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Simple Summary: Small bowel adenocarcinoma (SBA) is a rare malignancy with worse prognosis
compared to other cancers of the gastrointestinal tract. Over 90% of SBA tumors harbor targetable
genetic alterations. Molecular analysis to identify these alterations, using tissue- or blood-based next
generation sequencing, is critical and may impact treatment decisions. The aim of our review is to
highlight molecular drivers of SBA tumorigenesis. We highlight key mutational and transcriptomic
differences between SBA and colorectal cancer, from which much of the clinical management of SBA is
currently extrapolated. We provide evidence that SBA is a molecularly unique intestinal malignancy,
with distinct genomic alterations predictive of response to targeted therapy and immunotherapy.

Abstract: Small bowel adenocarcinoma (SBA) is a rare malignancy, with lower incidence, later stage at
diagnosis, and poor overall prognosis compared to other cancers of the gastrointestinal tract. Owing to
the rarity of the disease along with the paucity of high-quality tissue samples and preclinical models,
little is known about the molecular alterations characteristic of SBA. This is reflected by the fact
that the clinical management of SBA is primarily extrapolated from colorectal cancer (CRC). Recent
advances in genomic profiling have highlighted key differences between these tumors, establishing
SBA as a molecularly unique intestinal cancer. Moreover, comprehensive molecular analysis has
identified a relatively high incidence of potentially targetable genomic alterations in SBA, predictive
of response to targeted and immunotherapies. Further advances in our knowledge of the mutational
and transcriptomic landscape of SBA, guided by an increased understanding of the molecular
drivers of SBA, will provide opportunities to develop novel diagnostic tools and personalized
therapeutic strategies.

Keywords: small bowel adenocarcinoma; BRAF alteration; ERBB2/HER2 alteration; microsatellite
instability (MSI); tumor mutational burden (TMB); colorectal cancer (CRC); gastric cancer (GC)

1. Introduction

Small intestinal cancer is a rare cancer [1,2], with few prospective studies published
to date to guide clinical management. Moreover, owing to its rarity, clinical trial options
for those newly diagnosed with small bowel cancer are limited, consequently leading to
a relative dearth of diagnostic, predictive, and prognostic biomarkers [3]. Although the
small intestine makes up 75% of the digestive tract, only 3% of total digestive cancers arise
from the small bowel [4,5]. In 2021, 11,390 new cases of small bowel cancer were estimated,
with 2100 cancer-related deaths [5]. Amongst the primary tumors, approximately 60%
arise in the duodenum, 25–29% arise in the jejunum, and 10–13% arise in the ileum [2].
When subdivided by histology, carcinoid tumors account for 39–45% of all small intestinal
cancers, whereas adenocarcinoma constitutes 31–40% of cases [2].

Interestingly, despite constituting over 90% of the surface area of the gastrointestinal
tract, the incidence of SBA is about 50 to 100-fold less than CRC [5–7]. Rapid turnover
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time of small intestinal cells not allowing for the accumulation of genetic defects and rapid
transit time through a dilute and alkaline environment with greater lymphoid infiltrate
have both been proposed as potential explanations for the relative rarity of SBA [1,8–12].
The etiology of SBA remains largely unknown. Small retrospective analyses have identi-
fied cigarette smoking and alcohol as potential environmental risk factors [13,14]; other
studies have suggested an association between high sugar or high red meat intake and
the development of SBA [4,15–18]. Several genetic cancer syndromes, namely hereditary
nonpolyposis colorectal carcinoma (HNPCC), familial adenomatous polyposis (FAP), and
Peutz-Jeghers syndrome, can predispose individuals to SBA development. A number of
registry studies and case series have additionally implicated proinflammatory conditions,
such as inflammatory bowel disease (IBD) and celiac disease, in SBA carcinogenesis [19–22].

Amongst patients diagnosed with SBA, intermittent abdominal pain remains the most
common presenting symptom [23,24]. Whether due to such a non-specific clinical presenta-
tion, or due to delay or difficulty with imaging the small bowel, SBA tends to be diagnosed
at a later stage compared to CRC, with most patients presenting with lymph node involve-
ment or distant metastasis [8,25,26]. Despite these differences and being associated with
inferior overall outcomes, SBA is currently treated in a similar manner to CRC [1,2]. The
National Comprehensive Cancer Network (NCCN) recently published the first guidelines
specific for SBA [27]. While the rarity of this disease and paucity of prospective studies
published to date are partially to blame, the lack of molecular knowledge to help guide
clinical management has represented a major roadblock. Recent advances in genomic
profiling have highlighted differences between SBA and other gastrointestinal neoplasms,
establishing SBA as a molecularly unique intestinal cancer. Moreover, comprehensive
genomic analysis has identified genetic alterations, predictive of response to targeted and
immunotherapies and portentous for future novel pathways for treatment.

2. Molecular Characteristics

Genomic profiling studies have identified a number of critical molecular drivers in
the pathogenesis of SBA (Figure 1A), including E-cadherin, KRAS, TP53, and SMAD4,
among others [3,8,28]. An 18 cancer-related gene panel in 24 SBA cases identified TP53
(54%), KRAS (42%), and APC (11%) genomic alterations as most common [29]. In another
83 patients, a 46-gene panel study reported KRAS (43%), TP53 (41%), APC (13%), SMAD4
(10%), PIK3CA (8%), and ERBB2/HER2 (6%) as the most common genomic alterations [30].
A pivotal study of 7559 patients undergoing genomic sequencing on a 236 or 315 cancer-
related gene panel demonstrated that the most common genomic alterations in SBA were
TP53 (58.4%), KRAS (53.6%), APC (26.8%), SMAD4 (17.4%), PIK3CA (16.1%), CDKN2A
(14.5%), and ARIDIA (12.3%) [1]. Of the 317 SBA tumors profiled in this study, 191 samples
were from the primary small bowel, whereas 126 were from metastatic sites—similar rates
of genomic alterations per gene were observed in primary vs. metastatic biopsies tested,
with a median of 5 genetic alterations per SBA tumor tested [1].

SBA has also been associated with a higher likelihood of microsatellite instability
(MSI) and high tumor mutational burden (TMB) [30,31]. In the aforementioned largest SBA
genomic profiling study to date, 7.6% of SBA tumors were MSI-high, and 9.5% had high
TMB [1]. Moreover, there appears to be a higher rate of mismatch repair (MMR) deficiency
in early-stage SBA tumors, up to 23% as shown in a recent study of 63 SBA patients,
which included a large cohort of patients with early-stage disease [32]. Over half of the
patients with MMR deficient tumors in this study were ultimately found to have underlying
Lynch syndrome, an autosomal dominant disorder with germline mutations in DNA MMR
genes. Similarly, those with germline inactivation of the APC gene, associated with familial
adenomatous polyposis (FAP), have a 4.5% lifetime risk of developing SBA [33–35], while
those with an inherited STK11 mutation, resulting in Peutz-Jeghers syndrome (PJS), have a
relative risk of 520 for developing SBA [36].
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Figure 1. Frequency of genomic alterations in Small Bowel Adenocarcinoma (SBA), Colorectal Cancer
(CRC), and Gastric Carcinoma (GC) [1]. (A) Genomic alterations noted in >7% of SBA patients, with
corresponding genomic alteration frequencies in CRC and GC patients [1]. (B) BRAF (above) and
ERBB2/HER2 (below) alteration frequencies in SBA, CRC, and GC cohorts, by type of alteration [1].

Perhaps the finding of greatest clinical relevance through comprehensive genomic
analyses is that over 90% of SBAs harbor targetable genetic alterations [1]. Of these po-
tentially actionable alterations, PIK3CA (16.1%), ERBB2/HER2 (9.5%), BRAF (9.1%), ATM
(7.6%), FBXW7 (6.9%), and ERBB3 (6.3%) have been most commonly detected, while MEK1
mutations (2.8%), EGFR alterations (2.5%), and activating tyrosine kinase rearrangements
[ALK, ROS1, and FGFR2] (0.9%) were less frequently seen in SBA samples [1]. For such a
rare malignancy without current FDA-approved treatments and limited clinical manage-
ment guidelines, gaining insight into these unique molecular characteristics of SBA may
provide clues about identifying matched targeted therapies for each genomic alteration.

2.1. Comparison with Neighboring Intestinal Cancers

Due to the anatomic proximity, the majority of SBA treatment paradigms have been
extrapolated from CRC [1,2]. A study of 85 patients with adenocarcinomas originating
from the stomach, small bowel, and colorectum compared chromosomal copy number
alterations by primary tumor site, ultimately demonstrating greater overlap between
SBA and CRC copy number profiles than between SBA and gastric adenocarcinoma copy
number profiles [37].

Despite clustering with CRC and, to a less extent, gastric cancer, SBA remains a unique
molecular entity with distinct differences (Figure 2A,C). A recent comparative analysis
highlighted genomic alteration differences between SBA and its neighboring cancers as
detected from a 236 or 315 cancer-related gene panel [1]. Of the top 20 most commonly
altered genes in this study, 12 genes were statistically different between SBA and CRC, and
12 genes were statistically different between SBA and gastric adenocarcinoma [1].
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When comparing between SBA and CRC, the most notable differences were seen in
APC, TP53, and CDKN2A mutations [1]. APC alteration rates represent one of the most
fundamental genomic differences between SBA and CRC. APC gene mutations were far less
prominent in SBA (~30% incidence) compared to CRC (~70% incidence). Multiple smaller
studies show an even greater variation in frequency of APC gene mutations between
SBA and CRC, demonstrating 7–13% reported rate in sporadic SBA as compared to >80%
reported rate in CRC [29,30,38–41]. However, despite having a lower APC mutation rate
as compared to CRC, SBA tumors have higher overall total mutation rates, with a few
case series’ reporting a greater number of atypical BRAF mutations and ERBB2 point
mutations in SBA [1,30,31,42]. Albeit rare in gastric cancers, BRAF mutations were seen at
similar rates between SBA and CRC; however, unlike CRC where the majority of BRAF
alterations were V600E mutations, most BRAF-altered SBAs harbored inactivating non-
V600E mutations [1,2,31]. Moreover, while ERBB2 alterations were largely amplifications
in both gastric and colorectal cancers, ERBB2 point mutations were the most frequent type
of alterations in SBA [1,2,30,42].

When comparing molecular alteration differences between SBA and gastric carcinoma,
variation in the APC mutation rate was also striking, with one study demonstrating 27%
incidence of APC mutations in SBA as compared to just 8% in gastric adenocarcinoma [1].
The incidence of KRAS and SMAD4 genetic alterations, which occurred at similar rates
with SBA and CRC, was also much higher in SBA with rates of 54% and 17% respectively in
one study as compared to 14% and 5% incidence in gastric adenocarcinoma [1]. Meanwhile,
TP53 and CDKN2A gene mutations, which occurred more frequently in SBA than CRC,
were seen at similar rates between SBA and gastric adenocarcinoma [1].

2.2. Small Bowel Subsite Comparison

The small intestine is anatomically subdivided into the duodenum, jejunum, and
ileum. While primary tumors of the small intestine may originate from any of these sub-
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sites, they are often grouped together owing to their relatively lower incidence compared
to other gastrointestinal tumors. Despite this grouping, however, key differences exist
(Figure 2B). Histologically, adenocarcinomas represent approximately 59% of duodenal
cancers, while carcinoid tumors represent 57% of ileal cancers [2,3]. Moreover, patients
with duodenal adenocarcinoma have a higher rate of locoregional failure following cu-
rative resection compared to patients with jejunal and ileal adenocarcinoma, suggesting
local anatomic differences and subsite-specific molecular alterations driving worse patient
outcomes [43]. Recent studies have sought to provide an understanding of differences in
molecular alterations across various small bowel subsites.

Prospective genomic profiling of 317 small bowel adenocarcinomas demonstrated
similar molecular alteration rates across the small bowel, with no statistical differences seen
amongst TP53, KRAS, APC, SMAD4, and PIK3CA genes, which were the top five most
commonly altered genes [1]. However, when comparing duodenal adenocarcinomas to
cancers of other small bowel sites, both CDKN2A (18% vs. 10%) and ERBB2 (13% vs. 4%)
alteration rates were higher in duodenal adenocarcinomas [1]. Another study of 83 patients
confirmed these findings, reporting increased ERBB2 mutation rate in duodenal adenocar-
cinomas (15.8%) compared to jejunal and ileal adenocarcinomas (2.2%) [30]. Conversely,
duodenal adenocarcinomas had fewer BRAF (6.3% vs. 12.5%), PTEN (3% vs. 9%), and
PIK3R1 (1% vs. 7.5%) gene alterations, as well as lower MSI-high rates (7.3% vs. 9%) and
lower overall TMB (8.8 mutations/Mb vs. 11.3 mutations/Mb) compared to other small
bowel subsites [1]. Altogether, these findings support the notion of molecular heterogeneity
not only between SBA and neighboring adenocarcinomas of the stomach and colorectum,
but also across different small bowel subsites.

2.3. Comparison across SBA Etiologies

Several hereditary cancer syndromes and proinflammatory conditions have been
implicated as risk factors for SBA. Hereditary nonpolyposis colorectal cancer (HNPCC), or
Lynch syndrome, is an autosomal dominant germline mutation in DNA mismatch repair
(MMR) genes, including MLH1, MSH2, MSH6, PMS2, EPCAM, and PMS1, associated with
a 1% lifetime risk of developing SBA [44–47]. A molecular analysis study of 63 SBA tumors
showed MMR deficiency (dMMR) in 14 tumors with confirmed Lynch syndrome in 9 of
14 cases, suggesting that the higher frequency of dMMR seen in SBA as compared to CRC
may be explained by a higher frequency of Lynch syndrome in SBA patients, and that the
etiology for MSI-high appears to be more commonly related to Lynch syndrome in SBA as
opposed to MLH-1 promoter hypermethylation in CRCs [32].

Germline inactivation of the APC gene can result in the formation of hundreds of
colonic polyps, a condition known as familial adenomatous polyposis (FAP). Although it is
more typically associated with early-onset CRC, individuals with FAP have a 4.5% lifetime
risk of developing SBA [33–35]. Once FAP patients undergo colectomy for risk reduction of
CRC, surveillance for SBA becomes increasingly important.

A small subset of patients who develop SBA have underlying inflammatory bowel dis-
ease (IBD), particularly Crohn’s disease, or celiac disease. One study showed that patients
with Crohn’s disease carried a cumulative 0.2% risk at 10 years and 2.2% at 25 years of
developing SBA [48], translating into a 60-fold increased risk [49,50]. Interestingly, APC mu-
tations appear to be exclusively noted in non IBD-associated SBA patients [1]. Instead, IBD-
associated SBA has a higher frequency of CDKN2A/B, CASP8, and ATRX mutations [1], as
well as an increased predilection for the ileum and significantly shorter overall survival as
demonstrated in a 37 IBD-associated SBA patient study [51]. Meanwhile, several registry
studies and case series’ have conferred a 34-fold increased risk of developing SBA amongst
patients with celiac disease [19–22]. Studies of celiac disease-related SBA have demon-
strated particularly high rates of microsatellite instability, ranging from 50–73% [31,52,53].
In one study of 15 patients with celiac disease-associated SBA, 10 patients had MSI-high
tumors. Of note, each of these 10 cases had MLH-1 promoter hypermethylation, implicating
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a causal role of hypermethylation in celiac disease-associated SBA, and suggesting the
potential for incorporating immunotherapy in its management [52].

3. Potentially Targetable Genomic Alterations

Molecular characterization efforts have uncovered numerous targetable alterations,
as well as higher rates of MSI and increased TMB in patients with SBA. In one large study
including 317 SBA patients, potentially targetable genomic alterations were seen in greater
than 90% of cases [1]. These targetable alterations provide additional therapeutic options
and suggest an increased role for the use of targeted therapy and immunotherapy in the
future management of SBA (Figure 3).
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the treatment plan for unresectable/metastatic SBA patients.

3.1. BRAF

In addition to key differences in the genomic alteration patterns amongst the various
small bowel subsites and between neighboring intestinal cancers, the type of molecular
alterations seen in SBA add to its uniqueness. In the previously mentioned comparative
analysis of 317 SBA tumors and 6353 colorectal tumors, BRAF alterations were identified at
similar rates (9.1% of SBA cases vs. 7.6% of CRC cases) [1]. However, there was significant
variation in the type of alteration (Figure 1B). While 73% of BRAF mutations in CRC were
the canonical BRAF V600E (class I, RAS-independent), this codon was infrequently altered
in SBA, representing just 10.3% of BRAF alterations [1]. Another analysis of 106 SBA cases
identified 11 BRAF mutated tumors but none of these were BRAF V600E mutated [31]. In-
stead, most BRAF mutations seen in SBA patients appear to be inactivating mutations (class
III, RAS-dependent) [1]. Of the 29 BRAF-mutated SBAs identified in one study, 16 tumors
were class III BRAF mutated, associated with impairment of kinase function [1]; mean-
while, just 3 of 29 BRAF-mutated SBA tumors had class I BRAF V600E mutations, while
another seven were class II RAS-independent BRAF activating non-V600E mutations [1].
Interestingly, amongst SBA tumors specified as duodenal adenocarcinoma, there appears
to be lower frequency of BRAF alterations compared to jejunal or ileal SBAs [1]. Feedback
reactivation of EGFR that in turn activates MAPK via CRAF and RAS is a mechanism of
resistance to BRAF inhibitors in CRC, and it is through this mechanism that most of these
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atypical BRAF mutations are still felt to be oncogenic, and as such potentially targetable
using pan-RAF or MEK inhibition [54] (Figure 3).

3.2. ERBB2/HER2

In addition to atypical BRAF mutations, ERBB2/HER2 genomic alterations are also
different when comparing duodenal SBAs to jejunal/ileal SBAs, and when comparing
SBAs to gastric and colorectal adenocarcinomas (Figure 1B). Amongst SBA tumors, those
identified as duodenal adenocarcinomas harbor significantly increased ERBB2/HER2 alter-
ation frequency (p < 0.01) compared to other SBA tumors [1]. In one study, 12% of all SBAs
(10 of 83 cases) harbored ERBB2/HER2 alterations [30]. Another study of 317 SBA patients
identified a similar ERBB2/HER2 alteration rate of 9.5% [1]. In this study, ERBB2/HER2
alteration rates were similar to the gastric cancer cohort (9.5% genomic alteration rate),
however 69% of these alterations were amplifications in gastric cancer, as opposed to just
23% in SBAs [1]. Additionally, colorectal adenocarcinomas had a decreased ERBB2/HER2
alteration rate of 5.1%, but had a similar percentage (66%) of ERBB2 amplifications as
gastric adenocarcinomas [1]. Meanwhile, although ERBB2 alterations are present in SBAs,
these alterations appear to be primarily point mutations. Of the 317 SBA tumors analyzed
in the one study, 26 cases (8.2% of the total) had activating ERBB2 mutations, while 7 cases
(2.2% of the total) had ERBB2 amplifications, and three cases had both ERBB2 amplification
and point mutation [1]. In three other smaller cohorts, 70% to 76% of the ERBB2/HER2
genomic alterations identified were reported as mutations [30,31,42]. Preclinical in-vitro
and in-vivo models of SBA with ERBB2 kinase activating mutations have been developed
to test for sensitivity to ERBB2 tyrosine kinase inhibitors, with reduction in tumor growth
up to 59% after dacomitinib treatment [42]. These findings have important therapeutic
implications for SBA patients harboring ERBB2/HER2 alterations (Figure 3).

3.3. Microsatellite Instability and Tumor Mutational Burden

A number of studies have reported higher rates of microsatellite instability-high (MSI-
H) or dMMR in SBAs, as compared to neighboring gastrointestinal tract tumors. In an
83-patient case series, 21.6% of patients had MSI-H/dMMR tumors [30], while in another
106-patient case series, 14.2% of patients had MSI-H/dMMR tumors [31]. While higher
rates of MSI-H/dMMR SBAs are particularly seen in those with earlier stage disease [32],
even studies with primarily advanced-stage SBA patients showed increased rates of mi-
crosatellite instability as compared to CRC and gastric cancer. In the largest-scale genomic
comparison of SBA to gastric and colorectal cancers to date, of the 170 primarily advanced-
stage SBA tumors for which MSI status was assessed, 13 (7.6%) tumors were MSI-H, as
opposed to 4% and 3.9% rates respectively in the colorectal cancer and gastric cancer
cohorts [1]. All 13 SBA MSI-H cases had at least one mismatch repair gene inactivating
alteration, with 10 of 13 cases involving MSH2, MSH6, or MLH1 gene loss of function [1].
Of note, MSH6 genomic alterations were 2-fold greater in SBA as compared to gastric
cancer or CRC, with all three cancer cohorts demonstrating very rare POLE alterations [1].

Furthermore, 9.5% of the 317 SBA tumors analyzed had high TMB, defined as greater
than 20 mutations per megabase (Mb), as compared to just 4.3% of CRC cases and 5.6% of
gastric cancer cases [1]. All MSI-H cases in each of the three cohorts had TMB greater than
10 mutations/Mb [1]. Interestingly however, while microsatellite stable (MSS) SBA tumors
generally tended to have a much lower TMB, with two studies reporting median TMB of
4.2 and 4.3 mutations/Mb [1,31], there were a subset of SBA MSS tumors which also had a
high TMB [1]. Amongst SBAs, albeit not statistically significant, jejunal/ileal adenocarcino-
mas tend to have higher MSI-H rates than duodenal SBAs, with a correspondingly higher
overall TMB (11.3 mutations/Mb as compared to 8.8 mutations/Mb in duodenal SBAs), a
result that was statistically significant [1].

Anti-programmed cell death 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) checkpoint inhibitors have known efficacy in MSI-H cancers, as well as
TMB-high cancers [55,56]. Given the greater incidence of both MSI-H SBAs and TMB-high
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SBAs than their gastric or colorectal cancer counterparts, routine assessment for MSI-
H/dMMR should be conducted in all SBAs and may ultimately prove critical to predicting
response to immune checkpoint therapies (Figure 3).

3.4. EGFR

In one study, SBAs and CRCs had similar 2.5% rates of EGFR alterations, while a 4%
EGFR alteration rate was seen in the gastric cancer cohort [1]. Of these EGFR alterations,
amplification of EGFR was less frequent in SBA and CRC (1.6% of cases each) as compared
to gastric cancer (3.4% of cases) [1]. The role for EGFR therapy in RAS wild-type CRC has
been widely investigated, with drugs such as cetuximab and panitumumab gaining FDA
approval [57]. The role for anti-EGFR directed therapy in RAS wild-type SBA is less clear.
A number of case reports have suggested clinical benefit with EGFR directed therapy, either
alone or in combination with chemotherapy [58–60], whereas one clinical trial involving
9 SBA patients receiving single agent panitumumab demonstrated no responses [61]. The
uncertain benefit of anti-EGFR agents in SBA, as well as the differential benefit seen with
this therapy in left-sided versus right-sided CRC, has been hypothesized to be related to
the embryological and anatomic development of the gastrointestinal tract—the midgut
ultimately develops into much of the small intestine as well as the proximal colon, while
the more distal, left-sided colon is derived from the hindgut.

3.5. Other Targetable Genomic Alterations

Targeted alterations in several additional genes, including PIK3CA, MEK1, APC and
other wingless integration site family member (WNT) pathway genes, and receptor tyrosine
kinase fusions have also been described in SBA. PIK3CA represents the most common
potentially targetable genomic alteration in SBA, occurring in 51 of 317 (16.1%) patients
in one study [1]. Of these 51 patients, 21 had activating mutations in exon 9, while 15 had
activating mutations in exon 20 [1], revealing two possible therapeutic targets. Similar
rates of PIK3CA genomic alterations have been reported in CRC and gastric cancers (17.7%
and 12.5% respectively) [1]. Phosphoinositide 3-kinase (PI3K) inhibition has been clinically
validated, resulting in FDA approved therapies for the hematologic malignancies and
most recently breast cancer; molecular characterization efforts suggest PI3K inhibition may
benefit a subset of SBA patients.

Genomic alterations of the mitogen-activated protein kinase (MAP2K1 or MEK1) gene
were much less frequent than PIK3CA alterations, seen in just 2.8% of SBAs [1]. However,
there may be a role for MEK inhibitors in this small cohort of SBA patients. Similarly,
3 of 317 SBA cases had activating receptor tyrosine kinase rearrangements identified,
involving ALK, ROS1, and FGFR2 genes [1]. Another recent study found a fusion of the
intestinal stem-cell marker olfactomedin 4 (OLFM4) and the proto-oncogene RET in an
SBA patient [62]. OLFM4 expression was found to be frequently diminished in SBA, with
targeted OLFM4-RET expression leading to development of adenocarcinoma in mouse
models [62]. Based on this study, OLFM4-RET may serve as an additional oncologic driver
of small intestinal carcinogenesis, implicating a future role for treatment with RET kinase
inhibitors in SBA patients harboring OLFM4-RET fusions.

Activation of the WNT pathway through accumulation of beta-catenin may have a
role in a subset of SBAs, but this accumulation appears much less frequently caused by
inactivating APC gene mutations when compared to CRC [40], as evidenced by the dis-
crepancy in APC genomic alteration rates seen. Interestingly, genomic alterations in other
WNT pathway genes were largely mutually exclusive from APC, but also seen relatively
uncommonly even in the APC wild-type SBA cohort [1], suggesting a potentially lesser role
of the WNT pathway in SBA tumorigenesis as compared to CRC. Nonetheless, with over
1 in 4 SBA patients harboring APC gene alterations, there is no doubt that exploring WNT
signaling pathway directed therapies could lead to a significant shift in SBA treatment
paradigms. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase with demonstrated
effect as an inhibitor of WNT signaling [63–69]; studies have suggested its role in tumor
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suppression, by blocking the WNT pathway downstream of oncogenic mutations that
activate the pathway [65]. Endogenous RNF43 has been detected in human intestinal
crypts, with WNT pathway-mediated tumorigenesis observed in gastrointestinal cancer
cells expressing RNF43 mutations [65]. As such, small-molecule inhibitors of the membrane-
bound O-acyltransferase Porcupine have been developed to block WNT signaling [67];
in RNF43-mutated small intestinal tumors, which lack the downstream WNT pathway
regulation generally provided by RNF43, preclinical models have shown an effect in both
CRC and SBA tumor growth suppression [68,69].

3.6. Epigenetic Alterations and Non-Coding RNA

While detailed analyses of the relationship between epigenetic and genomic alter-
ations contributing to CRC and GC have been described [70], few studies have investigated
these interactions in SBA. DNA hypermethylation is an epigenetic phenomenon frequently
implicated in the pathogenesis of gastrointestinal cancers, and in particular, the CpG is-
land methylator phenotype (CIMP) has become increasingly recognized [71–76]. CIMP is
associated with MLH1 methylation, decreased MLH1 expression, and MSI-H in CRC and
GC [71,77,78], as well as with BRAF mutations in CRC [79]. A study of 37 primary SBA
tumors, stratified by CIMP, RAS/BRAF mutation status, microsatellite status, and chro-
mosomal instability (CIN) sought to characterize this interrelationship between epigenetic
and genomic alterations in SBA [75]. Among the 37 SBA tumors analyzed, 11 displayed
high-level CIMP (CIMP-H). CIMP-H with MLH1 methylation was especially common in
MSI-H SBA and microsatellite and chromosomally stable (MACS) SBA [75], suggesting
similarities with CRC [80–83]. Meanwhile, an inverse correlation was seen between aber-
rant methylation and SBA with CIN [75], as described in CRC [84,85]. Approximately 50%
of the SBA tumors analyzed were CIN, characterized by frequent KRAS mutation and
low-level methylation [75], while the remaining SBA tumors were MSI-H and MACS, char-
acterized by the lack of KRAS mutations and greater incidence of high-level methylation
and BRAF mutations [75], implicating two molecularly distinct SBA subtypes with unique
tumorigenesis pathways.

Histone modification is another mechanism of epigenetic alteration well studied in
CRC [86–90], which also appears to play a role in SBA pathogenesis. A study of 17 SBA
tumor samples undergoing next generation sequencing identified truncation mutations
upstream of the SET domains of two histone-lysine N-methyltransferases, KMT2C and
KMT2D, in 70% and 18% of SBA samples [42], substantially greater than the 10% alteration
rate seen in CRC [91–93]. These genes, in addition to the zinc finger gene, suppressor of
zeste 12 homolog (SUZ12), which was mutated in one third of SBA samples analyzed [42],
play an integral role in the histone methylation process, and have been implicated in
esophageal and prostate tumorigenesis [94–97]. KMT2C and KMT2D deficiencies result in
aberrant activation of various signaling pathways, including the WNT pathway [98], as
well as chromosomal instability [99,100].

Non-coding RNAs (ncRNAs), which represent over 90% of the total genome can be sub-
divided into long (>200 nucleotides) and small/short (<200 nucleotides) ncRNAs [90]. Long
ncRNA can function as tumor suppressors or promotors in CRC, primarily by generating
microRNAs (miRNAs) [101], a subtype of small ncRNAs containing 18–25 nucleotides [90].
miRNAs and other regulatory small ncRNAs play an integral role in gene expression [102],
and consequently cancer cell proliferation, apoptosis, metastasis, and therapeutic resis-
tance [102–110]. Aberrant miRNA expression and its role in CRC pathogenesis has been
documented by other groups [103,111–114]. Recent studies have identified miRNA dys-
regulation in small bowel neuroendocrine tumors [115,116], however studies in SBA are
lacking. Ongoing efforts focus on use of miRNA as a potential diagnostic and prognostic
biomarker [102,105–110].
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4. Conclusions and Future Directions

Genomic profiling has allowed for comprehensive characterization of the molecular
landscape of SBA. Comparative analysis efforts have shown that SBA represents a unique
molecular entity, with distinct gene alteration differences amongst small bowel subsites and
neighboring gastrointestinal tumors. SBA remains a rare cancer without FDA approved
therapies and treatment guidelines extrapolated largely from CRC. Recent understanding
of the molecular drivers of SBA has identified potentially targetable genomic alterations in
a large subset of patients. These targetable alterations should prompt further investigation
to develop new therapeutic options that shape clinical management and establish new
standards for a disease with limited therapeutic options and overall poor prognosis.
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