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ABSTRACT 

Background: Linear-regression analysis is a well-known statistical technique that serves as a basis for understanding 

the relationships between variables. Its simplicity and interpretability render it the preferred choice in healthcare 

research, including vision science, as it enables researchers and practitioners to model and predict outcomes 

effectively. This article presents the fundamentals of linear-regression modeling and reviews the applications and 

interpretations of the main linear-regression analysis. 

Methods: The primary objective of linear regression is to fit a linear equation to observed data, thus allowing one to 

predict and interpret the effects of predictor variables. A simple linear regression involves a single independent 

variable, whereas multiple linear regression includes multiple predictors. A linear-regression model is used to 

identify the general underlying pattern connecting independent and dependent variables, prove the relationship 

between these variables, and predict the dependent variables for a specified value of the independent variables. This 

review demonstrates the appropriate interpretation of linear-regression results using examples from publications in 

the field of vision science. 

Results: Simple and multiple linear regressions are performed, with emphasis on the correct interpretation of 

standardized and unstandardized regression coefficients, the coefficient of determination, the method for variable 

selection, assumptions in linear regression, dummy variables, and sample size, along with common mistakes in 

reporting linear-regression analysis. Finally, a checklist is presented to the editors and peer reviewers for a systematic 

assessment of submissions that used linear-regression models. 

Conclusions: Medical practitioners and researchers should acquire basic knowledge of linear-regression such that 

they can contribute meaningfully to the development of technology by accurately interpreting research outcomes. 

Incorrect use or interpretation of appropriate linear-regression models may result in inaccurate results. Appointing 

an expert statistician in an interdisciplinary research team may offer added value to the study design by preventing 

overstated results. 
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 Application and interpretation of linear-regression analysis 

INTRODUCTION 

Cox regression, logistic regression, Poisson regression, and linear regression are among the different types of regression 

analysis [1]. Simultaneously analyzing many variables is desirable when predictor factors are associated with an 

outcome [2]. Regression analysis is typically performing to determine the relationship between one variable and a set of 

other variables [2, 3]. Statisticians typically denote one variable using Y and refer to it as a dependent, response, outcome, 

or predicted variable. The other variables are generally denoted by X and referred to as independent variables, 

explanatory variables, predictor variables, or covariates [2, 3]. The independent variables are numerical, dichotomous, 

or multicategorical, whereas the dependent variable is numerical [3, 4]. 

However, if the dependent variable is yes/no or dichotomous, then logistic regression analysis is performed [5, 6]. 

The presence or absence of computer-vision syndrome is an example of a dichotomous dependent variable [7, 8]. 

Statistical software packages are used to conduct linear-regression analysis, including statistical packages for the social 

sciences, as well as statistical-analysis software such as Minitab, R, and Stata [9]. 

Herein, the application and interpretation of regression analysis as a method for examining variables 

simultaneously are discussed based on examples pertaining to vision sciences obtained from the literature. The aim is 

to provide an overview of the components of linear-regression analyses. Subsequently, the applications and 

interpretations of this field of vision research are explained. Table 1 provides the definitions for the terms used in this 

review. 

 

Table 1. Terms used in regression analysis 

Term  Explanation 

Dependent variable  The dependent variable is known as the response, outcome, or 

predicted variable, which is denoted as “Y.” The regression model is 

used to explain or predict this variable [3, 5]. 

Independent variable  The independent variable is known as the explanatory variable, 

predictor variable, or covariates. These variables in the regression 

model are used to explain or predict changes in the dependent variable 

and are typically denoted as X [5]. 

Simple regression analysis Simple linear regression includes two variables, i.e., a dependent 

variable (Y) and an independent variable (X), which are linearly related 

to each other [6]. 

Multiple-regression analysis Multiple linear regression includes a dependent variable (Y) and 

multiple independent variables (Xk), which are linearly related to each 

other [4]. 

Regression coefficient The unstandardized regression coefficient is the amount of change in 

the dependent variable for a one-unit increase in the continuous 

independent variable (X1), whereas other independent variables are 

fixed. The standardized regression coefficients reveal the independent 

variables that have the strongest linear relationships with the 

dependent variable [3, 4]. 

Coefficient of determination  The coefficient of determination is the proportion of the variation in the 

dependent variable explained by the regression model [10].  

Assumptions in linear regression  Certain assumptions are introduced in linear-regression analysis, and 

the key ones are normality, equality of variance, linearity, and 

collinearity [4].  

 

METHODS 
 

Simple linear regression 

Simple linear regression is the simplest application of regression involving two linearly related variables, a single 

dependent variable (Y), and a single independent variable (X), which are linearly related to each other [3, 5, 6]. The 

objectives of regression analysis are to test for a general underlying pattern connecting two variables and to show the 

relationship between X and Y to predict Y for a specified value of X [3, 5, 11]. 
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For example, in a study of two series of patients undergoing cataract surgery, an optical biometry group (n = 51 

patients) and an ultrasound biometry group (n = 79 patients) were recruited [12]. Four intraocular lens (IOL) power-

calculation formulas (Haigis, Hoffer Q, Holladay 1, and SRK/T) were used in both groups. The corneal surface 

asphericity (Q-value) was obtained by two different Placido-disk corneal topographers in each group. The presence of 

a relationship between the arithmetic error in refraction prediction (the dependent variable defined as the difference 

between the expected refraction and post-operative refraction at one month based on the actual IOL implantation 

according to each power calculation formula) and the Q-value (a single independent variable) was tested using simple 

linear-regression analysis. The coefficient of determination (R-square [R2]) was used to determine the proportion of 

variation in the refraction prediction error explained by the regression model. The refraction prediction error was 

negative for eyes with post-operative hyperopic refraction and positive for eyes with post-operative myopic refraction 

[12]. 

In another study on 115 eyes of 115 patients to assess the relationship between the refraction prediction error (the 

difference between the expected refraction and the refraction at one-month post operation) and the Q-value, a simple 

linear regression was performed [13]. Q-values were obtained using three instruments: 115, 104, and 73 eyes were 

measured using a Scheimpflug–Placido corneal topographer, rotating Scheimpflug camera, and Placido-disk corneal 

topographer, respectively. Four IOL power-calculation formulas (Haigis, Hoffer Q, Holladay 1, and SRK/T) were used 

[13]. A scatter diagram with a line drawn through the points was used to summarize the relationship between the two 

variables or a formula was used to calculate the refraction prediction error based on a specified Q-value [13]. 

Additionally, the strength and direction of the relationships between the variables can be interpreted. The research 

objective was to determine the effect of the Q-value on the refraction prediction error. In the scatter diagram illustrated 

in this study, the Hoffer Q prediction error was measured along the vertical axis, and the Q-value was measured by a 

Placido-disk corneal topographer along the horizontal axis, with R2 equal to 0.2630 [13]. 

The equation for any straight line, except for a vertical line, can be presented in the following form [10]: Ŷ = a +

bX. Here, "Ŷ" denotes ordinate of any point on the line, “a” denotes the Y intercept, and “b” denotes the slope of the 

line. Meanwhile, “a” and “b” are unstandardized regression coefficients, where “a” is the ordinate or height of the line 

at point X = 0 (if X = 0 is interpretable). The interpretation of the slope (b) is that when X changes by one unit, the height 

of the line changes by “b” units [3].  

The least-squares method is the most commonly used method for fitting a straight line through a set of points. In 

the first Q-value example [12], the highest R2 was indicated between the Hoffer Q formula and the Q-value in the 

optical biometry group (R2 = 0.3050), for which the refraction prediction error (Y) is related to the Q-value (X) based 

on the formula; furthermore, this relationship was statistically significant (P < 0.05) [12]. In the second Q-value example 

[13], using the least-squares method, a = 0.2641 and b = - 1.4589 were obtained for the Q-value measured by the Placido-

disc corneal topographer and IOL power using the Hoffer Q formula. In this study, the highest R2 was indicated 

between the Hoffer Q formula and the Placido-disk corneal topographer (R2 = 0.2630), for which the refraction 

prediction error (Y) is related to the Q-value (X) based on the formula; furthermore, this relationship was statistically 

significant (P < 0.05) [13]. The regression line computed from a sample is known as the sample regression line, where 

using the least-squares method, we obtain Ŷ = 0.2641 + (−1.4589)  × X. These unstandardized regression 

coefficients can be used to estimate the refraction prediction error at a specified Q-value. For example, if the Q-value 

(X) measured by the Placido-disk corneal topographer equals to - 0.2, then the refraction prediction error using the 

Hoffer Q formula can be calculated as follows: Ŷ = 0.2641 + (−1.4589)(−0.2) = +0.55588. A P-value < 0.05 

indicates that the independent variable (Q-value) is significantly related to the dependent variable (the refraction 

prediction error) [13].  

 

Multiple linear regression 

The objectives and procedures of simple linear regression can be extended to more than two variables using multiple 

linear regression. In a multiple-regression model, a single dependent variable (Y) and multiple 

variables (X1, X2, … , XK) are considered to investigate the manner by which these variables in combination are related 

to Y or can be used to predict Y based on the observed values of X1, X2, … , XK [3, 6, 11, 14]. 

In another study, Cha et al. [15] included 393 eyes of 215 patients who underwent laser keratorefractive surgery. 

Among these eyes, laser-assisted in-situ keratomileusis (LASIK), photorefractive keratectomy, and small-

incision lenticule extraction was performed on 164 (n = 91 patients), 183 (n = 100 patients), and 46 (n = 25 patients). The 
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study aimed to predict the 1-year post-operative ratio of the posterior-to-anterior curvature radii of the cornea (P/A) 

using the preoperative characteristic values of refractive surgery patients [15]. For patients who underwent LASIK at 

a 4 mm zone around the corneal vertex, the relationship between post-operative P/A (Y or dependent variable) and 

mean manifest refraction spherical equivalent (MRSE) (X1), preoperative P/A (X2), posterior mean keratometry (Km) 

(X3), age (X4), and anterior Q-value value (X5) (X1, X2, X3, X4, and X5 or independent variable) was assessed using multiple 

linear regression [15]. The sample multiple-regression line using the least-squares method was Ŷ = −0.0304 +

0.0154X1 + 0.9048X2 − 0.0156X3 + 0.0004X4 + 0.0103X5. Each of the independent variables in this example 

exhibited a statistically significant relationship with the dependent variable (all P < 0.05) [15]. 

In this study [15], the unstandardized regression coefficient for the MRSE (X1) was + 0.0154. This implies that the 

post-operative P/A increases by 0.0154 for a one-unit increase in the MRSE when the other variables (X2, X3, X4, and X5) 

are fixed. Similarly, the unstandardized regression coefficient of - 0.0156 for the posterior Km (X3) indicates that the 

post-operative P/A decreases by 0.0156 for a one-unit increase in the posterior Km when the other variables (X1, X2, X4, 

and X5) are fixed. The interpretations of the other coefficients reported in this study [15] are the same . All P-values 

were < 0.05, thus indicating a statistically significant relationship between the post-operative P/A and each 

independent variable [15]. In this example, the value of - 0.0304 [15] as the intercept is not of particular interest, as 

values of 0 for each of the independent variables (X1, X2, X3, X4, or X5) are impossible; therefore, it does not have a 

specific interpretation. 

In another study, Zareei et al. [16] included 95 eyes of 95 patients, i.e., 47 with primary congenital glaucoma and 

48 normal control eyes. They investigated the effects of corneal hysteresis (CH), corneal resistance factor (CRF), and 

central corneal thickness (CCT) (independent variables) on the Goldman applanation tonometry (GIOP), Goldman 

intraocular pressure (IOPg), and corneal compensated intraocular pressure (IOPcc) (dependent variables) using 

multiple-linear-regression analysis. The two groups were matched based on age and gender. They measured the CH, 

CRF, IOPg, and IOPcc using an ocular-response analyzer; the GIOP using a Goldman applanation tonometer; and the 

CCT using ultrasonic pachymetry [16]. The multiple-linear-regression equation for patients with PCG and IOPg (the 

dependent variable) obtained using the least-squares method was Ŷ = intercept − 1.17 CH + 1.45 CRF − 0.07 CCT, 

with all P-values < 0.05 [16], thus indicating that CH, CRF, and CCT were significantly related to IOPg. In this study, 

the unstandardized regression coefficient for CH was -1.17 [16], which implies that IOPg decreases by 1.7 for a one-

unit increase in the CH when other variables, such as the CRF and CCT, are fixed. 

 

Standardized regression coefficients  

The size of the unstandardized regression coefficients depends on the units of the measured variables; thus, they are 

not comparable. For standardized regression coefficients, which are the standardized Y variable regressed on the 

standardized X variables, the intercept is zero; therefore, the regression coefficients are unitless and directly 

comparable. By comparing the magnitudes of standardized regression coefficients, researchers can determine the 

independent variables that have the strongest linear relationships with the dependent variable when other variables 

are adjusted [3, 4]. 

In another study, 20 patients with non-proliferative diabetic retinopathy, 20 patients with proliferative diabetic 

retinopathy, and 20 healthy age-, gender-matched normal controls were recruited; additionally, the mean age, 

refraction, macular thickness, intraocular pressure, and sex ratio of the study groups were comparable. The aim was 

to investigate the relationship between the best corrected visual acuity (BCVA) (dependent variable) and optical 

coherence tomography angiography (OCTA) parameters such as parafoveal and whole area superficial capillary 

plexus vessel density (SCP-VD), as well as, parafoveal and whole area deep capillary plexus vessel density (DCP-VD) 

(independent variables), using multiple-linear-regression analysis. The SCP-VD in the entire area and the DCP-VD in 

the parafoveal area indicated greater standardized regression coefficients compared with the other independent 

variables, i.e., – 1.38 and – 0.485, respectively (both P < 0.05) [17]. The predictability strength for the SCP-VD was 

determined using stepwise multiple-linear-regression analysis, which indicated that SCP-VD was the most significant 

predictor of BCVA [17]. Similar to this example [17], standardized regression coefficients should be reported together 

with unstandardized regression coefficients [17, 18]; both coefficients are available in the output of statistical software 

packages. 
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Coefficient of determination 

A typical method of assessing the fit of a model is to calculate the R2, which is based on the output of statistical software. 

R2, whose range is 0–1, is used to express the proportion of variation in the dependent variable, as explained by the 

regression model. When R2 is approximately 1, most of the variation in Y can be explained by its linear relationship 

with X. Meanwhile, an R2 of approximately 0 indicates that the variables are not strongly related or have a relationship 

other than a linear one, e.g., a quadratic relationship [10]. When additional independent variables are added to the 

model, the R2 increases automatically (adjusted for the number of independent variables included in the model). This 

adjusted coefficient of determination is denoted as R2adj and adjusts the value of R2 to account for the number of 

independent variables included in the model to avoid overestimating the effect of added independent variables to the 

model [3, 10].  

For example, a simple linear-regression analysis for the refraction prediction error using the Hoffer Q IOL power-

calculation formula and the Q-value obtained by the Placido-disk corneal topographer, R2 = 0.2630, implies that 26.30% 

of the variation in the refraction-prediction error is due to its linear relationship with the Q-value, whereas the 

remaining 73.70% is due to other potential factors [13].  

In an example of the multiple linear regression for P/A and the preoperative characteristics of refractive surgery 

patients after LASIK surgery, an adjusted R2 of 0.944 for a 4 mm zone around the corneal vertex implies that 94.4% of 

the variation in the post-operative P/A in eyes that underwent LASIK surgery is due to its linear relationship with the 

MRSE (X1), preoperative P/A (X2), posterior Km (X3), age (X4), and anterior Q-value (X5) with adjustment to the number 

of independent variables, whereas the remaining 0.6% is due to other potential factors [15]. The high R2 value in this 

example [15] indicates that the model with five variables (X1, X2, X3, X4, and X5) provides a better fit than the model 

with only the intercept term. 

  

Method for variable selection  

Various methods are used to enter independent variables into the regression model to identify a better combination of 

variables. Enter, forward, backward, and stepwise selection are among the most common methods. In the “enter 

method,” all independent variables are entered into the regression model at once. The goal of this method is to 

determine the effect of each independent variable (X) on a dependent variable (Y) [4, 19]. 

In forward, backward, and stepwise selection methods, independent variables are added or removed in several 

stages until the remaining variables contribute to the regression fit. Investigators use these methods when numerous 

independent variables render the interpretability of the final model challenging, and they tend to report an optimal 

model with the least-significant independent variables [4]. For example, in a study investigating the correlations 

between OCTA parameters and the BCVA of patients with diabetic retinopathy, stepwise multiple-linear-regression 

analysis was performed [17].  

 

Assumptions in linear-regression analysis 

In simple linear regression, observing a scatter plot allows one to identify the suitability of the model for representing 

the relationship between two variables [10]. In multiple-regression analysis, assumptions are introduced based on 

residuals [10] (the difference between the predicted Y [Ŷ] and observed Y, i.e., ei = Yi − Ŷi).  

 

1. Normality assumptions 

Normality can be assessed from stem and leaf or histogram plots of residuals; if the plot is bell shaped, then the 

normality assumption is satisfied. Additionally, if the normal quantile plot of the residuals is a straight line, then the 

normality assumption is satisfied. Moreover, the Shapiro–Wilk statistic can assume values between 0 and 1, and the 

null hypothesis for this test is that the residual is from a normally distributed population; therefore, P > 0.05 indicates 

that normality is satisfied [4, 10]. In studies with large sample sizes, i.e., the number of observations per variable 

exceeds 10, violations of the normality assumption do not affect the outcomes [20]. 

2. Equality of variance assumptions 

The assumption of equality of variances is assessed using a plot of residuals versus independent variables or a 

plot of residuals versus fitted values. If the assumption is satisfied, then an apparent pattern should not appear, i.e., a 

random pattern will be observed and the variability of the residuals will be constant [4, 10] (Figure 1). 
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Figure 1. Fictitious example dataset: (left) Histogram of distribution of residuals of linear regression for 

investigating intraocular pressure (IOP) and central corneal thickness (CCT) relationship; (right) scatter plot of 

residuals and CCT values. 

 

 

3. Linearity assumptions 

For k independent variables, k plots of residuals or standardized residuals versus independent variables were 

drawn; if linearity exists between Y and XK, then be no apparent pattern should appear in the points. In other words, 

the slope of the line drawn through the points should be approximately zero [10, 19]. 

 

4. Collinearity assumptions 

Collinearity refers to the correlation between independent variables when many independent variables are 

included in a regression model. The estimation of standard errors is challenging when the independent variables are 

highly correlated. For assessing collinearity, the variance inflation factor (VIF) or tolerance (inverse of the VIF) can be 

computed [4, 21]. The lower the tolerance, the more likely is multicollinearity to exist among the variables. The 

independent variables are not correlated if the VIF equals to 1. However, a VIF value between 1 and 5 implies that the 

variables are moderately correlated. The challenging case is when the VIF value is between 5 and 10, as it indicates 

highly correlated variables. If VIF ≥ 5 to 10, then multi-collinearity exists among the predictors in the model. VIF > 10 

implies that the regression coefficients are weakly predictable in the presence of multi-collinearity [21]. 

 

Dummy variables  

When nominal independent variables such as sex and race, or ordinal variables with unequal distance between levels 

of the category, such as degree of severity (low, medium, and high), are entered into the regression model, the 

investigator is required to transform an independent variable into a set of dummy variables. For an independent 

variable with level “a,” “a-1” dummy variables can be defined [4, 6]. For example, for a variable with three severity 

levels (low, medium, and high), two dummy variables (D1 and D2) are created as follows: 

 

 

D1 = {
1           if severity is low 
0                       otherwise

                       D2 = {
1         if severity is medium
0                              otherwise

 

 

The “high” severity level is considered as a reference or the baseline category [6]. The reference category should 

be selected based on the expert opinion of the clinical investigator. 
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Sample size in regression  

For sample-size calculation with power analysis, we are required to know the desirable power, the results of one- or 

two-sided tests, the common variance, the slope for detection, and the number of independent variables [22, 23]. The 

greater the number of independent variables, the larger is the sample size. Generally, 10 or even up to 20 participants 

are recruited for every independent variable [5, 10]. 

 

Common mistakes in reporting linear-regression analysis 

The common mistakes in reporting a regression model are as follows: 

1. Several assumptions must be verified before considering a linear-regression model [5]; however, they are 

typically not verified. If these assumptions are not satisfied, then a nonlinear regression or other statistical 

analyses should be performed.  

2. However, the model may not be compatible with several variables. When a dependent variable and multiple 

independent variables are included in a linear-regression model, multiple regression is appropriate but not 

multivariate regression [4, 10]. This is because the multivariate model contains more than one dependent 

variable [10]. 

3. Standardized and unstandardized regression coefficients are recommended to be reported together [17, 18]; 

however, this is not presented in some publications. 

4. Variable transformations are not used sensibly [10]. When independent variables are nominal or ordinal with 

unequal distances between categories, the dummy variables should be defined and entered into a linear-

regression model [4, 6].  

5. An expert statistician is not assigned from the development of the research idea until the final revision of the 

manuscript is published. Appointing an expert statistician as an integrated team member is a judicious 

approach for using mathematical principles optimally and offers scholarly insights into the benefits of science 

development [24, 25]. 

 

Recommended checklist for editors and peer reviewers 

The following is a comprehensive checklist to ensure that the linear-regression model is conducted appropriately and 

yields valid results: 

1. Clarity of the title, aim, and research questions  

A well-formulated research question, title, and aim of the study can guide the selection of variables and the 

interpretation of outcomes [10]. 

2. Data acquisition  

Verify the definition of dependent and independent variables while verifying for missing values, outliers, and 

inconsistencies [2-7]. Ensure that data are obtained systematically to minimize potential bias. In the presence of a 

nominal or ordinal independent variable, determine the appropriate transformation [4, 6]. Verify the appropriateness 

of the sample size based on the number of independent variables included [5, 10, 22, 23].  

3. Model selection  

The simple linear regression model should be chosenif the relationship between a single dependent and independent 

variable is tested. However, multiple linear regression is suitable if a single dependent variable and multiple 

independent variables exist to investigate the relationship between these variables in combination to the dependent 

variable [3, 5, 6, 11, 14]. 

4. Assumptions  

Linear regression relies on several assumptions, including normality, equality of variance, linearity, and collinearity, 

which must be satisfied before proceeding with the analysis [4, 10, 19, 20]. 

5. Reporting and interpretation 

The report of the findings should be clear and comprehensive, and the tables, plots, and diagrams must be consistent. 

Standardized and unstandardized regression coefficients should be reported simultaneously [17, 18] at a relevant 

significance level [10]. When additional independent variables are added to the model, the R2adj must be reported [3, 

10]. The interpretation of the results should be consistent with the context of the research question. The first step is to 

verify the significance of the correlation and then consider the R2 for the strength of this significant correlation. Verify 

if the results are overinterpreted, particularly in correlational contexts, as the results should be based on the R2 [10].  
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CONCLUSIONS 

The linear-regression model is a commonly used statistical method in research, including research in vision sciences. 

This method can provide valuable insights when conducted with rigor and attention to detail. The appropriate 

selection of the regression model and the presence of model variables are key measures that must be established and 

controlled strictly to achieve valid statistical results. The results may be inaccurate if an appropriate regression model 

is not established. 

ETHICAL DECLARATIONS 

Ethical approval: Not applicable. 

Conflict of interest: None. 

 

FUNDING 

This review article has been funded by IVORC Academic Foundation, Texas, United States. 

ACKNOWLEDGMENTS 

None. 

REFERENCES  

1. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of 

models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003 Oct 20;3:21. doi: 10.1186/1471-2288-3-

21. PMID: 14567763; PMCID: PMC521200. 

2. Stephenson J, Bunce C, Doré CJ, Freemantle N; Ophthalmic Statistics Group. Ophthalmic statistics note 11: logistic 

regression. Br J Ophthalmol. 2016 Dec;100(12):1594-1595. doi: 10.1136/bjophthalmol-2016-309223. Epub 2016 Nov 3. 

PMID: 27811279. 

3. Darlington RB, Hayes AF (2016). 'Regression analysis and linear models: Concepts, applications, and implementation'. 

(pp: 1-155). Guilford Publications. ISBN 9781462521135. 

4. Montgomery DC, Peck EA, Vining GG (2021). 'Introduction to linear regression analysis'. (pp: 1-114). John Wiley & 

Sons. ISBN: 978-1-119-57872-7.  

5. Zapf A, Wiessner C, König IR. Regression Analyses and Their Particularities in Observational Studies. Dtsch Arztebl 

Int. 2024 Feb 23;121(4):128-134. doi: 10.3238/arztebl.m2023.0278. PMID: 38231741; PMCID: PMC11019761. 

6. Kasza J, Wolfe R. Interpretation of commonly used statistical regression models. Respirology. 2014 Jan;19(1):14-21. doi: 

10.1111/resp.12221. PMID: 24372634.   

7. Iqbal M, Elmassry A, Elgharieb M, Said O, Saeed A, Ibrahim T, Kotb A, Abdelhalim M, Shoughy S, Elgazzar A, 

Shamselden H, Hammour A, Eid M, Elzembely H, Abdelaziz K. Visual, ocular surface, and extraocular diagnostic 

criteria for determining the prevalence of computer vision syndrome: a cross-sectional smart-survey-based study. Med 

Hypothesis Discov Innov Ophthalmol. 2024 Jul 1;13(1):1-15. doi: 10.51329/mehdiophthal1489. PMID: 38978825; PMCID: 

PMC11227667. 

8. Lotfy NM, Shafik HM, Nassief M. Risk factor assessment of digital eye strain during the COVID-19 pandemic: a cross-

sectional survey. Med Hypothesis Discov Innov Ophthalmol. 2022 Dec 3;11(3):119-128. doi: 

10.51329/mehdiophthal1455. PMID: 37641641; PMCID: PMC10445314. 

9. Keeling KB, Pavur RJ. A comparative study of the reliability of nine statistical software packages. Computational 

Statistics & Data Analysis. 2007 May 1;51(8):3811-31. doi: 10.1016/j.csda.2006.02.013. 

10. Baždarić K, Šverko D, Salarić I, Martinović A, Lucijanić M. The ABC of linear regression analysis: What every author 

and editor should know. European science editing. 2021;47:1-9. e63780. doi: 10.3897/ese.2021.e63780. 

11. Bali J, Bali O. Artificial intelligence in ophthalmology and healthcare: An updated review of the techniques in use. 

Indian J Ophthalmol. 2021 Jan;69(1):8-13. doi: 10.4103/ijo.IJO_1848_19. PMID: 33323564; PMCID: PMC7926114.  

12. Savini G, Hoffer KJ, Barboni P, Schiano Lomoriello D, Ducoli P. Corneal Asphericity and IOL Power Calculation in 

Eyes With Aspherical IOLs. J Refract Surg. 2017 Jul 1;33(7):476-481. doi: 10.3928/1081597X-20170504-05. PMID: 

28681907.  

13. Savini G, Hoffer KJ, Barboni P. Influence of corneal asphericity on the refractive outcome of intraocular lens 

implantation in cataract surgery. J Cataract Refract Surg. 2015 Apr;41(4):785-9. doi: 10.1016/j.jcrs.2014.07.035. PMID: 

25840302.  

14. Maulud D, Abdulazeez AM. A review on linear regression comprehensive in machine learning. Journal of Applied 

Science and Technology Trends. 2020 Dec 31;1(2):140-7. doi: 10.38094/jastt1457. 

15. Cha DS, Moshirfar M, Herron MS, Santos JM, Hoopes PC. Prediction of Posterior-to-Anterior Corneal Curvature Radii 

Ratio in Myopic Patients after LASIK, SMILE, and PRK Using Multivariate Regression Analysis. J Clin Med. 2023 Jul 

7;12(13):4536. doi: 10.3390/jcm12134536. PMID: 37445571; PMCID: PMC10342661.  



 Application and interpretation of linear-regression analysis 

 
 

16. Zareei A, Razeghinejad MR, Salouti R. Corneal Biomechanical Properties and Thickness in Primary Congenital 

Glaucoma and Normal Eyes: A Comparative Study. Med Hypothesis Discov Innov Ophthalmol. 2018 Summer;7(2):68-

72. PMID: 30250855; PMCID: PMC6146241. 

17. Abdelshafy M, Abdelshafy A. Correlations Between Optical Coherence Tomography Angiography Parameters and the 

Visual Acuity in Patients with Diabetic Retinopathy. Clin Ophthalmol. 2020 Apr 23;14:1107-1115. doi: 

10.2147/OPTH.S248881. PMID: 32425497; PMCID: PMC7186882. 

18. Grace JB, Bollen KA. Interpreting the results from multiple regression and structural equation models. Bulletin of the 

Ecological Society of America. 2005 Oct 1;86(4):283-95. doi: 10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2. 

19. Mertler CA, Vannatta RA, LaVenia KN (2021). 'Advanced and multivariate statistical methods: Practical application 

and interpretation'. (pp: 176-210). Routledge. doi: 10.4324/9781003047223. 

20. Schmidt AF, Finan C. Linear regression and the normality assumption. J Clin Epidemiol. 2018 Jun;98:146-151. doi: 

10.1016/j.jclinepi.2017.12.006. Epub 2017 Dec 16. PMID: 29258908. 

21. Shrestha N. Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics. 

2020 Jun 16;8(2):39-42. doi:10.12691/ajams-8-2-1. 

22. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PLoS One. 2020 Feb 

21;15(2):e0229345. doi: 10.1371/journal.pone.0229345. PMID: 32084211; PMCID: PMC7034864. 

23. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical 

approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb). 2021 Feb 15;31(1):010502. doi: 

10.11613/BM.2021.010502. Epub 2020 Dec 15. PMID: 33380887; PMCID: PMC7745163. 

24. Heidary F, Gharebaghi R. COVID-19 impact on research and publication ethics. Med Hypothesis Discov Innov 

Ophthalmol. 2021 May 31;10(1):1-4. doi: 10.51329/mehdiophthal1414. PMID: 37641621; PMCID: PMC10460218. 

25. Brownstein NC, Louis TA, O'Hagan A, Pendergast J. The Role of Expert Judgment in Statistical Inference and Evidence-

Based Decision-Making. Am Stat. 2019 Mar 20;73(1):56-68. doi: 10.1080/00031305.2018.1529623. PMID: 31057338; 

PMCID: PMC6474725. 


	ABSTRACT
	KEYWORDS
	INTRODUCTION
	METHODS
	CONCLUSIONS
	ETHICAL DECLARATIONS
	Conflict of interest
	Ethical approval

	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

