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Abstract

Stable and sustainable stem cell sources for stem cell-based therapies are scarce

and a key bottleneck for clinical applications. The regenerative potential of stem

cells is usually attributed to several allogeneic or even autologous donor-related

factors. Genetic background and epigenetic variations in different individuals may

significantly affect the functional heterogeneity of stem cells. Particularly, single-

nucleotide polymorphisms (SNPs) have been implicated in diseases with monoge-

netic or multifactorial and complex genetic etiologies. However, the possible effects

of individual SNPs on donor stem cells remain far from fully elucidated. In this Per-

spective, we will discuss the roles played by donor genetic traits in the functional

heterogeneity of induced pluripotent stem cells, mesenchymal stem cells, and

hematopoietic stem cells and their implications for regenerative medicine and

therapy.
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1 | INTRODUCTION

Rapid advances in stem cell research have brought revolutionary pro-

gress to modern biology and medicine. These include the understand-

ing of stem cell function, tissue development and growth,

maintenance of tissue homeostasis, tissue regeneration, aging/degen-

eration, and therapies for diseases that cannot be cured with conven-

tional medicine.1,2 As of March 2020, the number of stem cell-based

registered clinical trials (www.ClinicalTrials.gov) has exceeded 5000,

which is greater than any other single therapeutic technique or

approach. As expected, the majority of these trials use hematopoietic

stem cells (HSCs) and mesenchymal stem cells (MSCs) that can be

acquired from various tissue sources.

Several major stem cell types, including ESCs, induced pluripotent

stem cells (iPSCs), adult stem cells, and stem cells harvested from the

fetus and related tissues (eg, umbilical cord blood, Wharton jelly from

the umbilical cord, amnion, and placenta), have been comprehensively

described and are being studied or used in the clinic.3 Whereas ESCs

and iPSCs display pluripotent differentiation capabilities, most adult

stem cell types, such as HSCs and MSCs derived from the bone mar-

row or other sources, have limited differentiation potential. Stem cells

used in the clinic can be either allogeneic or autologous, depending on

donor or tissue source availability. All stem cell types have relative

advantages and limitations, and no single cell type meets all the opti-

mal criteria for clinical applications.4 Thus, a wide variety of parame-

ters should be considered for optimizing therapeutic efficacy while

minimizing the potential for serious adverse events. This is particularly

important in light of the goal of precision medicine; an initiative and

effort that aims to make advances in tailoring medical care to the indi-

vidual on a genetic and molecular basis.5

It is generally thought that major stem cell functions are induced

by functional and/or architectural replacement of damaged tissue,

paracrine signaling, or cellular mechanisms supporting self-restoration

of the diseased tissue or organ. Remarkably, these mechanisms are

poorly defined for stem cell-based therapy. In these cases, the mode-

of-action of stem cells at the genetic and molecular levels should be

elaborated for an in-depth understanding of therapeutic mechanisms.

Additionally, stem cell functionality and therapeutic efficacy may be

influenced by several donor-originated factors such as age, metabolic

status, disease condition, genotype, and disease susceptibility-related

genetic background.6-9

Evidence supporting the importance of donor genetic back-

grounds underlying stem cell functional heterogeneity is emerging. In

this Perspective, we summarize the current research and discuss the

potential contribution of genetic backgrounds in order to advance the

field of stem cell-based therapy.

2 | GENETIC BACKGROUNDS DRIVE iPSC
FUNCTIONAL HETEROGENEITY

Emerging data have demonstrated that human iPSC technology has

tremendous potential as cellular models for human diseases. However,

variable genetic and phenotypic traits could restrict human iPSC appli-

cations. One previous study reported that 25 human iPSC lines were

constructed from the same set of somatic tissues derived from differ-

ent individuals.10 Single-cell RNA-sequencing (RNA-seq) was per-

formed for each cell line and resultant data were evaluated to identify

the main source of heterogeneity. These comprehensive experiments

indicated that genetic variations between different donors were the

primary source of unique transcriptional differences between lines

and that genetic background differences accounted for the majority

of human iPSC functional heterogeneity. Additionally, genome-wide

profiling was carried out on 711 human iPSC lines derived from

301 healthy donors by the Human Induced Pluripotent Stem Cells Ini-

tiative.11 These data suggested that 5% to 46% of the variations in

different human iPSC phenotypes, including in the epigenome, trans-

criptome, proteome, cell differentiation capacity, and cellular morphol-

ogy, stemmed from genetic differences between individuals.

Furthermore, RNA-seq analysis and linear mixed models identified the

genetic origins affecting gene expression changes in 317 human iPSC

lines derived from 101 donors and suggested that �50% of genome-

wide expression variations came from donor individuals.12 In light of

the recent advance of understanding on the variant-to-function issue,

that is, the causative role of genetic variants in diseases or phenotypic

traits,13,14 it would be highly speculable that a large proportion of vari-

able iPSC phenotypes are likely a result of particular genetic

variations.

3 | DISEASE-ASSOCIATED VARIATIONS
ORIGINATING IN DONORS MAY CONSTRAIN
THE APPLICATION OF MSCs

MSC heterogeneity exists among individuals, ages, tissue sources, cul-

tural and cryopreservative conditions, passages, and even inter- or

intracell colonies, resulting in their varied functional ability in vivo,

which may affect the MSC use in regenerative medicine and their

therapeutic efficacy.6-9,15 Interestingly, varied ex vivo growth kinetics

of MSCs from different donors may also be an important affecting

factor for processing and manufacturing cellular products.16,17 A latest

Significance statement

In the past decades, thousands of genetic variations termed

single-nucleotide polymorphisms (SNPs) have been identi-

fied, many of which are likely associated with complex

human diseases that were previously hypothesized to have

other unique genetic drivers. Genetic studies are rapidly

being extended to stem cell research and regenerative medi-

cine models. Considering the impact of SNPs in the etiology

of diseases, it is reasonable to consider that stem cells carry-

ing disease-associated SNPs should not be transplanted

onto the recipients with the same disease.
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study using global transcriptomic analysis revealed the genetic role of

glutathione S-transferase theta 1 (GSTT1) gene present/null variations

in the growth-capacity of human MSC and GSTT1 was proposed as a

novel genomic DNA biomarker for human MSC scalability.17 In the

meanwhile, tremendous efforts have been made to reduce MSC het-

erogeneity and select certain “pure” or functional subpopulations of

MSCs, by using clone selection, cell surface markers, single cell analy-

sis, and other technologies.18-21 On top of these, optimization and

selection of donors by a broad genetic analysis may at least in part

benefit therapeutic applications in which selected genetic factors can

serve as general indicators of successful stem cell therapy.

Bone, cartilage, and joint surrounding tissues all have a mesen-

chymal origin. Incidentally, MSCs appear to be the most mature and

the widely used stem cell for clinical therapies and research related

to bone and cartilage diseases. Among them is osteoarthritis (OA),

the most common and severe degenerative disease of the joints.22

MSC transplantation has successfully been used to treat OA in sev-

eral animal models and has emerged as one of the most promising

methods for OA therapy.23,24 In addition, more than 50 proof-of-

concept clinical trials using MSCs are registered on www.

ClinicalTrials.gov. Many trials involve the intra-articular injection of

autologous bone marrow- or adipose-derived MSCs. However, some

studies showed that proliferation, chondrogenic differentiation, and

adipogenic differentiation capacity of MSCs isolated from OA

patients were significantly decreased.25 These results raise the pos-

sibility that the genetic background of OA patient-derived MSCs

may impair their therapeutic efficacy. The genetic architecture of

OA is complex and may involve hundreds of genes. Growth differenti-

ation factor 5 (GDF5), which is thought to be indispensable for carti-

lage development and homeostasis, is a susceptibility gene.26-28

Mutations in GDF5 can lead to severely impaired joints and skeletons

in both mice and humans. Single-nucleotide polymorphism (SNP)

(rs144383) (+104T/C), which lies in the 50 untranslated promoter

region of GDF5, is strongly associated with OA and such a strong

correlation between rs143383 and OA exists in multiple ethnic

groups.26 The T allele of rs143383 is more likely to result in a 27%

reduction of GDF5 expression relative to C allele.29 About 80% of

patients with OA carry the T allele, while the C allele exerts a lower

risk of OA (30-40%). Therefore, a minor but persistent imbalance of

GDF5 expression throughout life may render an individual more sus-

ceptible to OA.

MSCs originating either from the bone marrow or residing in car-

tilage tissue are responsible for the homeostasis and regeneration of

the cartilage. One may speculate that the precise balance of GDF5 is a

key factor affecting the physiological function of MSCs in cartilage

and that rs143383 might be used as a selection parameter for MSC

donors. This hypothesis should be tested to determine its effect of on

autologous or allogeneic MSC proliferation, chondrogenic differentia-

tion, and repair efficacy. If validated, it would be reasonable to recom-

mend that rs143383 should be accounted for when identifying MSC

donors for OA patients. This idea could theoretically be extended to

any other SNPs already experimentally proven to exert an adverse/

advantageous effect on MSCs.

Many degenerative or metabolic diseases are classified as com-

plex disease with multiple genetic components,30,31 such as type 2

diabetes and obesity and neurodegenerative diseases, and have

proven to be perfect candidate diseases of stem cell treatment.32-36

From multiple GWAS projects for years, tens to hundreds of genetic

variants have been suggested to possibly attribute to each of these

diseases.37-40 SNPs associated with or adjacent to those key genes

with a proven or putative function in regulating specific cell types are

particularly attracting intense attention. Such examples include

rs7903146 (the TCF7L2 gene) with type 2 diabetes,40 rs356219 (the

SNCA gene) with Parkinson's disease,35,37,39 and SNP rs2075650 (the

TOMM40 gene) and rs4420638 (the APOE gene) with Alzheimer's

disease.38 Therefore, considering the importance of SNPs in the etiol-

ogy of many complex and multifactorial diseases, it is reasonable for

us to recommend that stem cells carrying known disease-causing or

susceptibility SNPs should not be transplanted into recipients to treat

the same disease. Such a recommendation of course does not mean

to neglect many other sources of MSC heterogeneity and the top task

would still be the optimization of stem cell dose, the route of cell

administration, and the selection of most suitable disease stages, in

order to obtain the optimal clinical outcomes.

4 | CRUCIAL ROLES OF SNP-ASSOCIATED
HSC HETEROGENEITY IN CLINICAL
OUTCOMES

Hematopoietic stem cell transplantation (HSCT), either allogeneic or

autologous, remains the most commonly applied clinical stem cell-

based therapy that is broadly used to treat and even cure leukemias

and other disorders of the blood and immune system.41,42 In most

cases, allogeneic transplantation may be the only available choice. The

outcome of HSCT strongly depends on the quality of the human leu-

kocyte antigen (HLA) match between the donor and recipient identi-

fied by high-resolution HLA genotype and match techniques.

Transplantation with suboptimally matched donor stem cells exerts an

unacceptably high risk of immune rejection and other life-threatening

complications, such as disease relapse, graft vs host disease, and viral

infection.

Despite stringent procedures to secure the best HLA matching,

life-threatening complications continue to occur following HSCT. Sev-

eral studies have found that SNPs in genes related to innate and adap-

tive immune responses, residual leukemia, allo-antigens, and drug

metabolism are associated with HSCT outcomes and should be

applied to identify patients at risk for post-HSCT complications.43-45

A recent cohort analysis of 1157 HLA-matched cases found that

patients with donors homozygous for the C variant of rs10912564 in

the key costimulatory molecule TNFSF4 had better disease-free sur-

vival, overall survival with less treatment-related mortality.46 The

study further demonstrated that the TNFSF4C variant had a higher

affinity for the transcription factor Myb and increased percentage of

TNFSF4-positive B cells compared with CT or TT genotypes,

suggesting that the TNFSF4C variant may associate with outcomes.
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The CCR5 coreceptor on CD4+ T cells is critical for R5-tropic HIV viral

entry. In 2009, the “Berlin patient” presented with relapsed acute

myelogenous leukemia and human immunodeficiency virus (HIV-1)

symptoms and underwent allogeneic HSCT derived from a donor lac-

king the CCR5 coreceptor (homozygous for the Δ32 deletion).47 Since

then, HIV in the patient's blood and tissues has remained

undetectable and antiretroviral therapy has been halted. Ten years

later, a second individual (the “London patient”) with HIV-1 infection

and concomitant leukemia was cured by allogeneic HSCT with stem

cells bearing the CCR5Δ32/Δ32 mutation.48 With the aim of mimicing

these results while avoiding ethics and safety issues, the CRISPR/

Cas9 gene editing technology was recently adopted to edit CCR5 in

HSCs.49 The approach is expected to benefit more HIV patients and

produce more “Berlin patients” and “London patients” in the future.

5 | CONCLUSIONS

Stem cell and genomics research are two tightly connected areas,

both of which advance rapidly and can provide perfect opportunities

and examples for precision and personalized therapies. New technolo-

gies and facilities are now readily accessible in hospitals and laborato-

ries and enable the goal. These include the availability of multiple

stem cell sources, extensive next-generation sequencing, as well as

efficient and safe gene modification techniques.

Broad or even whole genome sequencing-based gene testing has

nowadays become acceptable more than ever before.50 Knowing the

genetic traits may not only be benefit recipients but also a long-term

interest for donors. This may however be a dilemma considering that

there may be potential ethical issues regarding the disclosure of per-

sonal information and that additional procedures are taken when

screening a particular genetic background of donors. In addition, for

most species and cell types, the amount of genomics data keeps accu-

mulating daily and has reached multi-Gigabyte levels. It would be ideal

to assign functional significance to each genetic variation identified in

a clinical context for a specific tissue or cell type. This requires func-

tional assays in animal or stem cell models in addition to population-

level replication studies in designated clinical settings. As multiple

SNPs are implicated in most clinical conditions, it would be necessary

to establish a high-throughput screening assay to assess the func-

tional significance of a large number of genetic variants. For these

purposes, CRISPR/Cas9 editing in iPSCs may serve as a good experi-

mental model system to define the contribution of a gene or its vari-

ant to cell differentiation and regeneration.

Ultimately, any formal recommendations regarding the impact of

SNPs carried by donor stem cells on the outcomes of stem cell ther-

apy will require investigation in patients in the context of clinical trials,

as performed for HSCT. Furthermore, we should acknowledge that

attributing interdonor variations solely to genetics is difficult,

given that different donors will have confounding variables such as

unmatched lifestyle choices and experiences. Critics may argue that it

is hard enough to find a match based on HLA, let alone including addi-

tional genetic criteria. Research is just beginning to address these

questions and we think that the benefits to improved therapeutic out-

come following stem-cell transplantation will far outweigh these

concerns.
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