the orchid’s nectar [4] and are
more likely to survive and reproduce. This natural tension
between exploitation and reward has promoted repeated
cycles of adaptation and counteradaptation, leading to
greatly exaggerated spurs and proboscises.

Coevolution consists of reciprocal, adaptive genetic
changes among two or more species [5]. In addition to
morphological changes, coevolution may be important in
many biological phenomena such as the evolution of sex
[6, 7], virulence [8], drug resistance [9], immune defense
[10], life histories [11], the maintenance of genetic diversity
[12–14], speciation [15, 16], and community structuring [17,
18]. However, the theoretical and experimental analyses of
coevolution did not begin in earnest until the 1950s and 60s
(Thompson provides an excellent analysis of the historical
underpinnings of coevolution studies [19]). Early study
organisms included flax and flax rust [20–22]; butterflies
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and plants [23]; ants and acacias [24]. A common problem
faced by biologists is that observing coevolutionary dynamics
in field and laboratory studies of macroorganisms is difficult
to achieve. As Ehrlich and Raven pondered in their influential
paper, “without recourse to long-term experimentation on
single systems, what can be learned about the coevolutionary
responses of ecologically intimate organisms?” The subtext
here is that, since evolution occurs over the course of
many generations, long-term experimentation can be readily
accomplished using short-lived organisms, such as microor-
ganisms.

Nonetheless, laboratory-based experimental coevolution
of microorganisms did not gain favor until the 1970s and
1980s [25–33]. Here, host-parasite coevolution was exam-
ined in the context of interactions between bacteria and their
bacteriophage parasites. Such studies have many advantages
such as ease of control and replication, short generation
times and rapid evolution, easy dissection of genetic changes
associated with adaptation, and the ability to archive organ-
isms for future study [34, 35].

In addition to providing important information regard-
ing phage-host dynamics, these coevolution studies can
contribute to our understanding of host-parasite dynamics
among higher organisms. In principle, the fundamental laws
of natural selection and adaptation are universal across all
organisms. The factors governing coevolution among phage
and their bacterial hosts should not be markedly different
from that of a virus and a multicellular organism. Virus
immune system evasion is conceptually similar to phage
avoidance of host restriction or CRISPR systems [36, 37]. For
example, simian immunodeficiency virus epitopes readily
mutate to evade cytotoxic T-lymphocytes, occasionally via
single-nucleotide substitutions [38, 39]. This situation is
analogous to the mutation of a bacterial receptor to prevent
phage binding or the mutation of a phage nucleotide seq-
uence to prevent restriction. In this paper, I review recent
contributions of laboratory experimental studies using bac-
teriophage to our broader understanding of host-parasite
coevolution. I pose questions germane to coevolutionary
theory, and then I discuss empirical evidence from phage
studies that address these questions.

2. What Are the Mechanisms of Coevolution?

Coevolutionary theory covers a broad range of biological
phenomena [40]; thus, it is not surprising that numerous
models have been proposed [41]. Some, such as diffuse
coevolutionary models, are not especially amenable for
testing in laboratory microcosms in experimental evolution
studies. Instead, I focus here on two fundamental aspects of
coevolution: the underlying genetics of coevolution and the
nature of the selective forces driving coevolutionary change.
These facets of coevolutionary theory have been broadly
tested using experimental populations of bacteria and phage.

With regard to the genetics of coevolution, two simple
models have proven popular: Flor’s Gene for Gene (GFG)
model [20] and the Matching Alleles (MA) model [42].
Kerr describes the GFG model as specifying that “for
each [product] determining resistance in the host there is

a corresponding [product] for avirulence in the parasite with
which it specifically interacts” [43]. In other words, hosts
are resistant if they have alleles allowing for the recognition
of a specific avirulence allele presented by the parasite.
Parasite alleles not specifically countered by a host allele allow
a parasite to infect a host. One of the GFG model’s key
features is the existence of specialist and generalist parasite
genotypes. Indeed universally virulent parasites are possible,
and consequently there can be more parasite genotypes than
host genotypes (Figure 1). However, fitness costs offset the
benefits conveyed by broader virulence; thus, universally
virulent genotypes may be selected against. Furthermore,
the GFG model implies the replacement of virulence and
resistance alleles by directional selection, leading to increased
population differentiation over time (Figure 2). By contrast,
in the MA model, parasite genotypes must exactly match
host genotypes in order to evade recognition by the host’s
immune system and reproduce in the host. In this sense,
MA models imply a self/nonself-recognition system where
the host is unable to recognize successful parasites as foreign.
Hence, a consequence of the MA model is that there should
be the same number of parasite genotypes as host genotypes
(Figure 1). The MA model is usually characterized by
frequency-dependent selection on virulence and resistance
alleles; thus, allele frequencies, but not alleles, change over
time (Figure 2).

The MA and GFG models make contrasting predictions.
For example, the MA model implies that the costs of resis-
tance or infectivity are similar among all alleles, whereas costs
can vary in GFG models [45, 46]. Moreover, the MA model
predicts local adaptation and specialization, while the GFG
model does not [47–49]. Generally the MA model is expected
to result in frequency-dependent selection as opposed to
GFG’s arms race dynamics. These latter two criteria may
not be absolute; thus, they may not be robust differentiating
predictions [14, 42, 50, 51]. Agrawal and Lively point out
that GFG and MA are likely endpoints in a continuum of
parasite specificity [42]. In the wild, coevolutionary systems
may show characteristics of both models.

Both models are attractive because of their relative
simplicity, but may only be applicable to a relatively narrow
range of organismal interactions. For example, they cannot
account for active parasite choice in determining the host to
infect [41]. In addition, it is likely that many coevolving traits
are continuously varying traits controlled by multiple loci,
which are more challenging to model genetically. However,
simple systems such as phages and viruses might be precisely
the sort of places one would expect relatively uncomplicated
genetics.

The GFG and MA models have been explored experi-
mentally in phage-host systems, and the available evidence
mostly supports the GFG model of antagonistic coevolution
[47, 52–57]. For example, Brockhurst et al. report that gen-
eralist pathogens arose in well-mixed communities of Pseu-
domonas fluorescens and the phage Φ2 [52]. As GFG coevolu-
tion is predicted to result in selection for generalist genotypes
in large, panmictic populations, these results matched expec-
tations. These results were supported by studies by Morgan
et al. and Scanlan et al., who found an increasingly wide
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Figure 1: Fitnesses are shown for four parasite genotypes on each host genotype as implied by MA (left) and GFG (right) coevolutionary
models. In the MA model, a parasite’s genotype must precisely match a host’s genotype in order to avoid recognition by the host’s immune
system and reproduce in the host. One consequence is that the number of parasite alleles matches the number of host alleles. By contrast, in
the GFG model, a host is susceptible to all parasites except those for which it has a corresponding resistance allele. In this scenario, parasite
alleles can outnumber host alleles. Figure modified from [42, 44].

range of host and parasite genotypes showing considerable
variation in specificity [47, 54, 56]. Furthermore, in a meta-
analysis of 37 experimental studies, Flores et al. found that
host-phage infection networks show a nested pattern [58],
which is a predicted outcome of GFG coevolution [42].
However, aspects of some studies better matched the MA

model. For example, parasites were found to be locally
maladapted, implying MA-like dynamics [46, 54, 59].

Overall, the balance of support seems to lie within the
GFG model, but further experimental investigations using
conditions designed to specifically differentiate the two are
warranted. One consideration is that resource abundance
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Figure 2: Plots represent allele frequency changes over time as predicted by GFG (a) and MA (b) models of coevolution. In the GFG model,
directional selection fixes host (blue) and parasite (red) alleles arising via mutation. Each specific host resistance allele interacts with a specific
parasite avirulence gene. Parasites counter host resistance via mutations in avirulence genes. Over time, genetic changes accumulate in both
populations. By contrast, virulence and resistance alleles persist as dynamic polymorphisms in the MA models. Here parasites (red) become
specialized for a common host genotype (blue), reducing its fitness. Over time, this host genotype will decline in frequency as less common
genotypes are favored because of reduced parasite load. Reduced host frequency reduces the benefits of parasite specialization on this host
relative to more common host genotypes. Reduced parasite load leads to increased host fitness, causing the cycle to repeat. Figure modified
from Woolhouse et al., 2002 [5].

may lower the costs of resistance (or infectivity) and lead
to increased directional selection characteristic of arms race
dynamics [60]. The assumption here is that, in resource-
rich environments, the progressive accumulation of genetic
changes characteristic generalist species is less likely to be
disfavored by natural selection [48]. By contrast, where costs
are present, fitness can be negatively frequency-dependent,
leading to fluctuating selection.

3. Do Hosts and Parasites Experience
Arms Races?

Many treatments assume that host-parasite relationships are
characterized by evolutionary arms races; however, precisely
defining “arms race” is difficult because the nature of
the selective forces acting on coevolving populations are
occasionally conflated [5]. Woolhouse et al. differentiate
Red Queen dynamics from arms race dynamics [5]. In the
Red Queen scenario (usually associated with MA models),
frequency-dependent selection favors rare genotypes that
are resistant to or infective of their antagonists (Figure 2).
These populations are expected to be genetically diverse
as resistance and infectivity polymorphisms are maintained
over time [5, 14]. By contrast, arms race dynamics (usually
associated with GFG models [44, 61, 62]) entail the replace-
ment of one genotype with another due to selective sweeps,
resulting in continual improvements in both populations
over time (Figure 2).

Actually demonstrating coevolution, let alone arms races,
in bacteria-phage systems has proven elusive. For example,
many studies have reported that bacteria and phage achieve
a stable state in continuous culture (See Table 1) [25–28, 30,
31, 33, 63–67]. However, in these studies, bacteria tended to
stabilize at a density similar to that of controls, and phages
persisted at a relatively low density. It is difficult to argue
that this coevolution. A more likely explanation for these
results is that while most bacteria have achieved resistance
to the phages, some sensitive bacteria have found refuge in
biofilms that form along the chemostat’s walls. Presumably,

this sensitive bacterial population is able to support a
low-density phage population. Indeed, many of the cited
studies found considerable levels of susceptible bacteria even
after resistant bacteria came to dominate the culture. This
hypothesis is supported by Schrag and Mittler’s finding that
abolishing biofilm formation by serial transfer resulted in
phage extinction [68].

Alternatively, sensitive strains may be protected by a
“numerical refuge” when they are rare. The continued pres-
ence of sensitive strains of hosts, and their parasites, may be
simply a consequence of the cost of resistance and the fre-
quency of parasites [27, 28, 32, 65, 68]. When sensitive strain
densities are low, phage densities will also decline. When
phage densities are low, sensitive strains will outcompete
resistant strains by virtue of their greater growth rates; thus,
they will again increase in number. Phage densities rebound
until sensitive hosts are again depleted. Thus, sensitive
strains, and their parasites, are maintained in populations
through time. Although Schrag and Mittler did not find
evidence supporting this hypothesis [68], the main message
here is that the mere presence of phage is not evidence of
coevolution unless it can be demonstrated that the phages
are directly responding to host resistance. If only the hosts
are responding, it is merely evolution, not coevolution.

Assuming that phages would go extinct in the absence
of sensitive hosts, it would appear that host victory can be
a frequent occurrence in bacteria-phage coevolution exper-
iments. A common explanation for the frequency of host
victory is that bacterial hosts have more evolutionary poten-
tial than their phage parasites [30, 73]. Bacteria can evolve
phage resistance by loss or alteration of phage receptor, but
phage must gain the ability to bind to and productively
infect a resistant host. A fair assumption is that the former
types of mutations outnumber the latter. Given their high
mutation rates and large population sizes, bacteria are likely
able to search the phage-resistance sequence space rapidly.
Larger genomes may provide bacteria greater evolutionary
potential as they have a more flexible repertoire of targets
able to be mutated to provide resistance [32, 74]. In addition,
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Table 1: Outcomes of experimental coevolutionary studies using bacteriophage and their bacterial hosts. In this table, the number of
coevolutionary cycles and final states of laboratory experimental studies using bacteriophage are documented. Only those studies that did
not explicitly manipulate experimental conditions (e.g., resource availability, gene flow) are presented; thus, this is not a comprehensive
analysis of all bacteriophage coevolution studies.

Host Parasite Type Duration Cyclesa Outcome Reference

Escherichia coli T2 Chemostat 19 days 1-2? Phage and host persistence
Paynter and Bungay, 1969

[69]

E. coli T4 Chemostat 75 days 0.5 Host resistanceb Horne, 1970 [33]

Plectonema boryanum LPP-1
Quasi-

continuous
80 days 1-2? Host resistanceb Cowlishaw and Mrsa, 1975

[25]

P. boryanum LPP-1 Chemostat 90 days 2.5 Host resistanceb Cannon et al., 1976 [26]

E. coli T7 Chemostat 68 days 1.5 Host resistanceb Chao et al., 1977 [28]

P. boryanum LPP-DUN1 Chemostat 60 days 2.5?
Phage and host persistence,

partial host resistance
Barnet et al., 1981 [29]

Aphanothece stagnina Aph-1 Chemostat 60 days 2.5 Host resistanceb Barnet et al., 1981 [29]

E. coli T2 Chemostat 12 days 1.5 Host resistanceb Lenski and Levin, 1985 [30]

E. coli T4 Chemostat 21 days 0.5 Host resistanceb Lenski and Levin, 1985 [30]

E. coli T5 Chemostat 12 days 0.5 Phage extinction Lenski and Levin, 1985 [30]

E. coli T7 Chemostat 12 days 1.5 Host resistanceb Lenski and Levin, 1985 [30]

E. coli λ Chemostat 135 days 1
Phage and host persistence,

partial host resistance
Spanakis and Horne, 1987

[31]

E. coli λ Chemostat 12 days 0.5 Host resistanceb Schrag and Mittler, 1996
[68]

E. coli Serial transfer 7 days 0.5
50% of lineages extinct
after 7 days, all assumed

extinct after 15 days

Schrag and Mittler, 1996
[68]

E. coli T1X Chemostat 12 days 0.5 Host resistanceb Schrag and Mittler, 1996
[68]

E. coli Serial transfer 7 days 0.5 Phage extinction
Schrag and Mittler, 1996

[68]

P. fluorescens Φ2 Serial transfer 100 days Multiple Phage and host persistence
Buckling and Rainey, 2002

[53]

E. coli PP01 Chemostat 8 days Multiple Phage and host persistence Mizoguchi et al., 2003 [66]

Pseudomonas phaseolicola Φ6 Serial transfer 21 days 0.5
5/8 phage lines extinct,

others persist on partially
resistant hosts

Lythgoe and Chao, 2003
[70]

Vibrio cholerae JSF4 Chemostat 15 days 0.5 Host resistanceb Wei et al., 2010 [64]

V. cholerae B phage Chemostat 6 days 0.5 Host resistanceb Wei et al., 2011 [63]

V. cholerae T phage Chemostat 25 days 0.5 Host resistanceb Wei et al., 2011 [63]

E. coli Qβ Chemostat 54 days 2 Phage and host persistence
Kashiwagi and Yomo, 2011

[71]

Synechococcus sp. WH7803 RIM8 Chemostat 167 days >4 Phage and host persistence Marston et al., 2012 [72]
a
The evolution of host resistance to phage is considered a half cycle. A full cycle occurs when the appearance of resistant host is countered by a host range

mutant.
bContinued persistence of sensitive bacteria in spatial refuges (i.e., wall population) allowed low-level phage persistence.

an important consideration is the bacteriophage population
size following the inherent delay between a bacterial popu-
lation’s crash and eventual recovery. Phage populations will
degrade quickly over time unless replenished by phage repro-
duction. Once phage populations are knocked down by host
resistance, their slightly higher mutation rates are probably
insufficient to compensate for the smaller frequency of host
range mutations. In fact, Lenski and Levin estimated that,
given a 15 mL chemostat containing bacteriophage at an
equilibrium density of 1 × 106/mL and a population-wide

mutation rate of 1.6× 10−5 per hr, it would take more than 7
years for a phage host range mutant to appear [30].

Despite the frequency of host victory, some phage and
bacteria antagonists have been shown to undergo multiple
rounds of coevolution, leading to a state of mutual per-
sistence (Table 1) [29, 31, 60, 66, 70–72]. For example,
Marston et al. observed at least 4 cycles of adapta-
tion/counteradaptation between the cyanobacterium Syne-
chococcus and the phage RIM8 during a 6-month chemostat
experiment [72]. Between 4 and 13 distinct phage host range
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phenotypes and between 4 and 11 newly evolved Synechococ-
cus phage resistance phenotypes were identified. This study
demonstrates that there is no fundamental constraint on the
ability of phage to coevolve with their hosts.

Given that multiple rounds of host-phage coevolution
are possible, is the coevolution best characterized by arms
race or Red Queen dynamics? Buckling and Rainey reported
that coevolution between P. fluorescens and phage Φ2 was
directional, with hosts and parasites becoming resistant to
or infective of a wider range of antagonists over time [60].
Subsequent studies using the same system found similar
results [56, 57, 75, 76]. However, Hall et al. found that
coevolutionary dynamics transitioned from arms race-like
to Red Queen-like over the course of their experiments as
resistance and infectivity measures leveled off at intermediate
values [77, 78]. These results were attributed to the escalating
costs of generalism, rather than lack of genetic potential
for increased infectivity or resistance because universally
infective phages and universally resistant hosts were found
in some populations. The costs associated with generalism
probably prevented host resistance and phage infectivity
from increasing indefinitely. Interestingly a study using soil
media instead of the standard laboratory agar reported Red
Queen-like dynamics in soil, a lower productivity habitat,
probably due to the increased costs of resistance and infec-
tivity in this habitat [79].

4. Are Tradeoffs Associated with the
Evolution of Resistance?

A common paradigm in evolutionary biology is that organ-
ismal phenotypes are constrained by limited resources.
Evolution, then, tends to allocate resources such that fitness
is maximized [80–82]. If resources are dedicated to pathogen
resistance or if resources are acquired less efficiently due to a
resistance phenotype, then fewer resources can be allocated
towards reproduction. Thus, the evolution of resistance to
a pathogen may entail a fitness cost in the host organism.
Intuitively this makes sense since defense mechanisms such
as biofilms, restriction enzymes, or receptor losses should
incur metabolic costs. Indeed, the fitness cost of phage-
resistance mutations arising during coevolution has been
repeatedly demonstrated [28, 30, 60, 63, 64, 67, 71, 83–89].
Only a few studies failed to find resistance-associated fitness
costs were assessed [30, 64, 66, 68, 70].

Since the mechanism of resistance to phage infection
is often alteration or loss of a receptor [32, 90], resistance
mutants may experience a reduction in metabolic efficiency
or another important life characteristic. It is likely that
resistance-associated fitness costs are ubiquitous, but not
always detectable under laboratory experimental conditions.
The resistance of P. phaseolicola to the phage Φ6 is a prime
example. Φ6 infects P. phaseolicola by binding type IV pili.
Nonpiliated mutant P. phaseolicola are resistant to Φ6 [91]
and rapidly arise in coevolution experiments [70]. These
nonpiliated mutants experience no fitness cost in the lab-
oratory microcosm, but are likely poorly fit in the wild
because P. phaseolicola use pili to attach to the leaves of plants

[70, 92]. This finding suggests that cost-free phage-resistance
observed in this study is likely an artifact of experimental
conditions. We should expect that tradeoffs associated with
resistance and infectivity will generally characterize host-
parasite interactions. In the next section, I address host
infectivity and the evolution of ecological specialization.

5. Does Coevolution Lead to
Ecological Specialization?

A common expectation is that host-parasite coevolution
should lead to parasite ecological specialization [93–97],
although this expectation tends to contradict the GFG
model. Tradeoffs inherent to resource exploitation should
favor genotypes that use resources more efficiently than
competing genotypes. As the match between genotype and
optimal phenotype is refined, parasites should be increas-
ingly limited to specific host types. Indeed, bacteriophages
tend to have restricted host ranges although some exceptions
exist [98].

Since host range is a major concern of viral biology,
particularly with respect to emerging infectious diseases,
patterns observed among phages could be informative. Most
phages reared on a single host will increase fitness on that
host with concomitant reductions in fitness on other hosts
[99–101]. Does specialization lead to evolutionary cul-de-
sacs or can viruses easily reverse gears and broaden host
range? Several studies have addressed this question and
found, contrary to expectations, coevolution led to increased
generalism among phages [55, 57, 60, 77, 78, 86]. Typically,
in these studies, infectivity of a population of phages was
assayed on bacterial clones isolated following each serial
transfer [57, 60]. The presumed mechanism of increased
generalism is reduced specificity of binding to host receptors
[60] and is considered to be a general consequence of
GFG coevolution. However, generalism did not increase
without limit. In fact a cost of generalism among phages has
been frequently demonstrated [28, 57, 78, 101, 102]. The
cost of generalism was usually more pronounced in lower
productivity habitats [55, 86, 103] (but see Forde et al. for
a counterexample [104]), perhaps as a consequence of lower
encounter rates, reduced mutation supply and increased host
resistance [103], and the costs associated with resistance [60].
In addition, virus generalists may show reduced performance
in novel environments [105]. To extrapolate to other host-
parasite systems, we might expect that generalism may be
more difficult to evolve in systems where population charac-
teristics are reduced compared to phages (i.e., lower muta-
tion rates, smaller population sizes, and lower encounter
rates). Furthermore, other host types may not be as pro-
ductive as bacterial hosts [106]. Lower-productivity habitats
conform to the traditional definition specialization.

6. Does Coevolution Increase Virulence?

Since lytic phages do not conform to the traditional defini-
tion of virulence (i.e., parasite-imposed reduction in host fit-
ness), virulence in lytic phages is commonly assessed through
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phage reproductive rate [107]. Declines in reproductive rate
imply reduced virulence, and vice versa. What effect, then,
does coevolution have on virulence? The data seem to suggest
that antagonistic coevolution reduces phage virulence [28,
57, 71, 77] (but see Chen and Baric for a counterexample
[108]). This phenomenon seems to be distinct from the
reduction of virulence associated with selection for increased
transmission (e.g., rabbit myxomatosis in Australia [109])
and is consistent with the ideas that poor environments
[110] or host heterogeneities [111] should select for reduced
virulence. Here, the cost of maintaining infectivity of a coe-
volved host is often a reduction in phage reproductive rate
on the ancestral host. This cost may be a consequence of the
pleiotropic costs of associated with infection of a new host
variant [100, 112].

Other studies have shown that phage can increase the
virulence to other hosts of pathogenic bacteria [113]. Here
coevolution with the phage Φ2 led to the appearance of
the P. aeruginosa mucoid phenotype containing the alginate
virulence factor. Whether this is a specific artifact of the P.
aeruginosa biology remains to be determined.

7. Does Coevolution Accelerate Adaptation?

In a static environment, the rate of evolution tends to
decrease over time as peaks on the adaptive landscape are
approached [114]. One consequence of cyclic coevolution
characteristic of Red Queen evolutionary dynamics is that
the adaptive landscape and the selective forces acting on
populations will frequently shift. We might expect that the
rate of adaptation is increased in such coevolving popu-
lations relative to populations where one species is held
in evolutionary stasis. Paterson et al. tested this hypothesis
using the bacterium P. fluorescens SBW25 and its viral
parasite, phage Φ2 [76]. In one treatment, ancestral bacteria
from frozen stocks were added to purified phage isolated
from serial transfer flasks. Thus, the bacterial genotype was
held constant while the phage was allowed to adapt. In
the other treatment, 1% of the phage/bacteria culture was
transferred from flask to flask every 48 hours. Here, both
interactors were allowed to coevolve. Paterson et al. found
that the rate of molecular evolution was significantly higher
in coevolving populations compared to the static control
[76]. Similar results were obtained for the phage Qβ and its
host, Escherichia coli [71]. Other experiments demonstrated
that population mixing [52] and resource availability [86]
both significantly increased the rate of adaptation among
coevolving phage.

On the other hand, coevolution may limit responses
to environmental change. Zhang and Buckling found that
phage persistence in response to gradual temperature in-
creases was greater for phage cultured with an evolutionarily
constant host than for phage cultured with a coevolving host
[115]. This reduction in fitness might result from a reduced
population size and consequent reduced genetic diversity
(Zhang and Buckling estimate 10-fold fewer beneficial
mutations) or from the differential impact of temperature
changes on coevolved phages [115]. These results imply that,
although coevolution may accelerate molecular evolution,

resulting organisms may be less resilient to ecological and
environmental changes and less fit across a broad range of
conditions. Much like two rival countries investing their
resources in guns rather than butter, antagonistic coevolu-
tion may impose costs on populations. Hosts and parasites
may be trapped into a devolutionary spiral because of
reduced population sizes, increased costs of deleterious mu-
tations [84], and increased spending on costly adaptations.
This hypothesis is supported by studies documenting a
cost of resistance for the host and a cost of infectivity for
the parasite as described in the previous sections of this
paper. On the other hand, coevolution may be a diversifying
force that drives the differentiation of populations across
heterogeneous landscapes [19, 116].

8. Does Coevolution Increase
Organismal Diversity?

A fundamental aim of evolutionary biology is to explain the
diverse and “elaborately constructed forms” that populate
the Earth around us [117]. The great variety of life cannot
simply be a response to selection imposed by the abiotic envi-
ronment; diversification must also be driven by what Darwin
called, “mutual relations,” or interactions among organisms.
Here, I describe experimental studies exploring the diversi-
fying effects of antagonistic coevolution. For instance, Chao
et al. reported that coevolving populations of phage and E.
coli diversified into a complex community containing several
different types of each organism [118]. However, this study
also illustrates the difficulty of disentangling effects due
to biotic and abiotic environments. As Schrag and Mittler
later showed, bacterial diversification was largely driven by
the spatial refuges provided by wall populations of bacteria
[68]. In the absence of spatial structure, sensitive bacteria
were replaced by resistant bacteria, with no net gain in
organismal diversity. This result raises an important point.
Diversification was driven by mutual relations, but only in
the presence of habitat heterogeneity. As Thompson makes
clear, populations respond to shifting patterns of interactions
across space and time, the geographic mosaic [119]. Frag-
mentation of the natural landscape allows local populations
of one species to adapt to local populations of other species
in a genotype-by-genotype-by-environment interaction. As
these interactions play out across larger spatial and temporal
scales, and as different subpopulations interact or fail to
interact, coevolutionary changes can result in speciation and
increased biodiversity.

Corresponding to this view of coevolution, Buckling
and Rainey reported that sympatric diversity was reduced,
but allopatric diversity was increased, among coevolving
populations of the phage Φ2 and its host, P. fluorescens [53].
Usually P. fluorescens diversifies into several morphotypes
when grown in spatially structured habitats (i.e., stationary
flasks containing nutrient broth), due to the development
of niche specialists [120]. However, when phages are added
to the mix, populations were usually dominated by a single
morphotype. Interestingly, when diversity was considered
across replicate microcosms, global diversity was increased
relative to phage-free controls. Antagonistic coevolution,
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then, apparently drove increased morphotype diversification
by preventing the predictable sequence of morphotypes
that appear in the absence of predation. Instead, resistance
mutations arose in different genetic backgrounds among
the various populations; thus, each population may have
followed a unique evolutionary trajectory.

It should be noted that these results may not be broadly
generalizable and may depend on biological details intrinsic
to this system. Altering experimental conditions or changing
phage-host pairings can lead to different patterns, namely,
increases in sympatric diversity compared to controls [88,
89]. For example, Brockhurst et al. extended the findings
of the Buckling and Rainey study by considering the effects
of the removal of spatial structure (i.e., shaken flasks) [83].
Here, the lack of spatial structure prohibits the P. fluorescens’
morphological diversification due to strong interspecific
competition [120]. When spatial structure was removed,
within and between population diversity increased relative
to phage-free controls. The increased number of resistance
morphs among the bacterial host populations may have
resulted from the appearance of “mutators” or bacteria pos-
sessing increased mutation rates [121]. Thus, phages reduced
diversity when spatial structure was imposed but increased
diversity when spatial structure was removed. The addition
of phages may allow the survival of weaker competitors in the
experimental habitat [88]. Other experiments showed that
host density, rate of parasite evolution [122], and resource
availability [85, 123] all influenced host diversity.

9. Summary

Experimental evolution studies employing phage and bacte-
ria offer simple, replicable systems in which coevolutionary
theory can be tested. Ease of sequencing makes tracking
genetic changes over time practical and informative. Ability
to freeze genotypes for later use allows time-staggered quan-
tification of host resistance and parasite infectivity [60]. Easy
modifications permit experimental analysis of the effects
on coevolution of spatial structure [52, 124], community
structure [125], resource availability [86, 126], gene flow
[46, 47, 55, 59, 126–128], multiplicity of infection (ratio of
phage to host) [75], mutation rate [129], and temperature
[115].

Thus, with easy manipulation, populations can experi-
ence different widely variable coevolutionary conditions de-
pending on environmental and ecological circumstances.
Iterations varying coevolutionary circumstances have already
produced much data. Studies have shown that coevolution
can increase parasite specificity, virulence, adaptation rate,
and diversity.

Other salient findings highlight the importance of GFG
coevolution, which gives rise to arms race population dyna-
mics, but do not rule out allele frequency-dependence and
Red Queen dynamics. Instead, both models probably operate
with a high degree of context-dependency and may function
at different times in the same population. Moreover, GFG
and MA models may represent extremes along a continuum
of pathogen specificity, and many coevolving genetic systems
are expected to fall in between. Given that these experiments

were performed in simple microcosms with a limited num-
ber of interactors, coevolutionary dynamics in the wild likely
involves an even greater array of interactions and processes
at all levels of the biological hierarchy. The complexity seen
even in specific, as opposed to diffuse, coevolutionary sys-
tems poses a tremendous challenge, but much headway is to
be made with laboratory experimental evolution studies. In
light of the bewildering array of connections and influences
that characterize wild populations, laboratory phage and
bacteria models provide a tractable arena in which to better
understand the causes and consequences of coevolutionary
change.
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