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Incretin hormones and the satiation signal
JJ Holst

Recent research has indicated that appetite-regulating hormones from the gut may have therapeutic potential. The incretin
hormone, glucagon-like peptide-1 (GLP-1), appears to be involved in both peripheral and central pathways mediating satiation.
Several studies have also indicated that GLP-1 levels and responses to meals may be altered in obese subjects. Clinical trial results
have shown further that two GLP-1 receptor agonists (GLP-1 RAs), exenatide and liraglutide, which are approved for the treatment
of hyperglycemia in patients with type 2 diabetes, also produce weight loss in overweight subjects without diabetes. Thus, GLP-1
RAs may provide a new option for pharmacological treatment of obesity.
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INTRODUCTION
The incretin hormones are gut hormones that amplify nutrient-
induced insulin secretion in response to meal intake. Glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) are the two most important hormones and
both are thought to contribute equally to the effect.1 GLP-1 is
secreted from endocrine cells in the epithelium of the small
intestine thatexpress the proglucagon gene, the so-called L cells.
Unlike in the pancreas, the gene product, (pre)proglucagon, is
processed here to release the two glucagon-like hormones, GLP-1
and GLP-2,2 whereas the glucagon sequence is buried in an
N-terminal fragment of proglucagon called glicentin.3 GLP-1 binds
to a single GLP-1 receptor4 and possesses several physiological
effects that contribute to the regulation of glucose (Figure 1).4–7

GIP is secreted from K cells in the proximal small bowel and binds
to GIP receptors expressed by pancreatic islet b cells, as well as to
receptors in adipose tissue and the brain.5 A large body of data
indicate that GLP-1 has an important role in satiation signaling,
but this does not appear to be the case for GIP.8 As a result, the
remainder of this review focuses on GLP-1. On the other hand, GIP
may be involved the development of obesity, as mice with GIP
receptor deletions are resistant to diet-induced obesity.9 This is
thought to reflect an action of GIP on the adipose tissue
promoting fat storage, although this is controversial.9–11

GLP-1 AND REGULATION OF APPETITE
As outlined in Figure 1, GLP-1 has numerous targets that may also
be important in the regulation of food intake. The widespread
distribution of GLP-1 receptors in the brain12 suggested actions of
GLP-1 on brain centers, and in early studies, Schick et al.13

demonstrated inhibition of food intake after intracerebro-
ventricular (ICV) as well as direct hypothalamic administration of
GLP-1 in rats. This was followed up by extensive studies by Turton
et al.14 and Tang-Christensen et al.15 demonstrating powerful
inhibition of food intake after ICV administration of GLP-1, an
effect that could be blocked by the specific receptor antagonists
exendin 9–39, which also enhanced spontaneous as well as
neuropeptide Y-stimulated food intake. These experiments

established central GLP-1 as a physiological regulator of food
intake maintaining an inhibitory tonus. These cerebral actions of
GLP-1 are unlikely to reflect the actions of peripherally produced
GLP-1 but are rather targets for GLP-1 produced in and released
from projections of neurons of the nucleus of the solitary tract,
which express the proglucagon gene and have a processing
pattern like the L cells of the gut.16–19 Cells positive for GLP-1
mRNA are widely expressed in the human brain in areas, including
the frontal, parietal, temporal and occipital cortices; the basal
ganglia;20 and the hypothalamus.21 Radioligand-binding studies
have shown high densities of GLP-1 receptors in the lateral
septum, the subfornical organ, the thalamus, the hypothalamus,
the interpenduncular nucleus, the posterodorsal tegmental
nucleus, the area postrema (AP), the inferior olive and the
nucleus tractus solitarius (NTS).12 Recent studies provide a direct
demonstration of actions of central GLP-1 and show projections
from GLP-1–containing neurons in the NTS to the nucleus
accumbens core and of satiation induced by injections of GLP-1
into this region of the accumbens.22,23 Furthermore, GLP-1
receptors in this region and in the ventral tegmental area
appear to be responsible for an inhibitory effect of GLP-1 on the
rewarding value of food in rats.24 GLP-1 receptors are also present
in the floor of the fourth ventricle, notably the subfornical organ
and the AP, areas not fully blocked from the peripheral circulation
by the blood–brain barrier. These areas are accessible to
circulating peripheral GLP-1 and thus may permit direct effects
of this peptide in the central nervous system (CNS).12,25,26 It has
been also been claimed that GLP-1 may pass the blood–brain
barrier even outside these leaks,26 but it is currently unknown to
what extent this route may be involved in signaling from the gut
to the brain.

The central GLP-1 system has been studied by several groups
(reviewed in Vrang and Larsen27), and there is little doubt that it
represents an important central appetite regulating mechanism,
although its physiological role is currently uncertain. In rats, it may
be activated by peripheral signals, such as distension of the
stomach that activate the GLP-1–expressing neurons of the NTS,28

and it has also been associated with enteroceptive stress;29,30

however, its relation to food intake is unclear.29 Inconsistent
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findings in other species (mice) render the generality of these
findings unclear.31 On the other hand, knock down of the GLP-1–
producing neurons as well as chronic administration of the GLP-1
receptor antagonist (GLP-1 RA), exendin 9–39, was associated with
hyperphagia and increased fat accumulation after high fat feeding
in rats.32

The relationship between the peripheral and the central GLP-1
system is also unclear. Williams reported that while central
blockade of the GLP-1 system with ICV administration of
exendin 9–39 blocked the actions of central but not peripheral
GLP-1, peripheral (intraperitoneal) exendin 9–39 blocked the
appetite-suppressing actions of peripheral, but not central GLP-1,
indicating that the two systems do not depend on each other for
activity. However, other studies did report blocking effect of
central exendin 9–39 on the effects of peripheral GLP-1 RAs.33 At
any rate, the GLP-1 neurons do not express GLP-1 receptors
(but may be depolarized by leptin),34 but it is of interest that other
neurons in the dorsal motor nucleus of the vagus with efferent
projections to the stomach do increase their firing rates in
response to GLP-1.35

GLP-1 secreted from the gut is also likely to be a physiological
regulator of appetite and food intake. The first experiments
demonstrating effects of peripheral GLP-1 in humans were
published by Flint et al.36 in 1998. These investigators used
visual analog scores for appetite registration and also studied the
effect on ad libitum food intake. The doses used were highly
physiological. Subsequent studies defined the dose–response
relationships and demonstrated that an effect was also apparent
in obese subjects and in obese patients with type 2 diabetes
(T2DM).37,38 In a meta-analysis of available data, Verdich et al.39

demonstrated that the effect on food intake was linearly related to
the dose of GLP-1 infused. Subsequent studies with stable GLP-1
RAs leave no doubt about the effectiveness with respect to
inhibition of food intake,40 see below.

The question then arises whether peripheral GLP-1 is a
physiological regulator of food intake. Again, the antagonist
exendin 9–39 has helped answer the question. Thus, when given
intraperitoneally, the antagonist significantly augmented food
intake in rats in the light period and the late dark period (periods
of limited food intake); conversely, little effect was noted at the
onset of the dark period, where food intake is maximal, suggesting
that during this period the inhibitory systems are shut down and
therefore there is nothing to antagonize.41 In another study, a
new, long-acting GLP-1 RA (an acylated GLP-1/exendin 9–39
hybrid) not only inhibited food intake but also lowered body
weight.42 Similar studies have not yet been carried out in humans,
but studies of weight loss after gastric bypass operations showed
a correlation with GLP-1 responses.43 These observations also
support the hypothesis that peripheral GLP-1 is a physiological
regulator of appetite/food intake.

IS GLP-1 INVOLVED IN THE PATHOGENESIS OF OBESITY?
In accordance with the proposed actions for GLP-1, levels of this
peptide increase in response to nutrient intake6 and the
magnitude of the secretory response depends on the amount of
nutrient consumed.6,44–47 However, it has been clearly shown that
circulating levels of GLP-1 are reduced in obese patients. Results
from a study carried out more than 25 years ago indicated that
the normal enteroglucagon (¼ glicentinþ oxyntomodulin, co-
secreted with GLP-1 from the L cells) responses to meals were
decreased by about 75% in obese subjects.48 Similar findings were
made in more recent studies.49–55 By contrast, GIP responses are
often increased rather than decreased.47 The reason for the
differential effects of meal ingestion on GLP-1 and GIP levels is not
known. GLP-1 responses to oral stimulation have been negatively
correlated to body mass index (BMI),6 and weight loss was
associated with increasing GLP-1 responses to meal ingestion.49

Figure 1. Physiological effects of GLP-1. Reprinted with permission from Drucker and Nauck, 2006.5
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It has been suggested that the decrease may be related to the
insulin resistance that accompanies weight gain and/or reduced
L-cell responsiveness to carbohydrates secondary to increased
levels of circulating fatty acids.6,56 The major rise in plasma GLP-1
is often observed following completion of a meal, later than the
presumed effect on eating occurs,57 which is in agreement with
the notion that entry of digested nutrients into the L cells provide
the stimulus for secretion.58 However, GLP-1 levels do show an
early increase (10 min) after meal ingestion in humans,47,59

presumably because of secretion from L cells situated in the
upper jejunum.6

Interestingly, a recent study showed that both moderate and
intense exercise increased GLP-1 levels and decreased hunger and
that elevations in GLP-1 were inversely correlated with energy
intake post-exercise.60 Overall, individuals who have lost weight as
a function of changes in diet or exercise have increases in GLP-1,6

which may contribute to the weight reductions/maintenance
observed with these interventions.

GLP-1 in bariatric surgery
Conversely, results from several studies have indicated that
elevation of GLP-1 may be involved in the weight loss observed
in patients who undergo bariatric surgery.61–64 GLP-1 levels
increase dramatically in response to meal ingestion65 and, as
mentioned above, levels correlate with decreases in weight and
appetite.62 The mechanisms underlying the increase in GLP-1
levels associated with bypass surgery are not fully understood.
Results from one recent study indicated that patients who have
undergone bypass surgery have an 11.6% decrease in dipeptidyl
peptidase-4 (DPP-4) activity,66 and as that enzyme inactivates GLP-
1, this change could contribute to increased peptide levels. It has
also been shown that insulin resistance reduces GLP-1 secretion in
response to an oral glucose challenge,67 and it has been shown
that bypass surgery significantly decreases insulin resistance,68 but
again these mechanisms would only be expected to explain a very
small part of the increase. Rather, it is the surgical rerouting of
ingested nutrients to the distal small intestine with a high density
of L cells that increases GLP-1 secretion (the hindgut hypo-
thesis).69,70 This was demonstrated clearly in a case report where a
meal was given to a patient on two consecutive days 5 weeks after
gastric bypass, one via the oral route (by-passing the stomach and
upper small intestine) and the other via a gastrostomy catheter.71

The oral meal resulted in the expected exaggerated post-bypass
GLP-1 response, whereas the response to the gastric meal
resembled preoperative responses. The exaggerated GLP-1
response after bypass in patients with T2DM has been demon-
strated to be responsible for at least part of the improved beta-cell
function and therefore resolution of diabetes using the receptor
antagonists,72 but so far similar studies regarding appetite/food
intake have not been reported.

MECHANISMS OF GLP-1 INHIBITION OF SATIETY/FOOD INTAKE
How does peripheral GLP-1 interfere with the regulation of satiety
and food intake? As mentioned, plasma concentrations rise after
meal intake, but it turns out that newly released GLP-1 is degraded
and inactivated (at least with regard to its insulin-releasing effects)
almost instantaneously after its release. Newly released GLP-1
diffuses across the basal lamina and into the lamina propria,
enters capillaries where the enzyme, DPP-4, is located in the
luminal membranes of the endothelial cells and degrades the
peptide, so that only 1/3 to 1/4 of the intact peptide is left once
the products reach the portal vein.73 In the liver, more DPP-4
degrades 50% of what is left,74 leaving very little intact GLP-1 for
circulation;73 a soluble DPP-4 may degrade what is left.75 The
plasma concentration of intact GLP-1 does rise, but the rise
represents only a small percentage of what was originally

secreted.76 In view of the dose–response relationship,39 it seems
impossible that these minor increases could be responsible for any
inhibition of food intake. A similar elevation in the concentration
of intact GLP-1 may be obtained by inhibitors of DPP-4;77

however, inhibitor treatment has no effect on body weight.78

Instead, GLP-1 released by L cells in the gut may reduce food
intake through an effect on peripheral GLP-1 receptors located on
vagal sensory afferents in the gut or perhaps in the hepatoportal
region of the liver.73,79–81 These nerve fibers have their cell bodies
in the nodose ganglion where abundant GLP-1 receptor mRNA
has been demonstrated.82,83 The neurons subsequently project to
the NTS. Indeed, neurons of the NTS have been shown to be
activated (c-fos expression) in response to peripheral GLP-1
administration.84 In turn, the activated NTS neurons may not
only directly influence the vagal motor nuclei in the dorsal part of
the brain stem85 but also project to hypothalamic nuclei, including
the arcuate (presumably mainly involved in glucose regulation86),
the paraventricular nucleus (PVN) of the hypothalamus
and the amygdala.16,84 Note that the NTS neurons are probably
not the GLP-1–expressing neurons. Efferent pathways reaching
and regulating the function of gastrointestinal organs and
pancreas may emerge from the hypothalamus and the dorsal
motor nuclei.87

This concept is supported by results from further studies in
animals showing that either total subdiaphragmatic vagotomy88

or selective vagal deafferentation89,90 significantly decreased the
food intake reduction observed with peripheral administration of
GLP-1. A similar neural pathway was also demonstrated to apply
to GLP-1–induced inhibition of gastric emptying, antral motility
and gastric-end pancreatic secretion.91,92 Thus, in humans, gastric
acid secretion, stimulated by a purely vagal stimulus, namely
shame feeding, is completely abolished by high physiological
doses of GLP-1,93 and the inhibitory effect is lost after truncal
vagotomy.94

However, there is also evidence that GLP-1 may act directly in
the brain as a satiation signal.95,96 As noted previously, GLP-1 may
have direct effects in the CNS because it can reach the brainstem
via the subfornical organ and AP, which lack a typical blood–brain
barrier.97 A direct central effect of GLP-1 is supported by results
from a study which showed that only the effect of intraperitoneal,
but not intravenous (intraportal), GLP-1 on eating required vagal
afferent signaling.89 Thus, although supporting the assumption
that the effects of endogenous GLP-1 released by the intestinal L
cells may involve transmission via vagal afferents (which were
supposed to be activated in the gut wall by intraperitoneal GLP-1
diffusing across the gut wall from the peritoneal cavity to engage
the vagal receptors), additional pathways, engaged by IV GLP-1,
must also exist and may include interaction with the brain sites
accessible from the bloodstream.89 Indeed, in a recent study
involving intraportal administration of GLP-1 (which inhibited food
intake), neurons were activated (c-fos expression) in both the
nucleus of the solitary tract, the AP and the central nucleus of the
amygdala.98 Furthermore, it has recently been demonstrated that
the hepatic branch of the vagus nerve is not essential for the
reduction in food intake induced by intraportal administration of
GLP-1.90 On the other hand, the AP pathway does not appear to
be solely responsible for the GLP-1–induced satiation as this was
unaffected after deletion of the AP as well as the subfornical
organ.98 In recent studies in humans, it was demonstrated that the
acute inhibitory effect of peripheral GLP-1 on energy intake after a
meal is lost in subjects with a truncal vagotomy.99

Figure 2 illustrates a proposed pathway for GLP-1 signaling in
relation to satiation and glucose metabolism.6,79,100 In response to
the presence of nutrients in the gastrointestinal tract, intestinal L
cells release GLP-1, which binds to receptors on vagal afferents
innervating the gut. The resulting vagal activation sends a signal
to neurons of the NTS. GLP-1 also reaches the pancreas via the
circulation to act directly on b cells, although this contribution
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may often be small because of the inactivation of GLP-1 caused by
the enzyme DPP-4, which takes place in the gut before the
hormone reaches the systemic circulation, but after it has had a
chance to interact with the sensory afferents.80 Food intake also
promotes the release of other gastrointestinal hormones (for
example, cholecystokinin) that could increase the firing of GLP-1
neurons in the NTS.101 Afferent neural pathways are likely to
participate as well. Stimulated GLP-1–expressing NTS neurons that
signal satiation to brain areas may be involved in modulating food
intake (mainly via the PVN) and glucose metabolism (mainly via
the ARC) and thus may contribute to appetite suppression,
although this is controversial.27 Regardless of the pathways
involved, it is important to note that GLP-1 reduces appetite by
affecting the function of regulating centers of the brain,102 rather
than primarily affecting gastrointestinal motor activity (gastric
emptying) or by causing nausea. Studies in humans also support
the central effects of GLP-1. Thus, peak postprandial increases in
plasma GLP-1 concentrations were found to correlate with
increases in regional cerebral blood flow in the left dorsolateral
prefrontal cortex (including the left middle and inferior frontal
gyri). Both of these areas have been previously implicated to be
involved in the regulation of food intake in animal and human
studies.95 GLP-1 also has interactions with ghrelin that may

contribute to weight loss. Ghrelin is an orexigenic peptide
hormone. It is released into the systemic circulation mainly by
the X/A-like cells in stomach mucosa.103 Results from recent
studies have demonstrated that GLP-1 (both central, ICV and
peripheral) inhibits ghrelin-stimulated neuronal activity in the
hypothalamus as well as its effects on food intake.104,105 This may
contribute to the effects of GLP-1 on meal consumption.

WEIGHT LOSS WITH GLP-1 RAs
Currently available GLP-1 RAs include liraglutide and exenatide.
Liraglutide is a human GLP-1 RA analog with 97% homology to
human GLP-1.106,107 Liraglutide has a 13-h half-life, which makes it
suitable for once-daily administration.108 Exenatide is a full GLP-1
RA isolated from the saliva of a lizard, the Gila monster, with a 53%
homology to native GLP-1 and a 2.5-h half-life after subcutaneous
administration.106,109 This molecule is naturally resistant to DPP-4
and is now also available in an extended-release form allowing
once-weekly administration.109 Results from multiple clinical trials
have demonstrated that exenatide treatment results in weight loss
in patients with T2DM.110,111 Clinical trial results have also shown
that liraglutide results in weight loss whether used as
monotherapy or as part of combination treatment in patients
with T2DM.110,112–114 Meta-analysis of results for clinical trials with
exenatide and liraglutide in patients with diabetes indicated that
reductions in BMI versus placebo were � 0.62 and � 0.47 kg m� 2,
respectively.110 A separate systematic review of results for
exenatide indicated weight losses of 3–6 kg over 52 weeks of
treatment.111 Analysis of results of a substudy of the LEAD-2
(Liraglutide Effect and Action in Diabetes) trial indicated weight
loss of 0.9, 2.0 and 3.2 kg among patients treated with 0.6, 1.2 and
1.8 mg liraglutide over 26 weeks of treatment.112,115 Direct
comparison of results for exenatide and liraglutide in the LEAD-
6 trial indicated weight losses of 3.24 kg for liraglutide and 2.87 kg
with exenatide over 26 weeks of treatment.116 Treatment with
liraglutide (0.3–0.9 mg day� 1) for 20 days significantly reduced
waist circumference, waist/hip ratio and estimated visceral fat area
in a small cohort of 20 Japanese patients with T2DM.117 The
consistent weight reductions observed with liraglutide and
exenatide in patients with T2DM have prompted evaluation of
these agents in nondiabetic patients who require pharmaco-
therapy for weight loss (see below).118–120

Mechanisms underlying weight loss in patients receiving GLP-1
RAs for treatment of diabetes may include increased satiation
signaling involving the pathways described previously. Studies in
healthy volunteers have demonstrated that exenatide increases
satiation and reduces caloric intake by 209.3 kcal versus placebo
when administered 60 min before a standardized meal.121

Liraglutide has been shown to decrease energy intake in
association with earlier satiation.122

GLP-1 RAs also slow gastric emptying and decrease gut motility
(whereas GIP does not possess such actions8). The decreased
gastric emptying observed with GLP-1 RAs may contribute to
weight loss as it is known that gastric distension is associated with
decreased food intake (and activation of GLP-1–producing
neurons of the nucleus of the solitary tact).28 Exenatide slows
gastric emptying of both solid and liquid meal components, and
this is associated with decreased postprandial glucose levels.123

Clinical studies of liraglutide also indicate that it delays gastric
emptying,124 although its effect during chronic treatment is much
smaller.125 It has been suggested that delayed gastric emptying
resulting from administration of a GLP-1 RA is due to inhibition of
vagal afferent fibers.92,126 However, it is clear that GLP-1 and GLP-1
RAs inhibit appetite independently of their effects on gastric
emptying as the effect is observed also in fasting individuals (with
empty stomachs)37 and chronic treatment with liraglutide and
exenatide brings about similar weight losses, although the effect
of liraglutide on gastric emptying is very small compared with that

Figure 2. The neural pathway for the actions of GLP-1. GLP-1
secretion is stimulated by nutrients in (a) the gut lumen, and newly
released GLP-1 diffuses across the basal lamina into the lamina
propria. On its way to the capillary, however, it may bind to and
activate (f ) sensory afferent neurons originating in the (c) nodose
ganglion, which may, in turn, activate neurons of the NTS (a). The
same pathway may be activated by sensory neurons in (e) the
hepatoportal region or in (d) the liver tissue. Ascending fibers from
the NTS may generate reflexes in the hypothalamus, and descend-
ing impulses (from neurons in the PVN?) may activate (b) vagal
motor neurons, that send (h) stimulatory or (g) inhibitory impulses
to the pancreas and the gastrointestinal tract. Interactions between
ascending sensory nerve fibers and vagal motor neurons may also
take place at the level of the brain stem. Reprinted with permission
from Holst, 2007.6
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of exenatide. It should also be noted that results from several
studies with liraglutide and exenatide have indicated that weight
loss associated with these agents is not as a result of nausea
observed in some patients treated with GLP-1 RAs.115,127–131 It has
also been shown that weight loss with GLP-1 RAs is greatest in
patients with the highest baseline BMI.132

Recent clinical trials in obese patients without diabetes have
indicated that GLP-1 RA treatment also decreases body weight in
this group. In one recent study, obese subjects (N¼ 152; mean
BMI¼ 39.6 kg m� 2; 25% with impaired glucose tolerance or
impaired fasting glucose) were randomized to receive exenatide
or placebo along with lifestyle intervention for 24 weeks.
Exenatide-treated subjects lost 5.1 kg from baseline versus 1.6 kg
with placebo.120 In another recent double-blind, placebo-
controlled, 20-week trial, 564 individuals (18–65 years of age,
BMI¼ 30-40 kg m� 2) were randomized to liraglutide doses
(1.2 mg, 1.8 mg, 2.4 mg, or 3.0 mg, n¼ 90–95 per group), placebo
(n¼ 98) or orlistat (120 mg, n¼ 95). All subjects had a 2093 kJ
(500 kcal)-per-day, energy-deficit diet and increased their physical
activity as measured by a pedometer throughout the trial. Mean
weight losses with liraglutide 1.2, 1.8, 2.4 and 3.0 mg were 4.8, 5.5,
6.3 and 7.2 kg, respectively, compared with 2.8 kg with placebo
and 4.1 kg with orlistat (Figure 3).118 Recently reported results
indicate that the efficacy of liraglutide for weight loss is sustained
for at least 2 years.118,129 Importantly, in obese individuals with
impaired glucose tolerance (about a third of the subjects), this was
normalized in most during therapy, suggesting that GLP-1 RAs
may actually prevent development of T2DM in individuals at risk.

CONCLUSIONS
Results from studies in both experimental animals and humans
have indicated that GLP-1 has a key role in satiation signaling. In
the periphery, satiation-inducing effects of GLP-1 are most
probably mediated by vagal afferents originating in the intestine
in combination with other mechanism that may involve circum-
ventricular organs, and peripheral GLP-1 appears to activate CNS
nuclei that are involved in satiation, including the PVN, the central
nucleus of the amygdala and possibly the nucleus accumbens.
Intrinsic to the CNS, a GLP-1 pathway arising in the NTS is also
involved in satiation. ICV administration of GLP-1 receptors in the
CNS reduces food intake, and GLP-1 RAs induce hyperphagia.
Circulating levels of GLP-1, including responses to meals, are
decreased in obese individuals. Weight loss associated with diet
and exercise or bariatric surgery is associated with increased GLP-
1 levels, and it has been suggested that elevated satiation
signaling mediated by GLP-1 may contribute to weight loss in
both the settings.

Pharmacological options for the treatment of obesity are
limited, and most patients are unable to achieve sustained
reductions in weight with diet and exercise alone. GLP-1 has
multiple peripheral and CNS effects that contribute to satiation
and decreased caloric intake. Indeed, part of the weight loss-
promoting effect of gastric bypass operations seems to involve
exaggerated postprandial secretion of GLP-1. Furthermore, the
GLP-1 RAs, exenatide and liraglutide, have been consistently
shown to decrease body weight when used for the treatment of
hyperglycemia in patients with T2DM. Clinical trial results from
obese patients without diabetes have shown that both exenatide
and liraglutide can produce significant reductions in body weight
in such individuals. Thus, it is reasonable to suggest that these
decreases may be due, at least in part, to increased satiation
signaling associated with these GLP-1 RAs. This suggests that the
GLP-1 RAs may be of use in the treatment of obesity, perhaps
particularly with a view to prevent development of diabetes in
obese subjects with impaired glucose tolerance.
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